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Abstract. In this paper, we give some sufficient conditions to guarantee the asymptotic stability and uniform

boundedness of certain vector second-order nonlinear delay differential equations with a continuous deviating

argument by using a Lyapunov function as basic tool. In doing so we extends some of the existing results in the

literature.
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1. Introduction

This paper consider the following second-order nonlinear delay differential equations

..
X +Φ(Ẋ)+H(X(t− r(t)) = P(t,X ,X(t− r(t)), Ẋ(t))(1.1)
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where 0 ≤ r(t) ≤ ρ , r′(t) ≤ η , 0 < η < 1, ρ and η are some positive constants and ρ will be

determined later, X : R→ Rn, Φ : Rn→ Rn, H ∈ C ′(Rn) and P ∈ C (Rn) where C ′(Rn) is the

set of all continuous function differentiable once on Rn and C (Rn) is the set of all continuous

function on Rn. Let R denote the real line −∞ < t < ∞ and Rn denote the real n-dimensional

Euclidean space equipped with the usual Euclidean norm which will be represented throughout

the sequel by ‖.‖. Moreover, the existence and uniqueness of solutions of (1.1) will be assumed.

( See Picard-Lindelof theorem in [10]).

This paper is mainly concerned with the stability and boundedness of solutions of (1.1). For

the special case in which (1.1) is a scalar equation (so that n = 1) with zero delay, a number of

boundedness, stability and convergence of solutions results have been established by [4], [7],

[12] and others. The conditions obtained in each of these previous investigations are general-

izations in some form or the other of the conditions:

a > 0 and b > 0 for the scalar equation

ẍ+aẋ+bx = p(t)

with a,b constants, which conditions ensure the ultimate boundedness and convergence of all

solutions if p is bounded.

In a series of papers [1, 5-6, 15-16], many authors have obtained n-dimensional analogue of

some of the results reviewed in Ressig et al [11]. However, results for the second-order vec-

tor differential equations have appeared only rarely (see Afuwape and Omeike [2], Omeike et

al [9] and Tejumola [14]). The Lyapunov’s direct method was used with the aid of suitable

differentiable auxiliary functions throughout the mentioned papers. Of recent there has been

growing interest in the application of Lyapunov’s direct method to systems of second-order or-

dinary differential equations with time lags, after effect, deviating argument, coupled circuits

and oscillations that are of importance for certain technical problems. (See [8] and [14]). Conse-

quently, this paper seeks to obtain an analogous result for second-order vector delay differential

equation (1.1) by extending the arguments used in some of the papers mentioned above.
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2. Notations and definitions

Given any X ,Y ∈ Rn the symbol 〈X ,Y 〉 will be used to denote the usual scalar product in Rn,

that is 〈X ,Y 〉= ∑
n
i=1 xiyi; thus ‖X‖2 = 〈X ,X〉. The matrix A is said to be positive definite when

〈AX ,X〉> 0 for all nonzero X in Rn.

The following notations will be useful in subsequent sections. For x ∈ Rn, |x| is the norm of x.

For a given r > 0, t1 ∈ R,

C(t1) = {φ : [t1− r, t1]→ Rn�φ is continuous}.

In particular, C = C(0) denotes the space of continuous functions mapping the interval [−r,0]

into Rn and for φ ∈C, ‖φ‖= Sup−r≤θ≤0|φ(0)|. CH will denote the set of φ such that ‖φ‖ ≤H.

For any continuous function x(u) defined on −h≤ u < A, A > 0, and any fixed t, 0≤ t < A, the

symbol xt will be denote the restriction of x(u) to the interval [t− r, t], that is, xt is an element

of C defined by xt(θ) = x(t +θ), −r ≤ θ ≤ 0.

3. Some preliminary results

We shall state for completeness, some standard results needed in the proofs of our results.

Lemma 1. Let D be a real symmetric n×n matrices. Then for any X ∈ Rn.

δd‖X‖2 ≤ 〈DX ,X〉 ≤ ∆d‖X‖

where δd and ∆d are the least and greatest eigenvalues of D, respectively.

