
Available online at http://scik.org

J. Math. Comput. Sci. 7 (2017), No. 3, 537-553

ISSN: 1927-5307

UNIFORM SET LABELING VERTICES TO ENSURE ADJACENCY COINCIDES
WITH DISJOINTNESS

MAHIPAL JADEJA∗, RAHUL MUTHU

Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar 382007, India

Copyright c© 2017 Mahipal Jadeja and Rahul Muthu. This is an open access article distributed under the Creative Commons Attribution

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. Given a set of nonempty subsets of some universal set, their intersection graph is defined as the graph

with one vertex for each set and two vertices are adjacent precisely when their representing sets have non-empty

intersection. These sets may be finite or infinite (for example, in the case of geometric graphs). One can also

study the reverse problem of expressing the vertices of a given graph as distinct sets in such a way that adjacency

coincides with intersection of the corresponding sets. The problem of representing a graph as an intersection graph

of sets was first introduced by Erdos et al. and they looked at minimising the underlying universal set necessary

to represent any given graph and also showed that the problem is NP-complete. In this paper, we study a natural

variant of this problem which is to consider graphs where vertices represent distinct as well as uniform cardinality

sets and adjacency coincides with disjointness. Our motivation to look at disjointness instead of intersection is

that several well-known graphs like the Petersen graph and Kneser graphs are expressed in the latter method.

The parameters we take into account are: (1) UUSN the minimum universe size possible for obtaining uniform set

labeling (2) ILN the smallest size of the largest label over all set labelings not necessarily uniform (where adjacency

coincides with disjointness).

Keywords: uniform set labeling; set labeling; intersection number; intersection graphs; vertex labeling; Knesser

graphs.

2010 AMS Subject Classification: 05C78.

∗Corresponding author

E-mail address: jadeja mahipal@daiict.ac.in

Received March 12, 2017; Published May 1, 2017

537



538 MAHIPAL JADEJA, RAHUL MUTHU

1. Introduction

Knesser graphs KGn,k are graphs whose vertices correspond to the k element subsets of an

n element set and two vertices are adjacent precisely when their corresponding subsets are dis-

joint. Clearly if n < 2k then the graph is an independent set of vertices. If n = 2k then the graph

is a matching. When n = 2k+ 1 we get the special family of odd graphs [6]. Knesser graphs

are well studied [10] [11] [3]. Many problems on them can be solved clearly and efficiently

using this set-theoretic definition. A natural question, therefore, is to try and model an arbitrary

graph in this fashion. That is, come up with an underlying universal set and a choice of unique

subsets to associate with each vertex such that adjacency is characterised by disjointness of the

corresponding subsets. Clearly for an arbitrary graph the above choice of all identical sized

subsets of a certain set will not work, because a graph defined in that manner is necessarily

vertex transitive.

Our motivation to look at disjointness instead of intersection is that several well known graphs

like the Petersen graph and Knesser graphs are expressed in the latter method, and the comple-

ments of these families are not well studied. Thus our choice is justified and not merely an

attempt to artificially deviate from existing work.

The closely related concept is intersection graphs [9] for finite sets in which non-adjacency

is characterised by disjointness of the corresponding subsets of underlying universal set. This

was studied by Erdos et al. [4]. In that paper, they also obtain a tight upper bound of n2/4 on

intersection number where the sets are not required to be distinct. In Section 6 of that paper,

the authors point out that the problem in general becomes more difficult when the constraint

of the distinctness is added. They, however, observe that the universal upper bound applies to

that variant as well. We, thus, make inroads into an open problem posed by them obtaining

some general results as well as results for some special classes of graphs. We use the slightly

different framework of disjointness graphs as many well known families of graphs are defined in

this way, as mentioned earlier. So for a given graph, these two labeling approaches are entirely

different (except for self-complementary graphs).

