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Abstract. Warner (1965) introduced the randomized response model as an alternative survey technique for socially 

undesirable or incriminating behaviour questions in order to reduce response error, protect a respondent’s privacy, 

and increase response rates. In multivariate stratified surveys with multiple randomised response data the choice of 

optimum sample sizes from various strata may be viewed as a multi-objective nonlinear programming problem. The 

allocation thus obtained may be called a “compromise allocation” in sampling literature.  

In this paper, we have formulated two stage stratified Warner’s Randomised Response model (RRM) as a multi-

objective integer non-liner optimization problem. In this problem of RRM we have minimized the square root of 

coefficient of variations instead of variations for different characteristics because the coefficient of variation is unit 

free, subject to the linear and quadratic cost constraint. The multi-objective optimization problem of RRM has been 

solved by lexicographic goal programming integrated with fixed priority 1D
 
- distance method. The solution 

obtained by lexicographic goal programming Integrated with fixed priority 1D - distance have been compared with 

various existing approaches namely the value function approach, goal programming techniques,   - constraint 

method and distance-based method and Khuri & Cornel distance based method. A numerical example is also been 

presented to illustrate the computational details. 

Keywords: coefficient of variation; multi-objective optimization; compromise allocation; multivariate stratified 

sampling; randomized response. 

2010 AMS Subject Classification: 62D05. 
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1. Introduction 

In a questionnaire survey, if a question is highly sensitive or personal, the person may refuse to 

answer or may give evasive answer. To get response on such question the interviewer must 

encourage the truthful answers without revealing the identity of the person interviewed.  Warner 

[1965] has developed his randomized response technique which is designed to eliminate evasive 

answers bias by reducing the rate of non-response keeping the respondents confidentiality. The 

Warner’s model requires the interviewee to give a “Yes” or “No” answer either to a sensitive 

question or to its negative, depending on the outcome of a randomizing device not disclosed to 

the interviewer. 

Mangat and Singh [1990] proposed a two-stage randomized response model in which each 

interviewee (who is selected using simple random sampling with replacement) is provided with 

two randomization devices. Applicability of this model has been illustrated by Singh and Mangat 

[1996]. Mangat and Singh [1994] proposed another randomized response model which has the 

benefit of simplicity over that of Mangat and Singh [1990]. Hong et al. [1994] suggested a 

stratified randomized response technique using a proportional allocation. It may be easy to derive 

the variance of the proposed estimator. However, it may cause a high cost in terms of time, effort 

and money because of the difficulty in obtaining a proportional sample from some stratum. Kim 

and Warde [2004] presented a stratified randomized response technique using an optimal 

allocation which is more efficient than that using a proportional. Ghufran et al. [2012] discussed 

the applicability of Warner’s technique [1965]. 

Various other Randomised Response techniques that are improved warner’s techniques or 

provide alternative procedures for more complicated situations are discussed in Chang and 

Huang [2001], Chaudhuri and Mukerjee [1988], Chaudhuri [2001], Chua and Tsui [2000], 

Franklin [1989], Greenberg et al. [1969], Horvitz [1967], Kuk [1990], Moors [1971], Padmawar 

[2000] and Singh [2002]. 

When a single sensitive question with a dichotomous response is under analysis, several 

randomised response models have been introduced in the literature, starting from the pioneering 

randomised response model introduced by Warner [1965]. Non-exhaustive list of such 

randomized response models is given in Chaudhuri and Saha [2005], Diana and Perri [2009], 

Huang [2006] and others. 
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In many applications of the randomized response technique more than one sensitive issues are 

under analysis i.e. multiple sensitive question settings are to be considered. When information on 

more than one characteristic is to be obtained on each unit of the selected sample, it is not 

feasible to use the individual optimum allocations in various strata unless there is a strong 

correlation between the characteristics under study Cochran [1977]. Thus one has to use an 

allocation that is optimum in some sense for all the characteristics. 