Proof of lemma 1. see [1,6].

Secondly, we require the following lemma.

Lemma 2. Let Q,D be real symmetric commuting n×n matrices. Then;

(i): the eigenvalues λi(QD),(i = 1,2, . . . ,n) of the product matrix QD are all real and

satisfy

min
1≤ j,k≤n

λ j(Q)λk(D)≤ λi(QD)≤ max
1≤ j,k≤n

λ j(Q)λk(D)
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(ii): the eigenvalues λi(Q+D),(i = 1,2, . . . ,n) of the sum of Q and D are all real and

satisfy{
min

1≤ j,k≤n
λ j(Q)+ min

1≤ j,k≤n
λk(D)

}
≤ λi(Q+D)≤

{
max

1≤ j,k≤n
λ j(Q)+ max

1≤ j,k≤n
λk(D)

}
where λ j(Q) and λk(D) are respectively the eigenvalues of Q and D.

Proof of lemma 2. see [1,6].

Now, we will state the stability criteria for the general autonomous delay differential system.

We consider:

ẋ = f (xt), xt(θ) = x(t +θ) − r ≤ θ ≤ 0, t ≥ 0,(3.1)

where f : CH −→ Rn is a continuous mapping,

f (0) = 0,CH := {φ ∈ (C[−r,0],Rn) : ‖φ‖ ≤H}

and for H1 ≤H, there exists L(H1)> 0, with

| f (φ)| ≤ L(H1) when ‖φ‖ ≤H1.

Here, C ([−r,0],Rn) is the family of all vector functions mapping [−r,0] into Rn.

Definition 3.0.1. ([3,13]) An element ψ ∈ C is in the ω-limit set of φ , say, Ω(φ), if x(t,0,φ)

is defined on [0,∞) and there is a sequence {tn}, tn→ ∞ as n→ ∞, with ‖xtn(φ)−ψ‖ → 0 as

n→ ∞ where

xtn(φ) = x(tn +θ ,0,φ) f or − r ≤ θ ≤ 0.

x(t;0,φ) is a motion of a system at t ∈ R if and only if x(0) = φ .

Definition 3.0.2. ([3,13]) A set Q ∈CH is an invariant set if for any φ ∈Q, the solution of (3.1),

x(t,0,φ), is defined on [0,∞) and xt(φ) ∈ Q for t ∈ [0,∞).

Lemma 3. ([3,13]) An element φ ∈CH is such that the solution xt(φ) of (3.1) with xo(φ) = φ

is defined on [0,∞) and ‖xt(φ)‖ ≤ H1 < H for t ∈ [0,∞), then Ω(φ) (the ω-limit set of φ ) is a

non-empty, compact, invariant set and

dist(xt(φ),Ω(φ))→ 0 as t→ ∞.
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Lemma 4. ([3,13]) Let V (φ) : CH −→R be a continuous functional satisfying a local Lipschitz

condition. V (0) = 0, and such that:

(i): W1|φ(0)| ≤V (φ)≤W2‖φ(0)‖ where W1(r), W2(r) are wedges

(ii): V̇(3.1)(φ)≤ 0 for φ ∈CH.

Then the zero solution of (3.1) is uniformly stable. If we define Z = {φ ∈CH : V̇(3.1)(φ) = 0},

then the zero solution of (3.1) is asymptotically stable provided that the largest invariant set in

Z is Q = {0}.

Next, is the Boundedness criteria for the general autonomous delay differential system.

Lemma 5. ([3]) Let V (t,φ) : R×CH −→ R be continuous and locally Lipschitz in φ . If

(i): W (|x(t)|)≤V (t,xt)≤W1(|x(t)|)+W2
(∫ t

t−r(t)W3(|x(s)|)ds
)

and

(ii): V̇(3.1) ≤−W3((|x(s)|)+M,

for some M > 0, where W (r), Wi(i= 1,2,3) are wedges, then the solutions of (3.1) are uniformly

bounded and uniformly ultimately bounded for bound B.

