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Abstract. In this study, firstly, the Frenet vector fields T ,N ,B of the natural lift α of a

curve α are calculated in terms of those of α in R3
1 . Secondly, we obtained striction lines

and distribution parameters of ruled surface pair generated by the curve α and its natural

lift α. Finally, for α and α those notions are compared with each other.
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1. Introduction and Preliminaries

Let Minkowski 3-space R3
1 be the vector space R3 equipped with the Lorentzian inner

product g given by

g (X,X) = −x21 + x22 + x23

where X = (x1, x2, x3) ∈ R3 . A vector X = (x1, x2, x3) ∈ R3 is said to be timelike if

g (X,X) < 0, spacelike if g (X,X) > 0 and lightlike (or null) if g (X,X) = 0. Similarly,

an arbitrary curve α = α (t) in R3
1 where t is a pseudo-arclength parameter, can locally
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be timelike, spacelike or null (lightlike), if all of its velocity vectors α
′
(t) are respectively

timelike, spacelike or null (lightlike), for every t ∈ I ⊂ R.

A lightlike vector X is said to be positive (resp. negative) if and only if x1 > 0

(resp.x1 < 0) and a timelike vector X is said to be positive (resp. negative) if and only

if x1 > 0 (resp. x1 < 0).The norm of a vector X is defined by [4]

‖X‖IL =
√
|g (X,X)|.

We denote by {T (t) , N (t) , B (t)} the moving Frenet frame along the curve α. Then

T,N and B are the tangent, the principal normal and the binormal vector of the curve

α, respectively.

Let α be a unit speed timelike space curve with curvature κ and torsion τ . Let Frenet

vector fields of α be {T,N,B}. In this trihedron, T is timelike vector field, N and B are

spacelike vector fields. Then, Frenet formulas are given by [8]

T
′
= κN N

′
= κT + τB B

′
= −τN.

Let α be a unit speed spacelike space curve with a spacelike binormal. In this trihedron,

we assume that T and B are spacelike vector fields and N is a timelike vector field .Then,

Frenet formulas are given by [8]

T
′
= κN N

′
= κT + τB B

′
= τN.

Let α be a unit speed spacelike space curve with a timelike binormal. In this trihedron,

we assume that T and N are spacelike vector fields and B is a timelike vector field. Then,

Frenet formulas are given by [8]

T
′
= κN N

′
= −κT + τB B

′
= τN.

Lemma1.1. Let Xand Y be nonzero Lorentz orthogonal vectors in R3
1. If X is timelike,

then Y is spacelike [10].
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Lemma1.2. Let X and Y be pozitive (negative ) timelike vectors in R3
1. Then

g (X, Y ) ≤ ‖X‖ ‖Y ‖

whit equality if and only if X and Y are linearly dependent [10].

Lemma1.3.

i) Let X and Y be pozitive (negative ) timelike vectors in R3
1. By the Lemma 1.2, there

is unique nonnegative real number ϕ (X, Y ) such that

g (X, Y ) = ‖X‖ ‖Y ‖ coshϕ (X, Y )

the Lorentzian timelike angle between X and Y is defined to be ϕ (X, Y ).

ii) Let X and Y be spacelike vectors in R3
1 that span a spacelike vector subspace. Then

we have

|g (X, Y )| ≤ ‖X‖ ‖Y ‖ .

Hence, there is a unique real number ϕ (X, Y ) between 0 and π such that

g (X, Y ) = ‖X‖ ‖Y ‖ cosϕ (X, Y )

the Lorentzian spacelike angle between X and Y is defined to be ϕ (X, Y ).

iii) Let X and Y be spacelike vectors in R3
1 that span a timelike vector subspace. Then

we have

g (X, Y ) > ‖X‖ ‖Y ‖ .

Hence, there is a unique pozitive real number ϕ (X, Y ) between 0 and π such that

|g (X, Y )| = ‖X‖ ‖Y ‖ coshϕ (X, Y )

the Lorentzian timelike angle between X and Y is defined to be ϕ (X, Y ) .

iv) Let X be a spacelike vector and Y be a pozitive timelike vector in R3
1. Then there

is a unique nonnegative reel number ϕ (X, Y ) such that

|g (X, Y )| = ‖X‖ ‖Y ‖ sinhϕ (X, Y )

the Lorentzian timelike angle between X and Y is defined to be ϕ (X, Y ) [10].

