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Abstract. Let n and p be odd primes such that p 6= n and p - (2n ± 1). An upper bound on the number of

inequivalent extended irreducible binary Goppa codes of degree 2p and length 2n +1 is produced.
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1. Introduction

Goppa codes form a subclass of alternant codes and it was V.D. Goppa who, in the early

1970’s, described this family of codes. These codes are said to have an interesting algebraic

structure and contain good parameters. For these reasons, Goppa codes are of high practical

value. The McEliece and Niederreiter cyptosystems are examples of public-key cryptosystems

in cryptography which make use of Goppa codes.

The McEliece cryptosystem is believed to be a cryptosystem which may have potential to

withstand attack by quantum computers [3, 4]. As this cryptosystem chooses a Goppa code at
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random as its key, knowledge of the number of inequivalent Goppa codes for fixed parameters

may facilitate in the evaluation of the security of such a cryptosystem. In [11], we find the best

upper bound, available today, on the number of inequivalent irreducible Goppa codes. Some

recent attempts to count inequivalent extended irreducible Goppa codes can be found in [7, 8, 9].

This paper seeks to find a tight upper bound on the number of inequivalent extended irreducible

binary Goppa codes of degree 2p. The count employs the tools which were used to count the

non-extended versions (see [11]).

2. Preliminaries

The reader is encouraged to read the work we reproduce in this section since it is a prerequi-

site for the subsequent sections of this article. We begin by giving the definition of irreducible

Goppa codes.

Definition 1. Let q be a power of a prime number and g(z) ∈ Fqn[z] be irreducible of degree r.

Let L = Fqn = {ζi : 0 ≤ i ≤ qn− 1}. Then an irreducible Goppa code Γ(L,g) is defined as the

set of all vectors c = (c0,c1, ...,cqn−1) with components in Fq which satisfy the condition

qn−1

∑
i=0

ci

z−ζi
≡ 0 (mod g(z)).

The set L is called the defining set and its cardinality defines the length of Γ(L,g). The

polynomial g(z) is called the Goppa polynomial. If the degree of g(z) is r then the code is

called an irreducible Goppa code of degree r.

The roots of g(z) are contained in Fqnr \ Fqn . If α is any root of g(z) then it completely

describes Γ(L,g). Chen in [2] described a parity check matrix H(α) for Γ(L,g) which is given

by

H(α) =

(
1

α−ζ0

1
α−ζ1

· · · 1
α−ζqn−1

)
.

We will sometimes denote this code by C(α).

We next give the definition of extended irreducible Goppa codes.
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Definition 2. Let Γ(L,g) be an irreducible Goppa code of length qn. Then the extended code

Γ(L,g) is defined by Γ(L,g) = {(c0,c1, ...,cqn) : (c0,c1, ...,cqn−1) ∈ Γ(L,g) and ∑
qn

i=0 ci = 0}.

Next we define the set which contains all the roots of all possible g(z) of degree r.

Definition 3. We define the set S = S(n,r) as the set of all elements in Fqnr of degree r over

Fqn .

Any irreducible Goppa code can be defined by an element in S. The converse is also true,

that is, any element in S defines an irreducible Goppa code. Since an irreducible Goppa code

Γ(L,g) is determined uniquely by the Goppa polynomial g(z), or by a root α of g(z), we define

the mapping below. (For further details, see [2].)

Definition 4. The relation πζ ,ξ ,i defined on S by

πζ ,ξ ,i : α 7→ ζ α
qi
+ξ

for fixed i,ζ ,ξ where 1≤ i≤ nr, ζ 6= 0,ξ ∈ Fqn is a mapping on S.

This map sends irreducible Goppa codes into equivalent codes and we generalise this as

follows:

Theorem 5. (Ryan, [11]): If α and β are related by an equation of the form α = ζ β qi
+ξ for

some ζ 6= 0,ξ ∈ Fqn , then the codes C(α) and C(β ) are equivalent.

The map in Definition 4 can be broken up into the composition of two maps as follows:

1. πζ ,ξ defined on S by πζ ,ξ : α 7→ ζ α +ξ and

2. the map σ i : α 7→ αqi
, where σ denotes the Frobenius automorphism of Fqnr leaving Fq

fixed.

