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Abstract. In this paper, we introduce the concepts of second-order radial epiderivative and second-order gen-

eralized radial epiderivative for nonconvex set-valued maps. We give existence theorems for the second-order

generalized radial epiderivatives. We also establish the second-order optimality conditions by using second-order

radial epiderivatives.
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1. Introduction

In the last years, the second-order optimality conditions have a great deal of attention in scalar

and vector-optimization problems and have been widely investigated [2,3,4,5,8,9,10,11,12,13,14,

15,16,17,19, 22, 24, 26]. It can be seen that a second-order contingent set, introduced by Aubin

and Frankowska [1], and a second-order asymptotic contingent cone, introduced by Penot [24],

play a important role in establishing second-order optimality conditions.Jahn et al. proposed the

second-order contingent derivative and the second-order contingent epiderivative in terms of the
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second-order contingent set [15], introduced by Aubin and Frankowska [1]. They obtained the

second-order optimality conditions by using these derivatives in set-valued optimization. In

[22], Khan and Tammer gave new second-order optimality conditions in set-valued optimiza-

tion. They presented an extension of the well-known Dubovitski-Milutin approach to set-valued

optimization. In [3], Anh and Khanh introduced the higher-order radial sets and corresponding

derivatives. They established both necessary and sufficient higher-order conditions for weak

efficiency in set-valued vector optimization problem . In [4], Anh and Khanh gave both neces-

sary and sufficient higher-order conditions for various kinds of proper solutions to nonsmooth

vector optimization problem in terms of higher-order radial sets and radial derivatives. In [18],

İnceoğlu introduce the concepts of second-order radial epiderivative and second-order general-

ized radial epiderivative for nonconvex set-valued maps. They also investigate in [18] some of

their properties and give existence theorems for the second-order generalized radial epideriva-

tives.

Motivated by the work above, we study the second-order radial epiderivatives and the second-

order generalized radial epiderivative. We also propose second-order optimality conditions by

using second-order radial epiderivatives. This paper is divided into four sections. In Section 2,

we recall some basic concepts. In Section 3, we introduce the second-order radial epiderivative

and the second-order generalized radial epiderivative and give the existence theorems and some

of their basic properties. In Section 4, we establish the second-optimality conditions for weak

minimizers.

2. Preliminaries

Throughout this paper, let (X ,‖.‖X) and (Y,‖.‖Y ) be real normed spaces and let Y be partially

ordered by a closed convex pointed cone C ⊂ Y . Let F : X → 2Y be a set-valued map, let

(x̄, ȳ) ∈ graph(F), let (ū, v̄) ∈ X×Y .

We recall the concept of the radial epiderivative and the generalized radial epiderivative intro-

duced by Kasımbeyli [20], and Kasımbeyli and İnceoğlu [21], respectively, together with some

standard notions.
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Definition 2.1. Let U be a nonempty subset of a real normed space (Z,‖.‖Z) , and let z̄∈ cl (U)

(closure of U) be a given element. The closed radial cone R(U, z̄) of U at z̄ ∈ cl (U) is the set

of all z ∈ Z such that there are λn > 0 and a sequence (zn)n∈N ⊂ Z with limn→∞ zn = z so that

z̄+λnzn ∈U, for all n ∈ N [6], [20,21], [25].

It follows from this definitions that R(U, z̄) = cl (cone(U− z̄)), where cone denotes the conic

hull of a set, which is the smallest cone containing U− z̄ [6], [7], [20,21].

Definition 2.2. Let (X ,‖.‖X) and (Y,‖.‖Y ) be real normed spaces, let F : X → 2Y be a set-

valued map.

(i) The set

graph(F) = {(x,y) ∈ X×Y | y ∈ F (x)}

is called the graph of F ;

(ii) The set

dom(F) = {x ∈ X | F (x) 6= /0}

is called the domain of F ;

(iii) Let Y be partially ordered by a proper, convex, and pointed cone C ⊂ Y. The set

epi(F) = {(x,y) ∈ X×Y | y ∈ F (x)+C}

is called the epigraph of F ,

(iv) Let C ⊂ Y a proper, convex and pointed cone. The profile map PF : X → 2Y is defined

by

PF (x) = F (x)+C,

for every x ∈ dom(F) .