It is convenient to consider equation(1.1) in equivalent system form

Ẋ = Y

Ẏ =−Φ(Y )−H(X)+
∫ t

t−r(t)
JH(X(s))Y (s)ds+P(t,X ,X(t− r(t)),Y ).

(3.2)

4. Statement of results

Throughout the sequel JH(X) and JΦ(Y ) are the Jacobian matrices
(

∂hi
∂x j

)
,
(

∂yi
∂y j

)
correspond-

ing to the continuous vector functions H(X),Φ(Y ), respectively.

The following will be our main stability result (when P = 0) for (3.2).

Theorem 1. Suppose that Φ(0) = 0 = H(0), and that

(i): The matrices JH(X) and JΦ(Y ) for all X ,Y in Rn are symmetric and commute.

(ii): The matrices JH(X) and JΦ(Y ) are positive definite and let δφ ,δh,∆φ and ∆h be

positive constants such that the eigenvalues λi(JΦ(Y )),λi(JH(X))(i = 1,2, . . . ,n) of
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JΦ(Y ) and JH(X) respectively are continuous and satisfy

0 < δφ ≤ λi(JΦ(Y ))≤ ∆φ(4.1a)

0 < δh ≤ λi(JH(X))≤ ∆h.(4.1b)

Then the zero solution of (3.2) is asymptotically stable provided

ρ < min
{

2ξ1δh

∆h
;

5ξ ′1δφ

2λ +∆h

}
.

Proof:

Our main tool is the following Lyapunov functional V =V (Xt ,Yt) defined as

2V (Xt ,Yt) = 〈δφ X ,δφ X〉+2〈δφ X ,Y 〉+2〈δhX ,X〉+2〈Y,Y 〉

+ 2λ

∫ 0

r(t)

∫ t

t+s
Y (θ)Y (θ)dθds,(4.2)

where λ is a positive constant which will be determined later.

Using Lemma 1 and Lemma 2, the Lyapunov functional (4.2) can be arranged in the form

2V (Xt ,Yt) = ‖δφ X +Y‖2 +2δh‖X‖2 +‖Y‖2

+ 2λ

∫ 0

r(t)

∫ t

t+s
Y (θ)Y (θ)dθds.

Since ‖δφ X +Y‖2 ≥ 0 and 2λ
∫ 0

r(t)
∫ t

t+sY (θ)Y (θ)dθds is non-negative,

we have that

2V (Xt ,Yt)≥ 2δh‖X‖2 +‖Y‖2.

Also, from (4.2), it is clear that

〈δφ X ,δφ X〉 ≤ δ
2
φ‖X‖2,

2δh〈X ,X〉 ≤ 2δh‖X‖2,

2〈Y,Y 〉 ≤ 2‖Y‖2
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and by Schwartz’s inequality, the term

2δφ 〈X ,Y 〉 ≤ δφ (‖X‖2 +‖Y‖2).

Combining these estimates above gives

2V (Xt ,Yt)≤ D2(‖X‖2 +‖Y‖2).

Hence, there exist positive constants D1 > 0, D2 > 0 such that

D1(‖X‖2 +‖Y‖2)≤ 2V (Xt ,Yt)≤ D2(‖X‖2 +‖Y‖2),(4.3)

where D1 = min{2δh;1} and D2 = max{2δh +δφ (1+δφ );2+δφ}.

Also, we are to show that V (Xt ,Yt) satisfies the second condition of Lemma 4. Thus, using

the Lyapunov function (4.2), we get

V̇ (Xt ,Yt) =−V1−V2−V3 +V4,(4.4)