From these two maps we define the following sets of mappings.

Definition 6. Let H denote the set of all maps {πζ ,ξ : ζ 6= 0,ξ ∈ Fqn}.

Definition 7. Let G denote the set of all maps {σ i : 1≤ i≤ nr}.
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The sets of maps H and G together with the operation composition of maps both form groups

which act on S.

Definition 8. The action of H on S induces orbits denoted by A(α) where A(α) = {ζ α + ξ :

ζ 6= 0,ξ ∈ Fqn}.

Remark 9. We refer to A(α) as an affine set containing α where α is an element of degree r

over Fqn and ζ ,ξ ∈ Fqn . Since ζ 6= 0,ξ ∈ Fqn then to form the set A(α) the number of choices

for ζ is qn−1 and ξ has qn choices and so |A(α)|= qn(qn−1).

Definition 10. Let A denote set of all affine sets, i.e., A= {A(α) : α ∈ S}.

Next, we define a mapping on S which sends extended irreducible Goppa codes into equiva-

lent extended irreducible Goppa codes.

Definition 11. The relation πζ1,ζ2,ξ1,ξ2,i defined on S by

πζ1,ζ2,ξ1,ξ2,i : α 7→ ζ1αqi
+ξ1

ζ2αqi
+ξ2

fixed i,ζ j,ξ j where 0≤ i≤ nr, ζ j,ξ j ∈ Fqn , j = 1,2 and ζ1ξ2 6= ζ2ξ1 is a mapping on S.

Since the scalars ζ j and ξ j are defined up to scalar multiplication, we may assume that ζ2 = 1

or ξ2 = 1 if ζ2 = 0.

We have the following generalisation:

Theorem 12. (Berger, [1]): If πζ1,ζ2,ξ1,ξ2,i(α) = β then C(α) is equivalent to C(β ).

The map in Definition 11 can be broken up into the composition of two maps as follows:

1. the map πζ1,ζ2,ξ1,ξ2
defined on S by πζ1,ζ2,ξ1,ξ2

: α 7→ ζ1α+ξ1
ζ2α+ξ2

, and

2. the map σ i : α 7→ αqi
, where σ denotes the Frobenius automorphism of Fqnr leaving Fq

fixed.

From these two maps we give the following two definitions.

Definition 13. Let F denote the set of all maps {πζ1,ζ2,ξ1,ξ2
: ζ j,ξ j ∈ Fqn , j = 1,2 and ζ1ξ2 6=

ζ2ξ1}.
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F forms a group under the operation of composition of maps which acts on S.

Definition 14. Let α ∈ S. Then the orbit in S containing α under the action of F is O(α) =

{ζ1α+ξ1
ζ2α+ξ2

: ζ j,ξ j ∈ Fqn, j = 1,2 and ζ1ξ2−ζ2ξ1 6= 0}.

The cardinality of O(α) is found in [8] and we state it in the theorem:

Theorem 15. For any α ∈ S, |O(α)|= q3n−qn = (qn−1)(qn)(qn +1).

Definition 16. Let OF denote the set of all orbits in S under the action of F , i.e., OF = {O(α) :

α ∈ S}. Observe that OF is a partition of the set S.

Note that G acts on the set OF .

It is shown in [10] that each of the sets O(α) in OF can be partitioned into qn +1 sets. The

theorem below provides more details.

Theorem 17. O(α) = A(α)∪A( 1
α
)∪A( 1

α+1)∪A( 1
α+ξ1

)∪A( 1
α+ξ2

)∪ ·· · ∪A( 1
α+ξqn−2

) where

Fqn = {0,1,ξ1,ξ2, ...,ξqn−2}.

Observe that the sets OF and A are different. OF is a partition on S and also A is a partition

on S. The number of elements in A is qn + 1 times the number of elements in OF , i.e., |A| =

(qn +1)×|OF |.

G also acts on A= {A(α) : α ∈ S}.

3. Main results

3.1. Technique of counting extended irreducible binary Goppa codes: We wish to produce

an upper bound on the number of inequivalent extended irreducible binary Goppa codes of

degree 2p and length 2n + 1. We intend to achieve this by employing the tools developed for

counting the non-extended versions.