For a graph with m edges and n vertices, a trivial upper bound for intersection number is

m (see [2]). Alon Noga [1] derived an upper bound of any N- vertex graph as a function of



UNIFORM SET LABELING 539

maximum degree of a graph: 2e2(d + 1)2lnN where d=maximum degree of the complement

graph of G and e=base of the natural logarithm.

Since the problems of intersection and disjointness on graph representation are equivalent,

the disjointness version is also NP Complete. The problem of finding a vertex labeling for an

arbitrary graph using distinct sets for different vertices and all its standard variants we have

listed are NP Complete. This follows from the fact that the equivalent problem of determining

the intersection number of an arbitrary graph is NP Complete [4] [5]. Intersection graphs have

many applications in the fields of scheduling, biology, VLSI design and they are also used for

development of faster algorithms for optimisation problems.

In Section 2 the problem statement is discussed along with some basic results. Results re-

lated to UUSN and ILN are discussed in detail for some specific classes of graphs (including

complement of complete graph, matching, paths, cycles, complete bipartite graph, complete bi-

nary trees) in Section 3. Cartesian product based method is also discussed in the same section.

The final section summarises the results obtained in this paper.

2. Problem Statement

A set labeling of a graph G(V,E) is a function f : V →P({1,2, . . . ,k})−{φ} where k ∈ Z+

such that

• f is one one.

• ∀u,v ∈V,(u,v) ∈ E⇔ f (u)∩ f (v) = φ .

For a uniform set labeling following additional condition is required.

• ∀u,v ∈V, | f (u)|= | f (v)|= c where c ∈ Z+

Uniform Universe Size Number (UUSN) of a graph is the least positive integer k such that a

uniform set labeling of G exists.

Individual label number(ILN) of a graph is the smallest size of the largest label over all set la-

belings (not necessarily uniform) of the vertices with uniques sets such that adjacency coincides

with disjointness.



540 MAHIPAL JADEJA, RAHUL MUTHU

2.1 General Results on UUSN and ILN

Here, we present general bounds on UUSN and ILN .

Theorem 2.1. ILN(G)<UUSN(G), where G has at least 2 vertices.

Proof. Consider a valid and uniform set labeling of any graph G, optimal in terms of the universe

size. Clearly, the number of elements used in total is UUSN(G). If the underlying set is used

as label then exactly 1 label can be generated since it is impossible to use any of the subsets of

the underlying set as a label of any other vertex (due to uniform cardinality constraint in this

particular case). In this particular labeling, no vertex has more than UUSN(G)− 1 elements in

its label. This proves the result. �

Theorem 2.2. UUSN(G) ≥ blog2nc+1 and ILN(G) ≥ 1, where G has n vertices.

Proof. With the use of blog2 nc elements, it is possible to generate at most n− 1 non-empty

subsets. Using these subsets, at most n−1 vertices can be labeled since repetitions of labels is

not allowed. Here, |V (G)|= n and therefore at least 1 additional element is required in order to

assign non-empty as well as unique label to the nth vertex. Therefore value of UUSN is at least

blog2 nc+1 for any given graph.

Since an empty set is not allowed to be used in any of the set labelings, the largest individual

label size will be at least 1 in all possible set labelings of the given graph G. �

Theorem 2.3. UUSN(G+ v) =UUSN(G)+ c, if d(v) = n(G). Here, ∀u ∈V (G), | f (u)|= c and

c ∈ Z+

Proof. Here the vertex v is adjacent to all other vertices and hence it is not possible to reuse

any of the UUSN(G) elements for the labeling of vertex v. In order to obtain uniform labeling

for G+ v, | f (v)| must be c. Therefore, exactly c additional elements are required for obtaining

uniform labeling of G+ v. �

Theorem 2.4. UUSN(Kn) = n

Proof. UUSN(K1) = 1 and from the application of Theorem 2.3 exactly (n−1) times iteratively

starting with K1. �



UNIFORM SET LABELING 541

Theorem 2.5. ILN(G+ v) =ILN(G), if d(v) = n(G).