where

V1 = ξ1〈δφ X ,H(X)〉+ξ
′
1〈Y,

{
4Φ(Y )− 3

2
δφY

}
〉

V2 = ξ2〈
1
2

δφ X ,H(X)〉+ξ
′
2〈Y,

{
Φ(Y )− 3

4
δφY

}
〉+ 〈2Y,

{
H(X)−δhX

}
〉

V3 = ξ3〈
1
2

δφ X ,H(X)〉+ξ
′
3〈Y,

{
Φ(Y )− 3

4
δφY

}
〉+ 〈δφ X ,

{
Φ(Y )−δφY

}
〉

V4 = λ r(t)〈Y,Y 〉−λ (1− r(t))
∫ t

t−r(t)
〈Y (θ),Y (θ)〉dθ

+ 〈δφ X ,
∫ t

t−r(t)
〈JH(X(s)),Y (s)ds〉+ 〈Y,

∫ t

t−r(t)
〈JH(X(s)),Y (s)ds〉,

with ξi,ξ
′
i , (i = 1,2,3) are strictly positive constants such that

3

∑
i=1

ξi = 1 and
3

∑
i=1

ξ
′
i = 1.

For strictly positive constants µ1,µ2 that will be chosen later, it is clear that

〈2Y,
{

H(X)−δhX
}
〉
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= ‖µ12
1
2Y +2−

1
2 µ
−1
1
{

H(X)−δhX
}
‖2−〈2µ

2
1Y,Y 〉

− 〈2−1
µ
−2
1 H(X)−δhX ,H(X)−δhX〉

and

〈δφ X ,
{

Φ(Y )−δφY
}
〉

= ‖µ2δ
1
2

φ
X +2−1

µ
−1
2 δ

1
2

φ

{
Φ(Y )−δφY

}
‖2−〈δφ µ

2
2 X ,X〉

− 〈δφ 2−2
µ
−2
2 Φ(Y )−δφY,Φ(Y )−δφY 〉.

In view of the assumptions of the Theorem 1, (4.1a) and (4.1b), we have

V2 ≥ ‖µ12
1
2Y +2−

1
2 µ
−1
1
{

H(X)−δhX
}
‖2

+ ξ
′
2〈Y,

{
Φ(Y )− 3

4
δφY

}
〉−〈2µ

2
1Y,Y 〉

+ ξ2〈
1
2

δφ X ,H(X)〉−〈2−1
µ
−2
1 H(X)−δhX ,H(X)−δhX〉

That is,

V2 ≥ ‖µ12
1
2Y +2−

1
2 µ
−1
1
{

H(X)−δhX
}
‖2

+

(
ξ ′2
4

δφ −2µ
2
1

)
‖Y‖2

+

(
ξ2

2
δφ δh−

1
2

µ
−2
1 [∆h−δh]

2
)
‖X‖2

Thus,

V2 ≥ 0, ∀ Xt ,Yt ∈ Rn,

if

µ
2
1 ≤

ξ ′2
8

δφ

with

δφ ≥
4(∆h−δh)√

ξ ′2ξ2δh
.
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Similarly,

V3 ≥ ‖µ2δ
1
2

φ
X +2−1

µ
−1
2 δ

1
2

φ

{
Φ(Y )−δφY

}
‖2

+

(
ξ3

2
δφ δh−δφ µ

2
2

)
‖X‖2

+

(
ξ ′3
4

δφ −
1
4

µ
−2
2 δφ [∆φ −δφ ]

2
)
‖Y‖2

V3 ≥ 0, ∀ Xt ,Yt ∈ Rn,

if

µ
2
2 ≤

ξ3

2
δh

with

δh ≥
2(∆φ −δφ )

2

ξ ′3ξ3
.

We are left with the estimates for V1 and V4. From (4.4), we have

V1 ≥ ξ1δφ δh‖X‖2 +
5ξ ′1
2

δφ‖Y‖2

and

V4 = λ r(t)〈Y,Y 〉−λ (1− r′(t))
∫ t

t−r(t)
〈Y (θ),Y (θ)〉dθ

+
∫ t

t−r(t)
〈δφ X ,JH(X(s)Y (s))〉ds+

∫ t

t−r(t)
〈Y,JH(X(s)Y (s))〉ds.

Since ∫ t

t−r(t)
〈δφ X ,JH(X(s)Y (s))〉ds≤ 1

2
∆hr(t)‖X‖2 +

1
2

δφ ∆h

∫ t

t−r(t)
〈Y (s)Y (s)〉ds

and ∫ t

t−r(t)
〈Y,JH(X(s)Y (s))〉ds≤ 1

2
∆hr(t)‖Y‖2 +

1
2

∆h

∫ t

t−r(t)
〈Y (s)Y (s)〉ds.