For a population the coefficient of variation (CV) is represented by the ratio of population 

standard deviation to the population mean. The coefficient of variation is used to compare the 

precision of various estimates that are measured in different units. Ostle [1954] found that the 

population coefficient of variation is an ideal device for comparing the variation in two series of 

data that are measured in two different units. 

In real life situations we face problems with multiple objectives. Generally, objectives are 

conflicting in nature, so simultaneous optimization of objectives is not possible.  There are 

several approaches in the literature through which these can be converted to single objective 

problems. On solving this single objective problem a set of non-dominated solutions is obtained 

from which an optimal compromise solution is chosen. An optimal compromise solution is that 

feasible solution which is preferred by decision maker (DM) on all other feasible solution, taking 

into consideration all criteria contained in the multi-objective functions.  

Charnes and Cooper [1961] introduced goal programming technique to solve multi objective 

problems. Haimes et al [1971] introduced  constraint technique which deals multi objective 

problems by selecting one of the objective functions to be optimized and the remaining objective 

functions are converted into constraints by setting an upper bound to each of them see Rios 

[1989] and Miettinen [1999]. The weighting method by Gass and Saaty (1955) and Zadeh (1963) 

introduced the objective function with a weighting coefficient and minimize the weighted sum of 

objectives. The Tchebycheff Method proposed by Steuer (1986, 1989) is an interactive weighting 

vector space reduction method. Value function method can be very useful if the DM could 

reliably express the value function see Dyer and Sarin [1981] and Miettinen [1999]. In many 

situations, sufficient information about a variable is not available, or it is difficult to decide most 

important characteristic of the survey. In such situations, the distance-based technique is very 

useful see Steuer [1986] and Rios [1989]. Khuri and Cornell [1986] also proposed another 

distance based technique. Fishburn [1974] widely examined lexicographic orders and utilities. 
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Lexicographic ordering technique is applied by arranging the objective function according to 

their importance see Panda et al. [2005] and Ali [2011]. 

In this paper, a lexicographic goal programming integrated with fixed priority 1D  - distances 

method is suggested for obtaining compromise allocation for multiple characteristics Warner’s 

randomized response model. This problem is also solved by various existing methods namely - 

the value function approach, goal programming techniques,   - constraint method, distance-

based method and Khuri & Cornel distance based method. A numerical example is also 

presented to illustrate the computational details for all methods. 

 

2. Formulation of the problem 

Under two-stage randomized response model at stage 1, an individual respondent selected in the 

sample from ith  stratum of a stratified population is instructed to use the randomization device 

iR1
 which consists of the following two statements: 

(i) “I belong to sensitive group”  and  

(ii) “Go to the randomization device 
iR2
 at the second stage”  

with known probabilities 
iM   and  )1( iM  of (i) and (ii) respectively. 

At stage 2 the respondents are instructed to use the randomization device 
iR2
 which consists of 

the following two statements: 

(i) “I belong to the sensitive group” and  

(ii) “I do not belong to the sensitive group”  

with known probabilities 
iP   and )1( iP  of   (i) and (ii) respectively.  

The probabilities of a “Yes” answer for jth  characteristics; pj ...,,2,1  in the ith  stratum are 

given by 

    ....,,2,1;...,,2,1;11)1( pjLiPPMMY sijisijiisijiij           (1)                                                    

where sij  is the proportion of respondents belonging to the sensitive group for jth  

characteristics in the ith  stratum. The maximum likelihood estimator of  sij  is given as  

  

 
....,,1;...,,1;

1212

11ˆ
ˆ pjLi

PMP

PMY

iii

iiij

sij 



                                                      (2) 
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where ijŶ  is the estimated proportion of “Yes” answers which follows a binomial distribution 

 iji YnB ,  and 
in  denote the sample size from ith  stratum. 

Expression (1) and (2) are from Mangat and Singh [1990] with suffix ‘ i ’ to denote the ith  

stratum; Li ,...,2,1  and ‘ j ’ to denote the jth  characteristic; ....,,2,1 pj   

It can be seen that the estimator sij̂  is unbiased. 