Definition1.1. (Unit Vector C of Direction W for Non-null Curves):
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i) For the curve α with a timelike tanget, θ being a Lorentzian timelike angle between

the spacelike binormal unit −B and the Frenet instantaneous rotation vector W ,

a) If |κ| > |τ |, then W is a spacelike vector. In this situation, from Lemma 1.3 iii) we

can write

κ = ‖W‖ cosh θ, τ = ‖W‖ sinh θ

‖W‖2 = g (W,W ) = κ2 − τ 2 and C = W
‖W‖ = sinh θT + cosh θB, where C is unit vector

of direction W .

b) If |κ| < |τ |, then W is a timelike vector. In this situation, from Lemma 1.3 iv) we

can write

κ = ‖W‖ sinh θ, τ = ‖W‖ cosh θ

‖W‖2 = −g (W,W ) = − (κ2 − τ 2) and C = cosh θT + sinh θB.

ii) For the curve α with a timelike principal normal, θ being an angle between the B

and the W , if B and W spacelike vectors that span a spacelike vektor subspace then by

the Lemma 1.3 ii) we can write

κ = ‖W‖ cos θ, τ = ‖W‖ sin θ

‖W‖2 = g (W,W ) = κ2 + τ 2 and C = sin θT − cos θB.

iii) For the curve α with a timelike binormal, θ being a Lorentzian timelike angle

between the −B and the W ,

a) If |κ| < |τ |, then W is a spacelike vector. In this situation, from Lemma 1.3 iv) we

can write

κ = ‖W‖ sinh θ, τ = ‖W‖ cosh θ

‖W‖2 = g (W,W ) = τ 2 − κ2 and C = − cosh θT + sinh θB.

b) If |κ| > |τ |, then W is a timelike vector. In this situation, from Lemma 1.3 i) we

have

κ = ‖W‖ cosh θ, τ = ‖W‖ sinh θ

‖W‖2 = −g (W,W ) = − (τ 2 − κ2) and C = − sinh θT + cosh θB.

Corollary 1.1. Let α be a unit speed timelike space curve. Then the natural lift α of α

is a spacelike space curve [5].
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Corollary 1.2. Let α be a unit speed spacelike space curve with a spacelike binormal.

Then the natural lift α of α is a timelike space curve [5].

Corollary 1.3. Let α be a unit speed spacelike space curve with a timelike binormal.

Then the natural lift α of α is a spacelike space curve [5].

Corollary 1.4. Let α be a unit speed timelike space curve and α be the natural lift of

α.Then

T (s) = N (s) , N (s) = −κ (s)

‖W‖
T (s)− τ (s)

‖W‖
B (s) , B (s) = − τ (s)

‖W‖
T (s)− κ (s)

‖W‖
B (s) [7].

Corollary 1.5. Let α be a unit speed spacelike space curve with a spacelike binormal and

α be the natural lift of α.Then

T (s) = N (s) , N (s) =
κ (s)

‖W‖
T (s) +

τ (s)

‖W‖
B (s) , B (s) =

τ (s)

‖W‖
T (s)− κ (s)

‖W‖
B (s) [7].

Corollary 1.6. Let α be a unit speed spacelike space curve with a timelike binormal and

α be the natural lift of α.Then

T (s) = N (s) , N (s) = −κ (s)

‖W‖
T (s)− τ (s)

‖W‖
B (s) , B (s) =

τ (s)

‖W‖
T (s) +

κ (s)

‖W‖
B (s) [7].

Definition1.2. Let M be a hypersurface in R3
1 and let α : I −→ M be a parametrized

curve. α is called an integral curve of X if

d

ds
(α (s)) = X (α (s)) (for all s ∈ I) [4]

where X is a smooth tangent vector field on M . We have

TM =
⋃
P∈M

TPM = χ (M)

where TPM is the tangent space of M at P and χ (M) is the space of vector fields

on M .
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Definition1.3. For any parametrized curve α : I −→M , α : I −→ TM given by

α (s) =
(
α (s) , α

′
(s)
)

= α
′
(s) |α(s)

is called the natural lift of α on TM [5].Thus, we can write

dα

ds
=

d

ds

(
α
′
(s) |α(s)

)
= Dα′ (s)α

′
(s)

where D is the Levi-Civita connection on R3
1 .