Proof. Here the vertex v is adjacent to all other vertices and hence it is not possible to reuse

any of the k elements used for valid set labeling for the labeling of vertex v.In order to obtain

valid set labeling for G+v, it is sufficient to assign a singleton set {k+1} as a label for vertex v.

ILN(G) is at least 1 (from Theorem 2.2) and hence value of ILN won’t change for G+ v. �

Theorem 2.6. ILN(Kn) = 1

Proof. ILN(K1) = 1 and from the application of Theorem 2.5 exactly (n− 1) times iteratively

starting with K1. �

The following Theorem gives the universal upper bound on UUSN and ILN.

Theorem 2.7. UUSN(G)≤ n+
(n

2

)
(n−1) and ILN(G)≤ n.

Proof. We will give an algorithmic proof for the claim.

Algorithm 1: To find a valid uniform labeling for any given graph

Step 1: For any graph on n vertices start with the optimal valid labeling of the corresponding

complete graph Kn with UUSN = n.

Step 2: Delete the necessary set of edges one by one from this Kn to transform complete graph

into the given graph.

After deleting each edge, the following operations are performed:

Step 2(a): Add an extra element to labels of both endpoints of that particular edge (to establish

non-adjacency between endpoints).

Step 2(b): In order to obtain uniform labeling, add exactly 1 extra element in the labels of all

(n− 2) vertices excluding the endpoint vertices considered in Step 2(a). So total (n− 1) new

elements are required including the element which is added in the labels of the two endpoints

of the deleted edge.

Total number of distinct elements used after step 1 is exactly n.

Total number of additional elements used after steps 2(a) and 2(b) is at most
(n

2

)
(n−1) because

complete graph has exactly
(n

2

)
edges and in the worst case, all the edges are required to delete

in order to construct the given graph. Therefore, UUSN(G)≤ n+
(n

2

)
(n−1).



542 MAHIPAL JADEJA, RAHUL MUTHU

For the upper bound calculation of ILN, consider the step 1 and 2(a) of the Algorithm 1 only.

Here, after step 1 ILN(G) is 1 (Theorem 2.6). Step 2(a) can be applied at most n− 1 times

for each vertex and each iteration of step 2 will increase the ILN(G) by at most 1. Therefore,

ILN(G)≤ n. �

3. Results on UUSN and ILN for some special families of graphs

In this section, we dreive results (either exact or asymptotic) on UUSN and ILN on the fol-

lowing classes of graphs: Paths, Cycles, Wheel Graph, Complement of Complete Graph (Kn),

Matching (M2n), Complete binary trees, Complete bipartite graphs.

Theorem 3.1. For matching, UUSN = O(log2 2n) and ILN = O(log2 2n)

Proof. Consider matching graph with n edges. (|V | = 2n). Assume |U | = k where U is the

underlying universal set. Our objective is to minimise the value of k. Requirements for obtaining

uniform labeling of the given graph can be summarized as below.

(1) Using |k|, we should be able to generate at least 2|n| non-empty subsets.

(2) For each subset p, a unique subset q must exist such that p∩ q = φ . (So that q can be

assigned as the label of unique vertex-neighbor of vertex with label p)

(3) Each subset must have non-empty intersection with all the remaining 2n−2 subsets.

(4) Each subset must have the same cardinality.

If we consider only subsets of cardinality k/2 then each subset will have exactly one disjoint

subset and it will have non-empty intersection with all the remaining 2n−2 subsets (pigeonhole

principle). Additionally, each subset will have the same cardinality of k/2. In order to fulfill the

first requirement,
( k

k/2

)
≥ 2n. By Stirling’s approximation, UUSN=k=O(log2 2n)

Here, size of each individual label is k/2. Therefore, ILN = O(log2 2n). �

Theorem 3.2. UUSN(Kn)≤ 1.5(1+ dlog2 ne) and ILN(Kn) = 2

Proof. Consider A as underlying universal set with cardinality k. Here disjoint subsets are not

allowed for labeling of independent set. For all S (where S ⊂ A), at most 1 subset can be used

for labeling from each pair (S,A− S). So the total available sets for labeling are reduced by