It follows that

V̇ (Xt ,Yt) ≤ −
(

ξ1δφ δh−
1
2

δφ ∆hr(t)
)
‖X‖2−

(
5
2

ξ
′
1δφ −λ r(t)− 1

2
∆hr(t)

)
‖Y‖2

+

(
1
2

δφ ∆h +
1
2

∆h−λ (1− r′(t))
)∫ t

t−r(t)
〈Y (θ)Y (θ)〉dθ
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V̇ (Xt ,Yt) ≤ −
(

ξ1δφ δh−
1
2

δφ ∆hρ

)
‖X‖2−

(
5
2

ξ
′
1δφ −λ r(t)− 1

2
∆hρ

)
‖Y‖2

+

(
1
2

δφ ∆h +
1
2

∆h−λ (1−η)

)∫ t

t−r(t)
〈Y (θ)Y (θ)〉dθ .

If we choose,

λ =
(δφ +1)∆h

2(1−η)
,

V̇ (Xt ,Yt)≤−
(

ξ1δφ δh−
1
2

δφ ∆hρ

)
‖X‖2−

(
5
2

ξ
′
1δφ −λ r(t)− 1

2
∆hρ

)
‖Y‖2

and choosing

ρ < min
{

2ξ1δh

∆h
;

5ξ ′1δφ

2λ +∆h

}
.

We have

V̇ (Xt ,Yt)≤−D3(‖X‖2 +‖Y‖2),(4.5)

for some D3 > 0.

It is obvious that the largest invariant set in Z is Q = {0}, where

Z = {φ ∈CH : V̇ (φ) = 0}.

It follows that V̇ (Xt ,Yt) = 0 if and only if Xt = Yt = 0, V̇ (φ) < 0 for φ ∈ CH and for V ≥

U(|φ(0)|) ≥ 0. Thus, (4.3) and (4.5) and the last statement agreed with Lemma 4. This shows

that the trivial solution of (1.1) is uniformly asymptotically stable.

Hence, the proof of Theorem 1 is now complete.

5. Boundedness of Solutions

Theorem 2. We assume that all the assumption of Theorem 1 and

‖P(t,X ,X(t− r(t)),Y )‖ ≤ ∆o(‖X‖2 +‖Y‖2)
1
2 ,
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hold, where ∆o satisfies ∆o < ε and ε > 0 is a finite constant, then the solutions of (3.2) are

uniformly bounded and uniformly ultimately bounded provided ρ satisfies

ρ < min
{

2ξ1δh

∆h
;

5ξ ′1δφ

2λ +∆h

}
.

Proof:

As in Theorem 1, the proof of of Theorem 2 depends on the scalar differentiable Lyapunov

function V (Xt ,Yt) defined in (4.2).

Since P 6= 0, in (1.1).

In view of (4.5),

V̇ (Xt ,Yt)≤ V̇(3.2)(Xt ,Yt)+(δφ‖X‖+‖Y‖)‖P(t,X ,X(t− r(t)),Y )‖.

Since V̇(3.2) ≤ 0 for all t,X ,Y , thus

V̇ (Xt ,Yt) ≤ −D3(‖X‖2 +‖Y‖2)+(δφ‖X‖+‖Y‖)∆o(‖X‖2 +‖Y‖2)
1
2

≤ −D3(‖X‖2 +‖Y‖2)+
√

2δφ ∆o(‖X‖2 +‖Y‖2)

≤ −(D3−D4∆o)(‖X‖2 +‖Y‖2).

Let ε be now fixed as: ε = D3D−1
4 > 0. Thus, ∆o satisfies ∆o < ε , then there exists a constant

D5 > 0 such that

V̇ (Xt ,Yt)≤−D5(‖X‖2 +‖Y‖2).

The condition of (ii) of Lemma 5 is immediate if, provided ∆o < ε .

This completes the proof of Theorem 2.
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