Since 
in  are drawn independently from each stratum, the estimators for individual strata can be 

added to obtain the estimator for the overall population parameter. This gives the unbiased 

estimator of sj , which is the population proportion of respondents belonging to the sensitive 

group for the jth characteristics, as 

 
  

 
'

1212

11ˆ
ˆˆ

11 
















 

 iii

iiij
L

i

i

L

i

sijisj
PMP

PMY
WW                                                            (3) 

where, LiWi ,...,2,1;   are the strata weights. 

The sampling variance of sj̂  is 

),ˆ()ˆ(
1

2

sij

L

i

isj VWV  


  

        

  
....,,2,1;

1212

11111
1

2
1

2

pj
PMP

PMPM

n

W

iii

iiii

sijsij

L

i i

i 



















     (4) 

(See Mangat & Singh[1990]). 

Coefficients of variation for p  characteristics are written as 

   
 
 

pj
E

SD
CVCV

sj

sj

sjsj ,...,2,1;
ˆ

ˆ
ˆ 




        (5) 

We are given that sj̂  is the unbiased estimator of sj . We have 

  sjsjE  ˆ           

Thus,  
 
  

 
 22

2
ˆ

ˆ

ˆ

sj

sj

sj

sj

sj

V

E

V
CV








           

        

  
....,,2,1;

1212

11111
1

2
1

22

pj
PMP

PMPM

n

W

iii

iiii

sijsij

L

i i

sji

























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                ....,,2,1;1
1

22

pjA
n

W
isijsij

L

i i

sji









                                                            (6) 

where
      

  
.,...,2,1;

1212

11111
2

Li
PMP

PMPM
A

iii

iiii

i 



                                                  (7) 

The Multi-objective Integer Nonlinear Programming Problem (MINLPP) with linear cost 

constraint is given as (see Ghufran et al. (2013, 2014) :    

 

Problem 8:     

.,...,2,1;int,2

,

)(

.

.

.

)(

0

1

2

2

1

LiegersarenNnand

Ccnc

toSubject

CV

CV

Minimize

iii

L

i

ii

sp

s
































    

When the travel cost between the units is substantial, the cost constraint also becomes non-linear 

then problem (8) define as problem (9) 

 

Problem 9:     

.,...,2,1;int,2

,

)(

.

.

.

)(

0

1 1

''''

2'

2'

1

LiegersarenNnand

Ccntnc

toSubject

CV

CV

Minimize

iii

L

i

L

i

iiii

sp

s





























 
 
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3. Solution Methods for RR Model   

In this section we are given the procedures for solving the RR model problem by using various 

approaches of multi-objective optimization namely, Goal programming, Lexicographic goal 

programming, D1- Distances and the proposed approach.    

 

3.1 Goal Programming  

The goal programming is based on the basic idea to determine a feasible solution that minimizes 

the deviations from the goals. This optimisation programming technique is used to handle 

multiple, normally conflicting objectives. The use of the goal programming for decision making 

problems with several conflicting objectives was first introduced by Charnes and Cooper in 1961. 

Thereafter various versions of goal programming have been proposed in the literature. Here we 

use goal programming technique to solve the Randomise Response problem (Problem 8). For 

this purpose we first solve separately the following p given objectives of problem 8 subject to the 

given set of constraints of Problem (8) to obtain the individual optimum solution.  

Let ),...,,( **

2

*

1

*

Li nnnn   denote the individual best solution to the Problem (8) with
*

jCV  as the 

best individual objective function value where j=1, 2,..,p. Further let ),...,,( **

2

*

1

*

Lcccc nnnn  denote 

the optimal compromise allocation with objective functions values 
*

jcCV under compromise 

allocation. 

Obviously,   
**

jjc CVCV    or pjCVCV jjc ,...,2,10**     

Here we define a deviational variables
**

jjcj CVCV  , where j  is the deviational 

between
**

jjc CVandCV . 

The goal is to find the compromise ordered quantity such that the deviations in the net price, 

rejected units and late delivered units due to the use compromise quantity ordered should not 

exceed pjj ,...,2,1,0   and 


p

j

j

1

 is minimum. 