UNIFORM SET LABELING 543

half. Select the subset having higher cardinality in each pair and if cardinalities are same then

make arbitary selection. By doing this, each subset will have cardinality at least
|k|
2

. All these

selected subsets will have non-empty intersection (pigenhole principle) and hence they can be

used to assign labels to vertices. Note: Empty set won’t be used in labeling since in the pair

(φ ,A), A has higher cardinality. So, in summary total at most 2k−1 vertices of the graph can

be labelled using A. In order to obtain uniform labeling, at most
|k|
2

additional elements are

required since the least possible cardinality is
|k|
2

and greatest cardinality is k (since A is used

as label and |A|= k). So after adding at most
|k|
2

elements in each label, all the labels will have

uniform cardinality of k. Therefore, total number of labels required is 1.5k in order to obtain

uniform labeling of 2k−1 vertices.

So using 1.5k labels, it is possible to do valid and uniform labeling of (Kn) where n∈ {2k−2+

1,2k−2 +2, · · · ,2k−1} which proves the result for UUSN.

ILN is at least 2 for Kn. This is because at least 1 element must be common in the labels of

every vertex pair and in order to avoid repetition of labels, at least one more element is required

to be added in one of the individual label.

Valid-ILN-labeling-Kn

(1) For each vi ∈ Kn assign {i} as its label.

(2) Add {i+1} in the labels of all vi ∈ Kn.

After the 2nd step, the cardinality of each individual label is 2 which proves the result for

ILN. �

Theorem 3.3. UUSN (Ks,t)≤ 1.5(2+ dlog2 se+ dlog2 te)+ |dlog2 se−dlog2 te|

ILN (Ks,t) = 2

Proof. Complete bipartite graph consists of two independent sets. From the valid and uniform

labeling of one independent set nothing can be used in the second independent set. So labeling

of these two independent sets must be entirely disjoint. Now cardinality of each vertex label

in first partite set is 1+ dlog2 se whereas cardinality of each vertex label in second partite set

is 1+ dlog2 te. In order to make cardinality of each label same, |dlog2 se− dlog2 te| must be

added to all the vertex labels to one of the smaller partite set (the partite set which has smaller



544 MAHIPAL JADEJA, RAHUL MUTHU

individual label size for all vertices). This proves the result for UUSN. From Theorem 3.2, it

is possible to label both partite sets with ILN 2 and ILN will remain 2 for the whole graph if

disjoint sets are used for the labeling of the both partite sets. This proves the result for ILN. �

Theorem 3.4. UUSN(Pn) = O(logn).

Add-edge Procedure:

Input: Valid labeling of any given path (Pn) using exactly k labels.

Output: Valid labeling of Pn+2 using exactly k+3 labels.

FIGURE 1. Summary of add-edge procedure

Step 1: Identify P4 in the given Pn. Say, vertices of P4 are vr, vr+1, vr+2 and vr+3 and corre-

sponding labels are lr, lr+1, lr+2 and lr+3 respectively.

Step 2: Add 2 new vertices vn+1 and vn+2. In order to construct Pn+2, add 3 new edges

(vr+2,vn+1), (vn+1,vn+2), (vn+2,vr+3).

Step 3: l(vn+1) = lr+1

l(vn+2) = lr+2

Step 4: Three pairs (vr,vn+1), (vr+1,vn+2) and (vr+2,vr+3) are non-adjacent. In order to pre-

serve non-adjacency add 3 distinct new elements say a, b and c to the labels of these 3 pairs

respectively. The final labeling is valid. It preseves adjacency as as well non-adjacency for all

pairs of vertices.



UNIFORM SET LABELING 545

Lemma 1. For the given Pn, add-edge procedure can be applied for at most
n−1

3
.