(v) Let (x̄, ȳ) ∈ graph(F) . A set valued map DRF (x̄, ȳ) : X → 2Y whose graph coincides

with the contingent cone to graph of F at (x̄, ȳ) , that is

graph(DRF (x̄, ȳ)) = R(graph(F) ,(x̄, ȳ)) ,

is called radial derivative of F at (x̄, ȳ) ,[6],[25].
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Now, we give the definition of the radial epiderivative given by Kasımbeyli without convexity

and boundedness [20].

Definition 2.3. Let Y be partially ordered by a convex cone C ⊂ Y , let S be a nonempty subset

of X and let F : S→ 2Y be a set-valued map. Let a pair (x̄, ȳ) ∈ graph(F) be given. A single-

valued map DrF (x̄, ȳ) : X → Y whose epigraph equals the radial cone to the epigraph of F at

(x̄, ȳ) , i.e.

epi(DrF (x̄, ȳ)) = R(epi(F) ,(x̄, ȳ)) ,

is called radial epiderivative of F at (x̄, ȳ) .

To give the definition of the generalized radial epiderivative, we recall the minimality concept

[23].

Definition 2.4. Let (Y,‖.‖Y ) be a real normed space partially ordered by a convex cone C ⊂Y.

Let D be a subset of Y and let ȳ ∈ D.

(i) The element ȳ is said to be a minimal element of D, if D∩ ({ȳ}−C) = {ȳ}.

(ii) Let the ordering cone have a nonempty interior int (C). The element ȳ is said to be

a weakly minimal element of D, if D∩ ({ȳ}− int (C)) = /0 . The set of all minimal,

weakly minimal elements of D with respect to the ordering cone C is denoted by MinD,

W −MinD, respectively.

Now, we recall the generalized radial epiderivative for set-valued maps given by Kasımbeyli

and İnceoğlu in [21].

Definition 2.5. A set valued map DgrF (x̄, ȳ) : X → 2Y is called the generalized radial epi-

derivative of F at (x̄, ȳ) if

DgrF (x̄, ȳ)(x) = Min(G(x) ,C) ,

where G : X → 2Y is the set-valued map given by

G(x) = {y ∈ Y | (x,y) ∈ R(epi(F) ,(x̄, ȳ))} ,∀x ∈ X .

3.Second-Order Radial Set and Second-Order Radial Epiderivatives
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In this section, we propose the definitions of the second-order radial epiderivatives. By using

these definitions, we prove existence theorem and give some of their properties and optimality

conditions.

Anh and Khanh defined m-th-order radial set and m-th-order radial derivative [4]. Based on this,

we give the following definitions of second-order radial set and second-order radial derivative.

Definition 3.1. Let (X ,‖.‖X) be a real normed space, let S be a nonempty subset of X , let

x̄ ∈ cl (S) and let w ∈ X The second-order radial set of S at x̄ with respect to w is

R2 (S, x̄,w) =
{

x ∈ X | ∃tn > 0,∃xn→ x,∀n, x̄+ tnw+ t2
n xn ∈ S

}
.

It is also clear that R2 (S, x̄,0X) = R(S, x̄), 0X the zero element of X .

The following definition was presented by Ha in [13].

Definition 3.2. Let F : X → 2Y be a set-valued map, let (x̄, ȳ) ∈ graph(F) , let (ū, v̄) ∈ X ×Y .

The second-order radial derivative of F at (x̄, ȳ) with respect to (ū, v̄) is the set-valued map

D2
RF (x̄, ȳ, ū, v̄) : X → 2Y whose graph is

graph
(
D2

RF (x̄, ȳ, ū, v̄)
)
= R2 (graph(F) ,(x̄, ȳ) ,(ū, v̄)) .(1)

The relation (1) can be expressed equivalently by

D2
RF (x̄, ȳ, ū, v̄)(x) =

 y ∈ Y | ∃tn > 0,∃xn→ x,∃yn→ y,∀n,

ȳ+ tnv̄+ t2
n yn ∈ F

(
x̄+ tnū+ t2

n xn
)

 .

The following definition is a generalization given by Kasımbeyli and Kasımbeyli and İnceoğlu,

respectively [20],[21].

Definition 3.3. [18] Let F : X → 2Y be a set-valued map, let (x̄, ȳ) ∈ graph(F) , let (ū, v̄) ∈

X×Y .