Finally, the Problem (8) can be written in the form of goal programming problem as 
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Problem 10: 

LiarenNnand

Ccnc

CVCV

CVCV

CVCVtoSubject

Minimize

iii

L

i

ii

jjj

jjj

P

j

j

,...,2,1;integers,2

,

;

1

0

*

*

111

*

111

1































 

(Same procedure will be followed for solving the Problem 9). 

 

3.2 Lexicographic Goal Programming  

Lexicographic goal programming is a special case of goal programming, in which the most 

important goals are optimised before the least important goals. Since the different objectives 

have different importance, we arrange them in lexicographic order according to their importance. 

Here we consider the Randomise Response problem of sampling (Problem 8) with P objectives 

functions those having different priority levels. Here P!  priorities structure can be made. 

Let suppose if highest priority is given to the characteristic which has the maximum coefficient 

of variation i.e.  Gjjj CVCVCV ,, 21 , be in decreasing order of magnitude. Lexicographic goal 

programming approach requires solving first 

 

Problem 11: 

LiegersarenNnand

CcnctoSubject

CVMinimize

iii

L

i

ii

j

,...,2,1;int,2

,,;
1

0

1






 

If the minimum of problem (26) is ,1



jCV  then in the next stages the problem must be solved for 

obtaining the minimum values
*

12 ..,, 



jGj VCCV . At the stage G, 1jG denotes the deviational 

variable and the problem to be solved is 
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Problem 12: 

LiegersarenNnand

Ccnc

CVCV

CVCVtoSubject

VCMinimize

iii

L

i

ii

jGjGjG

jjj

P

j

jGjG

,...,2,1;int,2

,,

...

;

1

0

*

111

*

11

1

1





























                           

In the above Problem (12) the highest priority goals and constraints are considered first. If more 

than one solution is found for Problem (12), another goal programming problem is then 

formulated which takes into account the second priority goals and so on. This procedure is 

repeated until a unique solution is found gradually considering decreasing priority levels. If the 

minimum of problem (12) is ,

jGCV  then in the next stage the problem must be solved for 

minimum values. Thus, final next problem to be solved is 

Problem (13): 

LiegersarenNnand

Ccnc

CVCV

CVCV

CVCVtoSubject

Minimize

iii

L

i

ii

jGjGjG

jGjGjG

jjj

P

j

jG

,...,2,1;int,2

,

;

1

0

*

*

111

*

11

1































 

For the other different priority structure same procedure will be followed.  

Same procedure will be followed for the Problem (9). 

3.3 D1 Distance Algorithm  

This method is an extension of lexicographic goal programming. In this method the objectives 

functions are arranged in order of their priorities in different manners to generate set of priorities 

structures. An idle solution is then identified from these set of priorities structure. 
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The stepwise procedure of D1- Distance method for solving RR Model (Problem 8) with P 

objective functions is as follows: 

Step 1: Let us we have P objective functions then P! set of problems of different priority 

structure will generate and hence P! different solutions are obtained after solving P! problems. 

Table 1 Calculations for ideal solutions 

Priority Structure 1n  2n  ... in  

)1(CV  
)1(

1n  )1(

2n  ... 
)1(

in  

)2(CV  
)2(

1n  )2(

2n  ... 
)2(

in  

... ... ... ... ... 

)(rCV  
)(

1

rn  )(

2

rn  ... 
)(r

in  

Ideal Solution *

1n  *

2n  ... 
*

in  

Step 2: Let !1),,...,,( )()(

2

)(

1

)( Prnnnn r

L

rrr

i   be the P! number of solutions obtained in step 1. 

Out of these solutions an idle is identified as follows:- 

   **

2

*

1

)()2()1()(

2

)2(

2

)1(

2

)(

1

)2(

1

)1(

1

* ,...,,)...,,(),...,...,,(),...,,( i

r

iii

rr

i nnnnnnMaxnnnMaxnnnMaxn  But 

in practice ideal solution can never be achieved. The solution, which is closest to the ideal 

solution is acceptable as the best compromise solution, and the corresponding priority structure 

in the planning context. 

