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Abstract. In this paper, we extend the definitions of normal structure and geometric properties in n-normed spaces.

Fixed point theorems for nonexpansive mappings are proved via the normal structure condition in n-normed spaces.

The purpose of this work is keeping continuity of fixed point theorems in n-Banach spaces.
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1. Introduction

In 1964, Gähler introduced the notion of 2-normed spaces[1] and extended it to the concept

of n-normed spaces[2,3,4]. Other papers dealing with n-metric spaces also gave some important

results[5,10,11]. Recently, Several authors such as Iseki[5,6] and Gunawan[7,8,9] also studied some

aspects of the fixed point theory and proved fixed point theorems in n-normed spaces.

In 1965, F.Browder and D.Göhde[15] independently proved that if K is a nonempty bounded

closed convex sunbet of a uniformly convex Banach space, and T : K → K is a nonexpansive
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mapping, then T has a fixed point in K. In 2015, K.Matsuzaki[16] showed uniform convexity’s

generalization in the geometric group theory and proved the fixed point property. Normal struc-

ture plays essential role in some problems of fixed point theory. Motivated by these results,

our formulation of normal structure and its generalization can be applied to prove fixed point

theorems for nonexpansive type mappings in normal n-normed spaces.

2. Preliminaries

In this section, we gather together some definitions and known results which will be used in

section 3. Hereafter, let (E,‖ ·, ..., · ‖) denote an n-normed space and C = {c1, ...,cn} be a set

of n linearly independent vectors in E. We use de f inition 1-de f inition 5 in [9], and we don’t

make redundant narration. Before we state our fixed point theorems, we introduce the following

basic definitions:

Definition 2.1 Let E be a n-normed space. The diameter of any bounded subset K ⊆ E, which

is denote by δ (K), is defined by δ (K) = sup{‖ x− y,x2, ...,xn ‖: x,y ∈ K} for all x2, ...,xn ∈ E.

Definition 2.2[13] E is called uniformly convex n-normed space with respect to C: for arbitrary

ε > 0, there is δ = δ (C,ε)> 0, such that for all x,y ∈ SC(E) and {i2, ..., in} ⊆ {1,2, ...,n}, if

‖ x+y
2 ,ci2, ...,cin ‖> 1−δ ,

then

‖ x− y,ci2, ...,cin ‖< ε .

Here SC(E) = {x ∈ E :‖ x,ci2, ...,cin ‖= 1}.

If for arbitrary C ⊆ E, E is uniformly convex n-normed space with respect to C, then E is

called uniformly convex n-normed space.

Definition 2.3 E is called uniformly convex n-normed space in every direction(n-UCED, for

short) with respect to C: for arbitrary ε > 0 and z ∈ E \ {θ}, there exists δ = δ (C,ε,z) > 0,

such that if x,y ∈ SC(E), x− y = λ z,

‖ x+y
2 ,ci2, ...,cin ‖> 1−δ ,

then |λ |< ε .
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If for arbitrary C ⊆ E, E is n-UCED with respect to C, then E is called uniformly convex

n-normed space in every direction(n-UCED).

Proposition 2.4 E is uniformly convex n-normed space with respect to C, then E is n-UCED

with respect to C.

Proof. For arbitrary ε > 0 and z ∈ E \ {θ}, let ε
′
=‖ z,ci2, ...,cin ‖ ·ε . Since E is uniformly

convex n-normed space with respect to C, there exists δ = δ (C,ε
′
) > 0, such that when x,y ∈

SC(E), x− y = λ z,

‖ x+y
2 ,ci2, ...,cin ‖> 1−δ ,

then

‖ x− y,ci2, ...,cin ‖< ε
′
.

We obtain that | λ |< ε , and hence E is n-UCED with respect to C.

Definition 2.5 Let E be an n-normed space, we define directional modulus of convexity of E

with respect C, which is denote by δ E
C (z,ε) : for ε > 0 and {i2, ..., in} ⊆ {1,2, ...,n},

δ E
C (z,ε) = inf{1− ‖x+y,ci2 ,...,cin‖

2 : x,y ∈ BC(E),‖ x− y,ci2, ...,cin ‖> ε,x− y = tz,z ∈ E, t ∈ R}.

Here BC(E) = {x ∈ E :‖ x,ci2, ...,cin ‖≤ 1}.

Proposition 2.6 For ε > 0, if δ E
C (z,ε)> 0, then E is n-UCED with respect to C.