In counting the non-extended irreducible Goppa codes we consider the action of H on S. This

gives orbits in S denoted by A(α) called affine sets. We then consider the action of G on the set

A where A= {A(α) : α ∈ S}. The number of orbits in A under G gives us an upper bound on

the number of inequivalent irreducible Goppa codes.
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Now to count extended irreducible Goppa codes we consider the action of F on S. This action

induces orbits in S denoted by O(α). Next we consider the action of G on OF = {O(α) : α ∈ S}.

The number of orbits in OF under G gives us an upper bound on the number of inequivalent

extended irreducible Goppa codes.

To find the number of orbits in A and OF we use the Cauchy Frobenius Theorem whose proof

can be found in [5]. Since the Cauchy Frobenius Theorem is central in this paper we state it as

follows.

Theorem 18 (Cauchy Frobenius Theorem). Let E be a finite group acting on a set X. For any

e ∈ E, let Xe denote the set of elements of X fixed by e. Then the number of orbits in X under

the action of E is 1
|E|∑e∈H |Xe|.

3.2. The cardinality of S: We begin by counting the number of elements in S. Since we are

considering the binary case then from now on ward q = 2. We use the lattice of subfields of

F22pn as done in [6]. Fig 3.1 shows the lattice of subfields of F22pn .

F2

F2p F22F2n

F22n F22pF2pn

F22pn

Fig 3.1: Lattice of subfields of F22pn

Remark 19. The elements of degree 2p over F2n lie in F22p and F22pn .

To find the number of elements of degree 2p in F22pn we therefore exclude F22n and F2pn so

that, for λ = p−1
2 , we have

|S|= 22pn−2pn−22n +2n = 2n(2λn−1)(2λn +1)(2pn +2n−1)
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= 2n(2n−1)(2n +1)

[(
2λn−1
2n−1

)(
2λn +1
2n +1

)
(2pn +2n−1)

]

= 2n(2n−1)(2n +1)

[(
22λn−1
22n−1

)
(2pn +2n−1)

]

= 2n(2n−1)(2n +1)

[(
2(p−1)n−1

22n−1

)
(2pn +2n−1)

]
.

3.3. The Action of G on A: The number of orbits in A under the action G is found by first

counting the number of affine sets in A which are fixed by the subgroups of G and Cauchy

Frobenius Theorem is then applied.

Since we are acting G on A then it necessary to find the number of elements (affine sets)

which are in A. In Section 3.2 we found that |S| and by Remark 9 |A(α)| = 2n(2n− 1). So

|A|= |S|/(2n(2n−1)).

The cardinality of G is 2pn. Since G acts on A then we expect the orbits in A under the

action of the group G to have the length 1, 2, p, 2p, n, 2n, pn or 2pn. Note that every element

(affine set) in A is fixed under 〈σ2pn〉, i.e., σ2pn is the identity in G. We only need to consider

the remaining subgroups of G. We begin with the subgroup 〈σ pn〉.

3.3.1. 〈σ pn〉 is a subgroup of G of order 2: Suppose the orbit in A under the action of G con-

taining A(α) contains pn affine sets, i.e, {A(α),σ(A(α)),σ2(A(α)), ...,σ pn−1(A(α))}. Then

A(α) is fixed by 〈σ pn〉. That is we have σ pn(A(α)) = A(α). So we must have σ pn(α) =

α2pn
= ζ α +ξ for some ζ 6= 0,ξ ∈ F2n . When we apply σ pn twice we obtain α = σ2pn(α) =

σ pn(ζ α+ξ ) = ζ 2pn
α2pn

+ξ 2pn
= ζ α2pn

+ξ = ζ (ζ α+ξ )+ξ = ζ 2α+(ζ +1)ξ . We conclude

that ζ 2 = 1 otherwise ζ 2 6= 1 would mean (1− ζ 2)α ∈ F2n contradicting the fact that α ∈ S.

Since 2 - 2n−1 then ζ 2 = 1 implies ζ = 1.