Step 3: To obtain the best compromise solution, the following procedure is to be followed -  

First we define a distance function to obtain the distances of solutions from ideal solution and the 

solution with minimum distance is considered as optimal solution. Let the 1D -distance from the 

ideal solution ),...,,( **

2

*

1 Lnnn , to the thr  solution  )()(

2

)(

1 ,...,, r

L

rr nnn , !1 Pr   is defined as 





L

i

r

ii

r nnD
1

)(*

1)(                                                            

Therefore, the optimal 1D - distance from the ideal solution is given as 







L

i

r

ii
P

r

Pr
opt nnMinDMinD

1

)(*

!
1

!1
1 )()(            

                                      



1084 

YASHPAL SINGH RAGHAV, M. FAISAL KHAN AND S. KHALIL 

Table 2: -Distances from the ideal solution  

P.S. 1n  ... in  rD )( 1
 

)1(CV  || )1(

1

*

1 nn   ... || )1(*

ii nn   



k

i

ii nn
1

)1(* ||  

)2(CV  || )2(

1

*

1 nn   ... || )2(*

ii nn   



k

i

ii nn
1

)2(* ||  

... ... ... ... ... 

)(rCV  || )(

1

*

1

rnn   ... || )(* r

ii nn   



k

i

r

ii nn
1

)(* ||  

Let the minimum be attained for pr  . Then  )()(

2

)(

1 ,...,, p

i

pp nnn  is the best compromise 

allocation for the given problem.  

(Same procedure will be followed for solving the Problem 9). 

4. Proposed Method (Fixed priority Ideal 1D - Distances Method) 

In this method the priorities of extremes are fixed i.e. in our case we put the first priority to the 

objective which has worst value (maximum value) and give last priority to the objective which 

has best objective value (minimum value) and the rest (P-2) objectives are solved under all 

possible combination in between these two fixed extreme priorities. Out of these solutions, an 

ideal solution is identified. Let   )!2(1,,...,, )()(

2

)(

1

)(  Prnnnn r

L

rrr

i  be the )!2( P  number 

of solutions obtained by giving priorities to )2( P objective functions. As explained above, we 

will obtain )!2( P  different solutions by solving the )!2( P  problems arising for )!2( P  

different priority structures. The stepwise procedure for solving the problem of RR model is 

given below -  

Step1: Solve all the objectives for the given set of constraints ignoring other objectives. 

Step2: Fix the first priority to the objective having worst value and last priority to the objective 

having best value. 

Step3: Rest priorities are given to other objectives subsequently. 

Step4: Obtain )!2( P  different solutions by solving the )!2( P  problems. 

Step5: Obtain Ideal solution 

Step6: Calculate -distances of different solutions from the ideal solution. 
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Step7: The best compromise solution can be achieved after solving the following goal 

programming problem defined as 

 

.int,,1,)!2(1

,0,0

,0subject to

,
1

)(*

1)!2(

egerandLiPr

ddand

ddnn

ddMin

riir

irri

r

ii

k

i

irir
Pr




















                    

where 

ird  and 

ird  are the under and over deviational variable respectively, 

(Same procedure will be followed for solving the Problem 9). 

5. Numerical illustrations 

The following data is taken from Ghufran et al. (2012). The population size N is assumed to be 

1,000 and divided into four strata. This gives 811 N , 3432 N , 4553 N  and 1214 N . Let 

the mean population proportion of respondents belonging to the sensitive group for the four 

characteristics is assumed to be 842.01 s , 924.02 s , 654.03 s  and 825.04 s . It is 

also assumed that the total budget of the survey 500,4C  units with an overhead cost 5000 c  

units. Thus   000,4500500,400  cCC  units are available for measurements or 

measurements and travelling as the case may be. Table 3 presents the relevant information. 
iA ’s 

are calculated by equation (7) using the values given in Table 3 as 

0.083878641 A , 0.083878642 A , 0.083878643 A  and 0.083878644 A . 

 

Table 3: Data for four Strata and four characteristics 

I 
iW
 1si  2si  3si  4si  iM

 iP
 

Travel cost is not 

significant 

ic
 

Travel cost is  

significant 

'

ic
        

'

it  

(1) (2)
 