(i) A single-valued map D2
r F (x̄, ȳ, ū, v̄) : X → Y whose epigraph equals the second-order

radial set to the epigraph of F at (x̄, ȳ) with respect to (ū, v̄), i.e.,

epi
(
D2

r F (x̄, ȳ, ū, v̄)
)
= R2 (epi(F) ,(x̄, ȳ) ,(ū, v̄)) ,

is called the second-order radial epiderivative.
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(ii) A set-valued map D2
grF (x̄, ȳ, ū, v̄) : X→ 2Y is called the second-order generalized radial

epiderivative of F at (x̄, ȳ) with respect to (ū, v̄) if

D2
grF (x̄, ȳ, ū, v̄)(x) = Min

(
G2 (x) ,C

)
,x ∈ dom

(
G2 (x)

)
,

where G2 : X → 2Y is a set-valued map defined by

G2 (x) =
{

y ∈ Y | (x,y) ∈ R2 (epi(F) ,(x̄, ȳ) ,(ū, v̄))
}
.

Example 3.1. Let F : R→ 2R be a set-valued map given by

F (x) = {y ∈ R | y≥ x} , for all x ∈ R.

Let (x̄, ȳ) = (0,0) and let (ū, v̄) = (1,0) . Then

R2 (epi(F) ,(0,0) ,(1,0)) =
{

cz ∈ R2 | ∃tn > 0,∃(zn)→ z, for all n, tn (1,0)+ t2
n zn ∈ epiF

}
.

The condition

tn (1,0)+ t2
n zn ∈ epi(F)

is equivalent to

t2
n zn2 ≥ tn + t2

n zn1 ;

hence,

zn2 ≥ (1+ tnzn1)
2

Since tn > 0 and zn2 → z2, zn1 → z1, we obtain that

R2 (epi(F) ,(0,0) ,(1,0)) = R× [1,0)

Consequently, we have

G2 (x) = [1,0) ,

for every x ∈ R. On the other hand,

D2
r F (0,0,1,0)(x) = {1} , f oreveryx ∈ R

.

D2
grF (0,0,1,0)(x) = Min

(
G2 (x) ,R+

)
= {1} ,

for every x ∈ R.
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Proposition 3.1. For every x ∈ dom
(
D2

RF (x̄, ȳ, ū, v̄)
)
, the following inclusion holds:

D2
RF (x̄, ȳ, ū, v̄)(x)+CY ⊆ D2

RPF (x̄, ȳ, ū, v̄)(x) .

Corollory 3.1. For every x ∈ dom
(
D2

RPF (x̄, ȳ, ū, v̄)
)
, the following inclusion holds:

D2
RPF (x̄, ȳ, ū, v̄)(x)+CY = D2

RPF (x̄, ȳ, ū, v̄)(x) .

The following existence theorem for second-order generalized radial epiderivative is proved in

[18].

Theorem3.1. Let the convex cone C ⊂ Y be regular. For every x ∈ dom
(
G2), let the set

D2
grF (x̄, ȳ, ū, v̄)(x) have a C-lower bound. Then for every x ∈ dom

(
G2), D2

grF (x̄, ȳ, ū, v̄)(x)

exists. Moreover, the following equality holds:

epi
(
D2

grF (x̄, ȳ, ū, v̄)
)
= R2 (epi(F) ,(x̄, ȳ) ,(ū, v̄)) .

Propositon3.2. Let the convex cone C ⊂Y be regular. Let F : X → 2Y be a set-valued map, let

(x̄, ȳ) ∈ graph(F), let (ū, v̄) ∈ X ×Y. For every x ∈ dom
(
G2 (x)

)
, let the set G2 (x) have a C−

lower bound. The following assertion is satisfied:

epi
(
D2

grF (x̄, ȳ, ū, v̄)
)
⊂ R2 (dom(F) , x̄, ū)×Y.

Proof. Let (x̄, ȳ) ∈ epi
(
D2

gr (x̄, ȳ, ū, v̄)
)
. Then (x̄, ȳ) ∈ R2 (epi( f ) ,(x̄, ȳ) ,(ū, v̄)) It follows from

the definition of the second-order generalized radial epiderivative that there exist sequences

tn > 0 and (xn,yn) with (xn,yn)→ (x,y) such that

(x̄, ȳ)+ tn (ū, v̄)+ t2
n (xn,yn) ∈ epi(F) , for alln ∈ N,

ȳ+ tnv̄+ t2
n ∈ F

(
x̄+ tnū+ t2

n xn
)
+C, for alln ∈ N.