So consider α2pn
= α + ξ for some ξ 6= 0 ∈ F2n . If we multiply both sides by ξ−1 we

get (ξ−1α)2pn
= (ξ−1α)+ 1. Without loss of generality, we may assume that α satisfies the

equation

(1) x2pn
− x−1 = 0.
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If α satisfies (1) we observe that all the 2n elements in the set {α +ξ : ξ ∈ F2n} also satisfy

(1) while the remaining elements in A(α) do not satisfy. This is so because the equation (ζ α +

ξ )2pn
= ζ α2pn

+ ξ = ζ (α + 1)+ ξ = ζ α + ζ + ξ = (ζ α + ξ )+ 1 holds if and only if ζ = 1.

We conclude that if α satisfies (1) then A(α) contains precisely 2n roots of (1).

We now calculate the number of elements of S which satisfy (1). We note that

(2) x2pn
− x−1 =

2pn−1

∏
i=1

(x2− x−βi)

where βi denote all the elements of F2pn which have trace 1 over F2. We know that there are

precisely 2pn−1 such βi. Some of the βi’s lie in F2p and F2n . The number of βi’s in F2p with

trace 1 are 2p−1. So the 2p−1 quadratic equations corresponding to the βi ∈ F2p have F22p as

their splitting field. The number of βi’s in F2n with trace 1 are 2n−1. So the 2n−1 quadratic

equations corresponding to the βi ∈ F2n have F22n as their splitting field while the remaining

2pn−1−2n−1−2p−1 quadratic equations have F22pn as their splitting field. So there are 2n roots

which are in F22n (not in S) whereas 2pn−2n roots lie in S.

Conversely if α ∈ S satisfies (1) then A(α) is fixed under 〈σ pn〉. We may conclude that there

are precisely 2pn−2n

2n = 2(p−1)n−1 sets of A(α) fixed under 〈σ pn〉.

3.3.2. 〈σ2n〉 a subgroup of G of order p: Suppose the orbit in A under the action of G con-

taining A(α) contains 2n affine sets. As in Subsection 3.3.1, we have A(α) fixed by 〈σ2n〉 and

σ2n(α) = α22n
= ζ α + ξ for some ζ 6= 0,ξ ∈ F2n . Applying σ2n for p times to α we ob-

tain α = σ2pn(α) = ζ pα +(ζ p−1 +ζ p−2 + · · ·+ζ +1)ξ . We conclude that ζ p = 1 otherwise

ζ p 6= 1 would mean (1− ζ p)α ∈ F2n contradicting the fact that α ∈ S. Since by assumption

(2n±1, p) = 1 then ζ p = 1 implies ζ = 1.

Now we have α22n
= α +ξ for some ξ 6= 0 ∈ F2n . If we multiply both sides by ξ−1 we get

(ξ−1α)22n
= ξ−1α + 1. We assume that α satisfies the equation x22n − x− 1 = 0. Using an

argument similar to the one in Subsection 3.3.1, we find all roots of x22n−x−1 = 0 in F24 , F22n ,

F24n and not in S. We conclude that there is no affine set A(α) fixed under 〈σ2n〉.

3.3.3. 〈σn〉 a subgroup of G of order 2p: Suppose the orbit in A under the action of G con-

taining A(α) contains n elements (affine sets). Then, as in Subsection 3.3.1, A(α) is fixed by
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〈σn〉 and σn(α) = α2n
= ζ α +ξ for some ζ 6= 0,ξ ∈ F2n . When we apply σn to α for 2p times

we have α = α22pn
= ζ 2pα +(ζ 2p−1 +ζ 2p−2 +ζ 2p−3 + · · ·+ζ 2 +ζ +1)ξ . We conclude that

ζ 2p = 1 otherwise ζ 2p 6= 1 would mean (1−ζ 2p)α ∈ F2n contradicting the fact that α ∈ S. The

possibilities are that ζ 2p = 1, ζ p = 1 or ζ 2 = 1. It is clear that 2 - (2n−1). Also by assumption

p - (2n−1). So all the three possibilities are impossible since 2, p and 2p do not divide 2n−1.

We conclude that ζ = 1.

So we have α2n
= α + ξ for some ξ 6= 0 ∈ F2n . Multiplying both sides by ξ−1 we get

(ξ−1α)2n
= ξ−1α +1. We assume that α satisfies the equation x2n−x−1 = 0. However, using

an argument as the one in Subsection 3.3.1, all roots of x2n− x−1 lie in F22 , F22n and not in S.