Proof. Add-edge procedure can be applied to each edge-disjoint P4-subgraph of the given Pn.

Every 1 out of 3 edges of P4 can be used for the procedure. Total number of edges in Pn is n−1.

Therefore, for the given Pn, at most
n−1

3
times procedure add-edge can be applied. �

Proof of Theorem 3.4:

We will give an algorithmic proof for the claim.

Algorithm-Valid-Uniform-Pathlabeling:

Input: Valid and uniform labeling of Pn using exactly k labels.

Output:Valid and uniform labeling of Pn+2i using exactly k+3 labels where 0 < i≤ n−1
3

and

i ∈ N+

Step 1: Apply add-edge procedure on the given Pn for the first 4 vertices i.e. r = 1.

Step 2: For j ≥ 1, (where j ∈ N+)

If 3 j+ 1 < n and 3 j+ 4 ≤ n then apply add-edge procedure for r = 3 j+ 1 with the following

modifications in the step 4 of the procedure:

(Observation: v3 j+1 participates in exactly two add-edge procedure, in iteration j as well as

in iteration j− 1. Therefore, before starting of iteration j, the label of v3 j+1 already has an

additional element p due to iteration j−1 where p ∈ {a,b,c} For j = 1, p = {c} from step 1.

The label of v3 j+1 won’t change during the jth iteration and p ∈ l3 j+1.)

(1) Add p in the label of newly added vertex v which is the neighbour of v3 j+3.

(2) Use remaining two elements {a,b,c}−{p} in any order, for the remaining two pairs.

Step 3: After jth iteration of the addedge procedure, the cardinality of the labels of the first

3 j + 1 vertices will be increased by exactly 1. So the first 3 j + 1 vertices of the path has a

uniform labeling. The label of the (3 j+ 1)th vertex will certainly contain exactly one of the 3

elements namely a,b,c. WLOG a is used in the label of the (3 j+1)th vertex.

Step 4: Partition the remaining vertices V \ {V1,V2, . . . ,V3 j+1} into 2 sets: A: Even numbered

vertices and B: Odd numbered vertices.

Add b to all labels of A and add c to labels of B. After this step, the cardinality of the remaining

vertices are also increased by 1. In general, the cardinality of each vertex is increased by



546 MAHIPAL JADEJA, RAHUL MUTHU

FIGURE 2. UUSN labeling- P7 to P9

exactly 1. So the final labeling is uniform and valid. No additional elements are required in this

procedure.

Upper bound calculation:

So at most
⌊n−1

3

⌋
edges can be used and they will generate at most

2n−2
3

new vertices.

Recurrence: T (5n/3) = T (n)+3

UUSN : O(logn) �

Note: We can generate paths for all values of n by applying the add-edge procedure repeatedly.

One can generate all P2x+1 by repeatedly applying the add-edge procedure on a valid and uni-

form labeling of P7, similarly all P2x can be generated by application of the add-edge procedure

on a valid and uniform labeling of P6. Here x > 3 and x ∈N .

Theorem 3.5. UUSN(Cn) = O(logn). and UUSN(Wn) = O(logn).

Proof. For cycles results are slightly better for some values of n because Cn contains exactly

one more edge as compared to Pn and hence it is possible to apply add-edge procedure exactly

1 more time as compared to Pn (specifically when n is multiple of 4).



UNIFORM SET LABELING 547

FIGURE 3. UUSN labeling- P7 to P11

Wheel graph consists of Cn and one additional vertex with degree n. Therefore, UUSN(Wn) =

UUSN(Cn)+ c. (from Theorem 2.3) �

Theorem 3.6. ILN(Pn) = O(logn).

Proof. Procedure addedge may increase the cardinality of individual labels by at most one.

Hence New ILN= Old ILN+ 1 (After ith iteration, where i ≥ 1) If we obtain Pn using addedge

procedure, then ILN(Pn) = UUSN(Pn)/3. So ILN(Pn)= O(logn) �

The same idea is also applicable on cycles as well as wheel graph.