Definition 2.7 An n-normed space E is said to have normal structure with respect to C: for

every bounded closed and convex subset K ⊆ E( δ (K) > 0) with respect to C (C /∈ spanK),

there exists a element u ∈ K and {i2, ..., in} ⊆ {1,2, ...,n}, such that

supx∈K ‖ x−u,ci2 , ...,cin ‖< δ (K).

If for arbitrary C⊆ E, E has normal structure with respect to C, then E is said to have normal

structure.

Definition 2.8 Let E be a n-normed space then the mapping T : E → E is said to be a nonex-

pansive mapping with respect to C, if

‖ T x−Ty,ci2 , ...,cin ‖≤‖ x− y,ci2 , ...,cin ‖,

for all x,y ∈ E and {i2, ..., in} ⊆ {1,2, ...,n}.

3. Main results



FIXED POINT THEOREMS IN NORMAL n-NORMED SPACES 87

Lemma 3.1. Let E be an n-normed space, K ⊆ E be nonempty bounded closed and convex

subsets with respect to C, C /∈ spanK and T be a selfmap into K, If K has intersection property

(i.e., any decreasing sequence of nonempty closed subset of K has a nonempty intersection ),

then there is a minimal T− invariant, nonempty bounded closed and convex subset with respect

to C.

Proof. Let FC be a set family containing all T− invariant, nonempty bounded closed and convex

subsets with respect to C in K. FC is a nonempty set (K ∈ F). According to the set inclusion

relation, K has intersection property, then we can use the zorn lemma to obtain a minimal

element in FC.

Lemma 3.2 Assuming D is the minimal element in FC, then CoT DC = D. Here CoT DC is the

closed convex hull of T D with respect to C.

Proof. Since D is T− invariant, T D⊆ D. The assumption that D is a closed and convex subset

with respect to C such that CoT DC ⊆ D, then

TCoT DC ⊆ T D⊆CoT DC,

so CoT DC is T− invariant. Since the minimality of D, CoT DC = D.

Theorem 3.3 Let E be an n-normed space and K ⊆ E be nonempty bounded closed and convex

subsets with respect to C( C /∈ spanK), having intersection property. If E has normal structure,

then a nonexpansive selfmap T : K→ K has a fixed point.

Proof. By Lemma 3.1 we can obtain a minimal element D of FC. If δ (D) = 0, the problem is

solved since in this case D = {x0}, and thus T (x0) = x0. Then we are ready to prove D has only

one point. We assume D has more than one point, and since E has normal structure, there exists

u ∈ D, such that

α = supx∈D ‖ x−u,ci2, ...,cin ‖< δ (D). (3.1)

For every x ∈ D

‖ T (u)−T (x),ci2, ...,cin ‖≤‖ u− x,ci2, ...,cin ‖≤ α .

Since x is arbitrary, we obtain that

T (D)⊆ BC(T (u),α) = {y ∈ X :‖ T (u)− y,ci2, ...,cin ‖≤ α}. (3.2)
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Let G = D
⋂

BC(T (u),α), then G is a T− invariant, nonempty (T (u) ∈ G) bounded closed

and convex subset with respect to C i.e., G ∈ FC. Since D is the minimal element, then D = G.

We know D⊆ BC(T (u),α), then

supy∈D ‖ T (u)− y,ci2, ...,cin ‖≤ α. (3.3)

Let

D
′
= {z ∈ D,supy∈D ‖ z− y,ci2 , ...,cin ‖≤ α}, (3.4)

so, it is easy to get D
′ ⊆ D is a nonempty(T (u) ∈ D

′
) bounded closed and convex set with

respect to C. And from (3.1), (3.4)

δ (D
′
)≤ α < δ (D),

then D
′ $ D. Next, we will prove D

′
is T− invariant.

Actually, for every w ∈ D
′ $ D, because D is the minimal element in FC, by Lemma 3.2,

we know D = Co T DC. Then for every y ∈ D, and arbitrary ε > 0, existing xi ∈ D, λi ≥ 0,

∑
n
i=1 λi = 1, such that

‖ y−
n

∑
i=1

λiT (xi),ci2 , ...,cin ‖< ε. (3.5)

We can see that

‖ T (w)− y,ci2, ...,cin ‖

≤ ‖ T (w)−
n

∑
i=1

λiT (xi),ci2, ...,cin ‖+ ‖
n

∑
i=1

λiT (xi)− y,ci2, ...,cin ‖

≤
n

∑
i=1

λi ‖ T (w)−T (xi),ci2, ...,cin ‖+ε

≤
n

∑
i=1

λi ‖ w− xi,ci2 , ...,cin ‖+ε

≤ α + ε.