Therefore we have x̄+ tnū+ t2
n xn ∈ dom(F). This implies that (x,y) ∈ R2 (dom(F) , x̄, ū)×Y.

Propositon3.3. Let A⊂ X be nonempty set and let C ⊂ Y be a convex cone with int (C) 6= /0 .

Let F : A→ 2Y be a set-valued map, let E = dom
(
D2

grF (x̄, ȳ, ū, v̄)
)
. Then

⋃
x∈E

D2
grF (x̄, ȳ, ū, v̄)⊂ R2 (F (A)+C, ȳ, v̄)
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Proof. Let y ∈ D2
grF (x̄, ȳ, ū, v̄)(E) and let x ∈ E be the corresponding element such that y ∈

D2
grF (x̄, ȳ, ū, v̄)(x).Then, (x,y) ∈ R2 (epi(F) ,(x̄, ȳ) ,(ū, v̄). There exist tn > 0, (xn,yn)→ (x,y)

such that ,for all n ∈ N,

ȳ+ tnv̄+ t2
n yn ∈ F

(
x̄+ tnū+ t2

n xn
)
+C ⊂ F (A)+C

Since λn > 0 and yn → y, we get y ∈ R2 (F (A)+C, ȳ, v̄). Because y is chosen arbitrarily, we

have D2
grF (x̄, ȳ, ū, v̄)(E)⊂ R2 (F (A)+C, ȳ, v̄).

The following proposition shows that relationship between second-order radial epiderivative

and second-order generalized radial epiderivative.

Propositon3.4. [18] Assume that the second-order radial epiderivative D2
r F (x̄, ȳ, ū, v̄) of F :

X → 2Y at (x̄, ȳ) ∈ graph(F) with respect to (ū, v̄) ∈ X×Y exist. Then

D2
grF (x̄, ȳ, ū, v̄)(x) = Min

(
D2

r F (x̄, ȳ, ū, v̄) ,CY
)
,

for all x ∈ dom
(
D2

r F (x̄, ȳ, ū, v̄)
)
.

Proof. It follows from the Definition 3.3 that D2
r F (x̄, ȳ, ū, v̄)

epi
(
D2

r F (x̄, ȳ, ū, v̄)
)
= R2 (epi(F) ,(x̄, ȳ) ,(ū, v̄)) = graph

(
D2

RPF (x̄, ȳ, ū, v̄)
)
.

Hence, {
D2

r F (x̄, ȳ, ū, v̄)(x)
}
+CY = D2

RPF (x̄, ȳ, ū, v̄)(x) ,

for every x∈ dom
(
D2

RPF (x̄, ȳ, ū, v̄)
)
. In view of the Definition ?? and the () equality, the second-

order generalized radial epiderivative D2
grF (x̄, ȳ, ū, v̄) : X → 2Y is given by

D2
grF (x̄, ȳ, ū, v̄)(x) = Min

(
D2

r F (x̄, ȳ, ū, v̄) ,CY
)
.

4.Optimality Conditions

Now, we obtain the optimality conditions for set-valued maps in terms of second-order radial

epiderivativatives. Let F : S→ 2Y be a set-valued map.
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Consider the following set-valued optimization problem:

(P)

 min F(x)

s.t. x ∈ S

Definition 4.1. Let the ordering cone C have a nonempty interior int (C). A pair (x̄, ȳ) ∈

graph(F) is called weak minimizer of (), if ȳ is a weakly minimal element of the set F (S)

where

F (S) =
⋃
x∈S

F (x) .

Here we present a second-order optimality condition by using the second-order radial deriva-

tive.

Theorem 4.1. Let (x̄, ȳ) ∈ graph(F) be a weak minimizer of the problem (P) and let ū ∈

dom(DPF (x̄, ȳ)) be arbitrary. Then, for every v̄ ∈ DRPF (x̄, ȳ)(ū)∩ (−∂C),

for every x ∈ dom
(
D2

RPF (x̄, ȳ, ū, v̄)
)
,

D2
grF (x̄, ȳ, ū, v̄)(x) /∈ (−int (C)−{v̄}) .

Proof. Let (x̄, ȳ) ∈ graph(F) and let ȳ ∈W −Min(F (S) ,C). Assume to the contrary that there

exist an element x ∈ dom
(
D2

RPF (x̄, ȳ, ū, v̄)
)

with

y ∈ D2
RPF (x̄, ȳ, ū, v̄)(x)∩ (−int (C)−{v̄}) .