A ruled surface is generated by a one-parameter family of straight lines and it possesses

a parametric representation

X (s, v) = α (s) + ve (s) ,

where α (s) represents a space curve which is called the base curve and e is a unit vector

representing the direction of a straight line.

The striction point on a ruled surface X is the foot of the common normal between two

consecutive generators (or ruling ). The set of striction points defines the striction curve

given as

β (s) = α (s)−
g
(
α
′
, e
′)

g (e′ , e′)
e (s) [2].

The distribution parameter of the ruled surface X is defined by

Pe =
det
(
α
′
, e, e

′)
‖e′‖2

[2].

The ruled surface is developable if and only if Pe = 0.

3. RuledSurface Pair Generated By a Curve and Its Natural Lift

in R3
1

Let α be a unit speed timelike space curve. Then the natural lift α of α is a spacelike

space curve.
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(i) Let X and X be two ruled surfaces which is given by

X (s, v) = α (s) + vT (s) , X (s, v) = α (s) + vT (s) .

The striction curves of X and X are given by β (s) = α (s)− λT (s) and β (s) = α (s)−

µT (s), respectively. Then we obtain

λ = 0, µ = 0.

The distribution parameters of the ruled surfaces X and X are defined by PT =

det
(
α
′
,T,T

′)
‖T ′‖2 and P T =

det

(
α
′
,T ,T

′)
∥∥∥T ′∥∥∥2 . Then we have

PT = 0, P T = 0.

Corollary 2.1. Let the striction curves of X and X be given by β (s) = α (s)− λT (s)

and β (s) = α (s)− µT (s), respectively. Then β (s) = α (s) and β (s) = α (s).

Corollary 2.2. If the ruled surface X is developable then the ruled surface X are also

developable.

(ii) Let X and X be two ruled surfaces which is given by

X (s, v) = α (s) + vN (s) , X (s, v) = α (s) + vN (s) .

The striction curves of X and X are given by β (s) = α (s) − λN (s) and β (s) =

α (s)− µN (s), respectively. Then we have

λ =
κ

κ2 − τ 2
, µ =

κ (−κ2 + τ 2) ‖W‖
−κ′2 + τ ′2 + (−κ2 + τ 2)2

.
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The distribution parameters of the ruled surfaces X and X are defined by PN =

det
(
α
′
,N,N

′)
‖N ′‖2 and PN =

det

(
α
′
,N,N

′)
∥∥∥N ′∥∥∥2 . Then we obtain

PN =
τ

−κ2 + τ 2
, PN =

−κ2τ ′ + κτκ
′

(−κ′2 + τ ′2) + (−κ2 + τ 2)2
.

Corollary 2.3. Let the striction curves of X and X be given by β (s) = α (s)− λN (s)

and β (s) = α (s)− µN (s), respectively.

(1) If W is a spacelike vector,then µ =
−κ(κλ)

3
2

(−κ′2+τ ′2)+(−κλ)
2 .

(2) If W is a timelike vector,then µ =
−κ(−κλ)

3
2

(−κ′2+τ ′2)+(−κλ)
2 .

Corollary 2.4. Let the distribution parameters of the ruled surfaces X and X be PN

and PN , respectively.

(1) If W is a spacelike vector,then PN = −κ2τ ′+κτκ′

(−κ′2+τ ′2)+
(
− τ
PN

)2 .

(2) If W is a timelike vector,then PN = −κ2τ ′+κτκ′

(−κ′2+τ ′2)+
(

τ
PN

)2 .

Corollary 2.5. If α is a planer curve, then the ruled surface X and X are developable.

(iii) Let X and X be two ruled surfaces which are given by

X (s, v) = α (s) + vB (s) , X (s, v) = α (s) + vB (s) .

The striction curves of X and X are given by β (s) = α (s) − λB (s) and β (s) =

α (s)− µB (s), respectively. Then we obtain

λ = 0, µ = 0.

The distribution parameters of the ruled surfaces X and X are defined by PB =

det
(
α
′
,B,B

′)
‖B′‖2 and PB =

det

(
α
′
,B,B

′)
∥∥∥B′∥∥∥2 . Then we have

PB =
1

τ
, PB =

κ2τ
′ − κτκ′

κ′2 − τ ′2
.
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Corollary 2.6. Let the striction curves of X and X be given by β (s) = α (s)− λB (s)

and β (s) = α (s)− µB (s), respectively. Then β (s) = α (s) and β (s) = α (s).