Theorem 3.7. ILN(Cn) = O(logn) and ILN(Wn) = O(logn).

Theorem 3.8. UUSN(BTn) = O(logn) and ILN(BTn) = O(logn). Where BT=Complete binary

tree and n denotes the total number of vertices of the BT.



548 MAHIPAL JADEJA, RAHUL MUTHU

FIGURE 4. Input

Proof. We prove this result by an iterative algorithm: Valid-Uniform-TreeLabeling. The algo-

rithm is explained below:

Input: A valid as well as uniform labeling of the complete binary tree of height h using exactly

K labels.

Base case: UUSN(BT7)= 7. Base case is shown in Fig. 4 with underlying labeling set: {1,2,3,4,5,6,7}.

Output: A valid and uniform labeling of complete binary tree of height h+ 1 using exactly

K +10 labels. The ten new labels are a,b,c,d,e, f ,g,h,i, j.

Step 1: For all newly added vertices in level L+ 1, find their corresponding ancestors in level

L−1.

For all v (where v is a level L+1 vertex) ,

Label(v)= Label(ancestor(v) in level L− 1 ) . (The levels L+1 and L-1 are highly similar with

respect to adjacency with the remaining levels. Both of these levels are adjacent to level L and

non-adjacent to 1,2,3, . . . ,L−3. )

Observation after step 1:

1. All the vertex-labels which are present in level L+ 1 will have non-empty intersection be-

cause corresponding ancestors are either same or having non-empty intersection. This is desir-

able because all vertices of level L+1 are non adjacent.

2. Layer L+1 and L−1 are non adjacent and they have non-empty intersection after this step.



UNIFORM SET LABELING 549

FIGURE 5. After Step 1 and 2

Step 2: The level L−2 is adjacent to L−1 but not to L+1.

For all v′, (where v′ is a level L−2 vertex)

New-Label(v′) = Old-Label(v′)∪{a,b,c,d}

Step 3: Consider sequential ordering (left to right) of vertices which are present in level L+1.

For each vertex vi,

New-Label(vi) = Old-Label(vi)∪{a} if i mod 4 = 1

= Old- Label(vi)∪{b} if i mod 4 = 2

= Old- Label(vi)∪{c} if i mod 4 = 3

= Old-Label(vi)∪{d} if i mod 4 = 0

Vertices of level L−2 and L+1 will preserve non-adjacency because the corresponding labels

have non-empty intersection after this step.

Step 4: Consider sequential ordering (left to right) of vertices which are present in level

L : v1,v2, . . . ,vq

For each vertex vi,

New-Label(vi) = Old-Label(vi)∪{c,d} if i mod 2 = 1

= Old- Label(vi)∪{a,b} if i mod 2 = 0



550 MAHIPAL JADEJA, RAHUL MUTHU

FIGURE 6. After Step 4

FIGURE 7. Output

Observation after step 4:

Level L+1 and L will preserve adjacency as well as non-adjacency.

The labeling after this step is valid and preserve adjacency as well as non-adjacency.

Step 5: Following changes are required in order to obtain the uniform labeling:



UNIFORM SET LABELING 551

(1) Add {e, f ,g,h} to the labels of all the vertices of levels (L−1), (L−3), (L−5), . . ., 1.

(if L is even).

(2) Add {a,b,c,d} to the labels of all the vertices of levels (L−4), (L−6), (L−8), . . ., 2.

(if L is even).

(3) Add {i, j} to the labels of all the vertices of level L.

(4) Add {e, f ,g} to the labels of all the vertices of level L+1.

Note: If L is odd then consider levels (L−1), (L−3), (L−5), . . ., 2 for Substep 1 and (L−4),

(L−6), (L−8), . . ., 1 for Substep 2 of Step 5.