Then Tw ∈ D
′
, thus D

′ ∈ F , which contradicts the minimality of D. We know that D has only

one point, which is fixed by T , so T has at least a fixed point in D⊆ K. Thus we complete the

proof.

Lemma 3.4 Let E be an n-normed space, z ∈ SC(E), if δ E
C (z,1)> 0, then E has normal struc-

ture.
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Proof. Let K ⊆ E is any more than one point, bounded closed and convex subset with respect

to C, then there exist x,y ∈ K and {i2, ..., in} ⊆ {1,2, ...,n}, such that

supx,y∈K ‖ x− y,ci2, ...,cin ‖= δ (K).

This implies that for arbitrary given ε > 0, we have

‖ x− y,ci2, ...,cin ‖≥ δ (K)− ε .

Clearly, for any u ∈ K,

‖ u− x,ci2, ...,cin ‖≤ δ (A),

‖ u− y,ci2 , ...,cin ‖≤ δ (A),

and let z = x−y
‖x−y,ci2 ,...,cin‖

, we have

u− x− (u− y) =‖ x− y,ci2 , ...,cin ‖ ·z.

Then

‖ u− x+y
2 ,ci2, ...,cin ‖≤ δ (K)[1−δ E

C (z, δ (K)−ε

δ (K) )].

According the condition δ E
C (z,1)> 0, we can deduce that for any u∈K, there exists x+y

2 ∈K,

such that

‖ u− x+y
2 ,ci2, ...,cin ‖< δ (K).

Thus we complete the proof.

Corollary 3.5 Let E be an n-UCED and K ⊆E be nonempty bounded closed and convex subsets

with respect to C (C /∈ spanK), having intersection property. T : K → K is a nonexpansive

mapping, then T has at least a fixed point.

Theorem 3.6 Let E be an n-UCED and K ⊆ E be nonempty bounded closed and convex subsets

with respect to C(C /∈ spanK), having intersection property. For all x,y ∈ K and x2, ...,xn ∈ E,

T : K→ K satisfies

‖ T x−Ty,x2, ...,xn ‖≤ a ‖ x− y,x2, ...,xn ‖+b ‖ x−T x,x2, ...,xn ‖+c ‖ x−Ty,x2, ...,xn ‖,

a+b+ c = 1, then T has at least a fixed point.

Proof. By Lemma 3.1 we can obtain a minimal element D of FC, then we are ready to prove D

has only one point.

We assume D has more than one point, then there exists u ∈ D, such that
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α = supx∈D ‖ x−u,ci2, ...,cin ‖< δ (D).

For every x ∈ D

‖ T (u)−T (x),ci2, ...,cin ‖

≤ a ‖ u− x,ci2, ...,cin ‖+b ‖ u−T (u),ci2, ...,cin ‖+c ‖ u−T (x),ci2, ...,cin ‖

≤ (a+b+ c)sup
x∈D
‖ u− x,ci2, ...,cin ‖

≤ α.

Using the same technique as theorem 3.3, we can get condition (3.2)-(3.4). And we continue

the proof to prove D
′
is T− invariant in this case. Actually, for every w ∈ D

′ $ D, because D is

the minimal element in F , we have D =Co T DC by Lemma 3.2. For each y ∈ D, and arbitrary

ε > 0, there exists xi ∈ D, λi ≥ 0, ∑
n
i=1 λi = 1, such that

‖ y−
n

∑
i=1

λiT (xi),ci2, ...,cin ‖< ε.

We can see that

‖ T (w)− y,ci2, ...,cin ‖≤‖ T (w)−
n

∑
i=1

λiT (xi),ci2, ...,cin ‖+ ‖
n

∑
i=1

λiT (xi)− y,ci2, ...,cin ‖

≤
n

∑
i=1

λi ‖ T (w)−T (xi),ci2, ...,cin ‖+ε

≤
n

∑
i=1

λi[a ‖ w− xi,ci2, ...,cin ‖+b ‖ xi−T (xi),ci2, ...,cin ‖+c ‖ xi−T (w),ci2, ...,cin ‖]+ ε

≤ α + ε.

Then Tw ∈ D
′
, thus D

′ ∈ F , which contradicts the minimality of D. We know that D has only

one point, which is fixed by T , thus we complete the proof. It is obvious that theorem 3.6 is the

extension of theorem 3.5.
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