(3)
 

(4)
 

(5)
 

(6)
 

(7)
 

(8)
 

1 0.0808 0.28 0.33 0.40 0.62 0.80 0.70 25 15        10 

2 0.3434 0.48 0.53 0.35 0.22 0.80 0.70 33 20        13 

3 0.4546 0.68 0.73 0.55 0.82 0.80 0.70 40 30        10 

4 0.1212 0.88 0.93 0.75 0.32 0.80 0.70 30 18        12 
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6. Comparisons of Optimum allocation 

In this section, a comparative study of the optimum allocations in table 4 and 5 have been given 

for the various existing approaches and proposed approach.  

 

Table 4: Summary of Results for Linear Cost Function 

 

Approaches n1 n2 n3 n4 

Value Function Approach 12 40 49 14 

Goal Programming Technique 12 40 49 14 

  - constraint method 12 43 48 12 

Distance based Method 9 42 51 11 

Khuri and Cornell 12 42 48 13 

Proposed Approach 12 40 49 14 

 

Table 5: Summary of Results for Non-Linear Cost Function 

 

Approaches n1 n2 n3 n4 

Value Function Approach 14 51 56 17 

Goal Programming Technique 15 52 54 18 

  - constraint method 13 50 58 16 

Distance based Method 15 57 49 19 

Khuri and Cornell 18 58 45 22 

Proposed Approach 11 65 63 22 

 

The trace value of coefficient of variation for linear cost and quadratic cost function is 

summarised in Table 6 and Table 7 respectively.  

 

 

 



1087 

SAMPLE ALLOCATION PROBLEM 

 

Table 6: Summary of trace values of coefficient of variation for linear cost function 

 

Technique 2

1)( sCV  2

2)( sCV  2

3)( sCV  2

4)( sCV  Trace Value 

Value function 0.0009199204 0.0007288042 0.001622887 0.004042650 0.007314262 

Goal 

programming 

0.003679677 0.002915213 0.006491542 0.003261107 0.01634754 

  constraint 0.003667031 0.002894428 0.006520836 0.003291245 0.01637354 

Distance based 0.003692815 0.002920744 0.006580085 0.003364038 0.01655768 

Khuri & Cornell 0.003672579 0.002903462 0.006508626 0.003274046 0.01635871 

Proposed 

method 

0.003679677 0.002915213 0.006491542 0.003261107 0.01634754 

 

Table 7: Summary of trace values of coefficient of variation for quadratic cost 

Technique 2'

1)( sCV  2'

2)( sCV  2'

3)( sCV  2'

4)( sCV  Trace Value 

Value function 0.003075535 0.002433581 0.005443718 0.001594991 0.01254782 

Goal programming 0.003087475 0.002441807 0.005463369 0.001547158 0.01253966 

  constraint 0.003071491 0.002431509 0.005439352 0.001648332 0.01259068 

Distance based 0.003125137 0.002468594 0.005552044 0.001478469 0.01262424 

Khuri & Cornell 0.003233743 0.002550407 0.005736522 0.001385358 0.01290603 

Proposed method 0.003075604 0.002433638 0.005443821 0.001595042 0.01254810 

 

7. Conclusion 

Ghufran et al. (2014) was solved the RR model problem for minimizing the characteristic 

variances. In this paper, instead of characteristics variances we taken into account the CV’s and 

formulate the RRM as a multi-objective optimization problem. The compromise allocation is 

then obtained by the propose technique lexicographic goal programming approach integrated 

with fix priority 1D  - distance method. We also obtained compromise allocations by the various 

other existing methods of multi-objective optimization problem and then made comparisons of 

them with the lexicographic goal programming approach integrated with fix priority 1D  - 

distance method. We have been found that minimum trace value of coefficient of variation (CV) 
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for linear cost is attained by the proposed fixed priority Ideal 1D  - distance method. In case of 

quadratic cost constraint function the minimum trace value of CV is attained by value function 

method. 
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