By the definition of the second-order radial epiderivative

(x,y) ∈ R2 (epi(F) ,(x̄, ȳ) ,(ū, v̄)) .

Then ∃tn > 0, ∃(xn,yn)⊂ epi(F) , with

(xn,yn)→ (x,y) 3 ∀n,(x̄, ȳ)+ tn (ū, v̄)+ t2
n (xn,yn) ∈ epi(F) .

By the definition of epi(F), we get

ȳ+ tnv̄+ t2
n yn ∈ F

(
x̄+ tnū+ t2

n xn
)
+C.(2)

Since

y+ v̄ ∈ (−int (C)) ,yn→ y,
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there exist n0 ∈ N such that

v̄+ t2
n yn ∈ (−int (C)) , for every n≥ n0.

From tn > 0, we get

tnv̄+ t2
n yn ∈ (−int (C)) , for every n≥ n0.(3)

By using the above equality (2), we have

ȳ+ tnv̄+ t2
n yn ∈ (ȳ− int (C)) , for every n≥ n0.(4)

We set

αn = x̄+ tnū+ t2
n xn,

βn = ȳ+ tnv̄+ t2
n yn.(5)

Because of the equalities (5) and (2), we have

βn ∈ F (αn)+C.

Therefore, there exists some ϑn ∈ F (αn)+C with βn ∈ ϑn +C. From here

ϑn ∈ βn−C.

Because of the inclusion int (C)+C ⊂ int (C) and the equality

βn ∈ (ȳ− int (C)) , we have

ϑn ∈ (ȳ− int (C)) , for every n≥ n0.

Therefore, we have shown that

F (αn)∩ (ȳ− int (C)) 6= /0,

which is a contradiction to the assumption that (x̄, ȳ) is a weak minimizer.

Now we propose some important properties of the second-order radial epiderivative.

Lemma 4.1. F : S→ 2Y be a set-valued map and (x̄, ȳ) ∈ graph(F), ū ∈ S and v̄ ∈ F (ū)+C. If

the second-order radial epiderivative D2
r F (x̄, ȳ, ū, v̄)(x) exists, then

F (x)−{ȳ}+C ⊂ D2
r F (x̄, ȳ, ū, v̄)(x− x̄− ū) , for all x ∈ S.
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Proof. Let x ∈ S, y ∈ F (x)−{ȳ}+C. Then y+ ȳ ∈ F (x)+C. By setting tn = 1, xn = x− x̄− ū,

yn = y− v̄, for all n ∈ N, we have ∃tn > 0, ∃(xn,yn)→ (x− x̄− ū,y− v̄) 3 ȳ+ tnv̄+ t2
n yn ∈

F
(
x̄+ tnū+ t2

n xn
)
+C, for all n ∈ N. Consequently, we get y+ ȳ ∈ D2

r F (x̄, ȳ, ū, v̄)(x− x̄− ū).

The following sufficient optimality condition for the weak minimizer will be proved by using

the Lemma 4.1.

Theorem 4.2. Let the set-valued optimization problem (P) be given, let (x̄, ȳ) ∈ graph(F). If

for every ū ∈ X with v̄ ∈ DrF (x̄, ȳ)(ū)∩ (−∂C)

D2
r F (x̄, ȳ, ū, v̄)(x− x̄− ū)∩ (−int (C)) = /0,

for every x ∈ S, then (x̄, ȳ) is a weak minimizer of the problem (P).

Proof. By the Lemma4.1

(F (x)−{ȳ}+C)∩ (−int (C)) = /0,

for every x ∈ S. This implies that

(F (x)−{ȳ})∩ (−int (C)−C) = /0,

for every x ∈ S. We obtain with the equality int (C)+C = int (C)

(F (x)−{ȳ})∩ (−int (C)) = /0,

for every x ∈ S. Consequently, ȳ is a weakly minimal element of the set F (S); that is (x̄, ȳ) is a

weak minimizer of the problem (P).

5. Conclusion

In this paper two new concept of second-order epiderivative are presented. The relationship

between the second-order radial epiderivative and the second-order generalized radial epideriva-

tive are discussed. Some of their properties are investigated also. In set-valued optimization,

second-order optimality conditions are obtained by using these epiderivatives.
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