Corollary 2.7. Let the distribution parameters of the ruled surfaces X and X be PB

and PB, respectively. Then PB =
κ2τ
′−κ

(
1
PB

)
κ
′

κ′2+τ ′2
.

Let α be a unit speed spacelike space curve with a spacelike binormal. Then the natural

lift α of α is a timelike space curve.

(i) Let X and X be two ruled surfaces which is given by

X (s, v) = α (s) + vT (s) , X (s, v) = α (s) + vT (s) .

The striction curves of X and X are given by β (s) = α (s)− λT (s) and β (s) = α (s)−

µT (s),respectively. Then we obtain

λ = 0, µ = 0.

The distribution parameters of the ruled surfaces X and X are defined by PT =

det
(
α
′
,T,T

′)
‖T ′‖2 and P T =

det

(
α
′
,T ,T

′)
∥∥∥T ′∥∥∥2 . Then we have

PT = 0, P T = 0.

Corollary 2.8. Let the striction curves of X and X be given by β (s) = α (s)− λT (s)

and β (s) = α (s)− µT (s), respectively. Then β (s) = α (s) and β (s) = α (s).

Corollary 2.9. If the ruled surface X is developable then the ruled surface X are also

developable.

(ii) Let X and X be two ruled surfaces which is given by

X (s, v) = α (s) + vN (s) , X (s, v) = α (s) + vN (s) .
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The striction curves of X and X are given by β (s) = α (s) − λN (s) and β (s) =

α (s)− µN (s), respectively. Then we have

λ =
κ

κ2 + τ 2
, µ =

−κ (κ2 + τ 2) ‖W‖
(κ′2 + τ ′2)− (κ2 + τ 2)2

.

The distribution parameters of the ruled surfaces X and X are defined by PN =

det
(
α
′
,N,N

′)
‖N ′‖2 and PN =

det

(
α
′
,N,N

′)
∥∥∥N ′∥∥∥2 . Then we obtain

PN =
τ

κ2 + τ 2
, PN =

−κ2τ ′ + κτκ
′

(κ′2 + τ ′2)− (κ2 + τ 2)2
.

Corollary 2.10. Let the striction curves of X and X be given by β (s) = α (s)−λN (s)

and β (s) = α (s)− µN (s), respectively. Then µ =
−κ(κλ)

3
2

(κ′2+τ ′2)−(κλ)
2 .

Corollary 2.11. Let the distribution parameters of the ruled surfaces X and X be PN

and PN , respectively. Then PN = −κ2τ ′+κτκ′

(κ′2+τ ′2)+
(

τ
PN

)2 .

Corollary 2.12. If α is a planer curve, then the ruled surfaces X and X are developable.

(iii) Let X and X be two ruled surfaces which are given by

X (s, v) = α (s) + vB (s) , X (s, v) = α (s) + vB (s) .

The striction curves of X and X are given by β (s) = α (s) − λB (s) and β (s) =

α (s)− µB (s),respectively. Then we obtain

λ = 0, µ = 0.
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The distribution parameters of the ruled surfaces X and X are defined by PB =

det
(
α
′
,B,B

′)
‖B′‖2 and PB =

det

(
α
′
,B,B

′)
∥∥∥B′∥∥∥2 .Then we have

PB =
1

τ
, PB =

−κ2τ ′ + κτκ
′

κ′2 + τ ′2
.

Corollary 2.13. Let the striction curves of X and X be given by β (s) = α (s)−λB (s)

and β (s) = α (s)− µB (s), respectively. Then β (s) = α (s) and β (s) = α (s).

Corollary 2.14. Let the distribution parameters of the ruled surfaces X and X be PB

and PB, respectively. Then PB =
−κ2τ ′+κ

(
1
PB

)
κ
′

κ′2+τ ′2
.

Let α be a unit speed spacelike space curve with a timelike binormal. Then the natural

lift α of α is a spacelike space curve.

(i) Let X and X be two ruled surfaces which is given by

X (s, v) = α (s) + vT (s) , X (s, v) = α (s) + vT (s) .