For the complete binary tree, n = 1+ 2+ 4+ 2h = 2h+1− 1 i.e. h = O(logn). For valid

and uniform labeling of each layer exactly 10 additional elements are required. Total number

of layers are O(logn). Therefore total number of elements required are 10 ∗O(logn) which is

O(logn).

Size of individual label is increased by exactly 4 after each iteration and total number of

iterations are O(logn). Therefore, ILN is 4∗O(logn) which is O(logn). �

One of the possible practical application of the previous result is visulization of multiple

hierarchies [7] which uses idea of treemaps [8].

3.1 Cartesian Product Based Method

Key Observation: Let A,B,C,D be sets. Then (A×B)∩ (C×D) 6= /0 if and only if A∩C 6= /0

and B∩D 6= /0.

Theorem 3.9. Let G and H be two graphs on the same vertex set V . Further, suppose E(G)∩

E(H) = /0. Then UUSN(G+H)≤ UUSN(G)×UUSN(H) and ILN(G+H)≤ ILN(G)×ILN(H).

Proof. Take optimal labelings of the vertex set using disjoint universes for the graphs G and

H. Now consider the graph G+H. The vertex sets of G and H are identical. For each vertex

v in G+H give it the label lG(v)× lH(v). Clearly two vertices are nonadjacent only if they

are nonadjacent in both G and H. In that case their labels under the two labelings will each

be intersecting. From the key observation, it follows that their cartesian product new label will

also intersect. Similarly for the case of non-intersection (adjacent vertices). �



552 MAHIPAL JADEJA, RAHUL MUTHU

FIGURE 8. Cartesian Product Based Method

As a corollary we have the following theorem.

Theorem 3.10. USN(Pn)≤ (1+ log n
2)

2.

Proof. The path is the union of two disjoint matchings. Each matching has UUSN O(logn).

From Theorem 3.9, we see that the graph has UUSN O(logn)2. We state this here just as an

application since we have a better bound for paths (Theorem 3.4). �

4. Conclusion and Future work

We have obtained upper bound of UUSN and ILN for the complement of complete graphs,

complete graphs, complete binary trees, complete bipartite graphs, paths, cycles, matching,

wheel graph etc. In the future we plan to derive optimal and/or lower bound results for hyper-

cube, harary graph etc.

Conflict of Interests

The authors declare that there is no conflict of interests.

REFERENCES

[1] Noga Alon, Covering graphs by the minimum number of equivalence relations, Combina-

torica 6 (1986), no. 3, 201–206.



UNIFORM SET LABELING 553

[2] VK Balakrishnan, Schaum’s outline of graph theory: Including hundreds of solved prob-

lems, McGraw Hill Professional, 1997.

[3] Ya-Chen Chen, Kneser graphs are hamiltonian for n 3k, J. Comb. Theory, Ser. B 80 (2000),

no. 1, 69–79.

[4] Paul Erdos, Adolph W Goodman, and Lajos Pósa, The representation of a graph by set

intersections, Canad. J. Math 18 (1966), no. 106-112, 86.

[5] Michael R Gary and David S Johnson, Computers and intractability: A guide to the theory

of np-completeness, 1979.

[6] CD Godsil, More odd graph theory, Discrete Math. 32 (1980), no. 2, 205–207.

[7] Mahipal Jadeja and Rahul Muthu, Labeled object treemap: A new graph-labeling based

technique for visualizing multiple hierarchies, Ann. Pure Appl. Math. 13 (2017), no. 1,

49–62.

[8] Mahipal Jadeja and Kesha Shah, Tree-map: A visualization tool for large data., GSB@

SIGIR, 2015, pp. 9–13.

[9] Terry A McKee and Fred R McMorris, Topics in intersection graph theory, SIAM, 1999.

[10] Alexander Schrijver, Vertex-critical subgraphs of kneser-graphs, Mathematisch Centrum,

Afdeling Zuivere Wiskunde, 1978.

[11] Saul Stahl, The multichromatic numbers of some kneser graphs, Discrete Math. 185

(1998), no. 1-3, 287–291.