The striction curves of X and X are given by β (s) = α (s)− λT (s) and β (s) = α (s)−

µT (s), respectively. Then we obtain

λ = 0, µ = 0.

The distribution parameters of the ruled surfaces X and X are defined by PT =

det
(
α
′
,T,T

′)
‖T ′‖2 and P T =

det

(
α
′
,T ,T

′)
∥∥∥T ′∥∥∥2 . Then we have

PT = 0, P T = 0.

Corollary 2.15. Let the striction curves of X and X be given by β (s) = α (s)−λT (s)

and β (s) = α (s)− µT (s), respectively. Then β (s) = α (s) and β (s) = α (s).

Corollary 2.16. If the ruled surface X is developable then the ruled surface X are also

developable.
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(ii) Let X and X be two ruled surfaces which is given by

X (s, v) = α (s) + vN (s) , X (s, v) = α (s) + vN (s) .

The striction curves of X and X are given by β (s) = α (s) − λN (s) and β (s) =

α (s)− µN (s), respectively. Then we have

λ =
−κ

κ2 − τ 2
, µ =

κ (κ2 + τ 2) ‖W‖
(κ′2 − τ ′2) + (κ2 + τ 2)2

.

The distribution parameters of the ruled surfaces X and X are defined by PN =

det
(
α
′
,N,N

′)
‖N ′‖2 and PN =

det

(
α
′
,N,N

′)
∥∥∥N ′∥∥∥2 . Then we obtain

PN =
τ

κ2 − τ 2
, PN =

−κ2τ ′ + κτκ
′

(κ′2 − τ ′2) + (κ2 + τ 2)2
.

Corollary 2.17. Let the striction curves of X and X be given by β (s) = α (s)−λN (s)

and β (s) = α (s)− µN (s), respectively.

(1) If W is a spacelike vector,then µ =
−κ(κ2+τ2)(κλ)

1
2

(κ′2−τ ′2)+(κ2+τ2)2
.

(2) If W is a timelike vector,then µ =
−κ(κ2+τ2)(−κλ)

1
2

(κ′2−τ ′2)+(κ2+τ2)2
.

Corollary 2.18. Let the distribution parameters of the ruled surfaces X and X be PN

and PN , respectively.

(1) If W is a spacelike vector,thenPN =
−κ2τ ′+κ(−PN‖W‖2)κ

′

(κ′2−τ ′2)+(κ2+τ2)2
.

(2) If W is a timelike vector,then PN =
−κ2τ ′+κ(PN‖W‖2)κ

′

(κ′2−τ ′2)+(κ2+τ2)2
.

Corollary 2.19. If α is a planer curve, then the ruled surface X and X are developable.

(iii) Let X and X be two ruled surfaces which are given by

X (s, v) = α (s) + vB (s) , X (s, v) = α (s) + vB (s) .
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The striction curves of X and X are given by β (s) = α (s) − λB (s) and β (s) =

α (s)− µB (s), respectively. Then we obtain

λ = 0, µ =
2κ2τ ‖W‖

(−κ′2 + τ ′2) + 4κ2τ 2
.

The distribution parameters of the ruled surfaces X and X are defined by PB =

det
(
α
′
,B,B

′)
‖B′‖2 and PB =

det

(
α
′
,B,B

′)
∥∥∥B′∥∥∥2 . Then we have

PB = −1

τ
, PB =

κ2τ
′ − κτκ′

(−κ′2 + τ ′2) + 4κ2τ 2
.

Corollary 2.20. Let the striction curves of X and X be given by β (s) = α (s) −

λB (s) and β (s) = α (s) − µB (s), respectively. Then β (s) = α (s) and β (s) = α (s) −
2κ2τ‖W‖

(−κ′2+τ ′2)+4κ2τ2
B (s).

Corollary 2.21. Let the distribution parameters of the ruled surfaces X and X be PB

and PB, respectively. Then PB =
κ2τ
′
+κ

(
1
PB

)
κ
′

(−κ′2+τ ′2)+4κ2τ2
.
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[1] A. Turgut and H.H. Hacısalihoğlu, Spacelike Ruled Surfaces in the Minkowski S-

pace,Commun.Fac.Sci.Univ.Ank.Series Vol.46.No.1,(1997),83-91.
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