We conclude that there is no affine set A(α) fixed under 〈σn〉.

3.3.4. 〈σ2p〉 a subgroup of G of order n: Suppose the orbit in A under the action of G con-

taining A(α) contains 2p affine sets. Then A(α) is fixed under 〈σ2p〉 and contains some ele-

ments which satisfy the equation x22p
= x. In [11], it is proved that the number of affine sets

fixed by 〈σn1r〉 where n1 is a divisor of n is |S(n1,r)|/(qn1(qn1 − 1)). Hence the number of

affine sets fixed by 〈σ2p〉 is |S(1,2p)|/(2(2−1)) = (22p−2p−22+2)/2 = (22p−2p−2)/2 =

22p−1−2p−1−1.

3.3.5. 〈σ p〉 a subgroup of G of order 2n: Suppose the orbit in A under the action of G con-

taining A(α) contains p elements (affine sets). Then A(α) is fixed by 〈σ p〉. So we must have

σ p(α) = α2p
= ζ α +ξ for some ζ 6= 0,ξ ∈ F2n . But if A(α) is fixed under 〈σ 〉 then it is also

fixed under 〈σ p〉 since 〈σ2p〉 ⊂ 〈σ p〉. So A(α) contains some elements which satisfy x22p
= x

and these elements are in F22p \ (F2p ∪F22). So assume α ∈ F22p \ (F2p ∪F22) then applying

σ p twice to α we obtain α = α22p
= ζ 2p

(ζ α +ξ )+ξ 2p
= ζ 2p+1α +ζ 2p

ξ +ξ 2p
. We conclude

that ζ 2p+1 = 1 otherwise ζ 2p+1 6= 1 would mean (1−ζ 2p+1)α ∈ F2n contradicting the fact that

α is of degree 2p.

We show that 2p+1 is relatively prime to 2n−1. That is it suffices to show that (2p+1,2n−

1) = 1. We show this by contradiction. Assume that (2p + 1,2n− 1) 6= 1. That is there must

be some odd prime l which divides both 2p + 1 and 2n− 1. This implies that 2n ≡ 1 (mod l)

and 2p ≡ −1 (mod l). So 2p ≡ −1 (mod l) implies 22p ≡ 1 ≡ 2n (mod l). Thus n ≡ 2p
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(mod (l−1)). Since l−1 is even then n is also even. This establishes a contradiction since n is

an odd prime. Hence (2p +1,2n−1) = 1 for odd n.

It is now clear that ζ 2p+1 = 1 implies ζ = 1. So we have α = α + ξ + ξ 2p
. Clearly ξ is in

the intersection of the fields of order 2p and 2n. Since (p,n) = 1 then ξ is 0 or 1. But ξ = 0 is

impossible since this would mean that α is in F2p . So ξ must be 1.

Now we have α2p
= α + 1. Clearly α satisfies the equation x2p − x− 1 = 0. Observe that

α + 1 also satisfies the equation x2p − x− 1 = 0 and it is not hard to see that these are the

only elements in A(α) which satisfy x2p − x− 1 = 0. Using an argument similar to the one in

Subsection 3.3.1 we find 2p− 2 roots of x2p − x− 1 in F22p \ (F2p ∪F22) and 2 roots in F22 .

Hence we conclude that there are 2p−1−1 affine sets fixed under 〈σ p〉.

3.3.6. 〈σ2〉 a subgroup of G of order pn: Suppose the orbit in A under the action of G con-

taining A(α) contains 2 elements (affine sets). Then A(α) is fixed by 〈σ2〉. That is we must

have σ2(α) = α22
= ζ α +ξ for some ζ 6= 0,ξ ∈ F2n . But α4 = ζ α +ξ implies that α is a root

of an equation of degree 4 contradicting the fact that α is of degree 2p over F2n (recall that p is

odd prime). Hence we conclude that there is no affine set fixed under 〈σ2〉.

3.3.7. 〈σ〉 a subgroup of G of order 2pn: Suppose the orbit in A under the action of G con-

taining A(α) contains 1 element (affine set). Then A(α) is fixed by 〈σ〉. That is we must have

σ(α) = α2 = ζ α +ξ for some ζ 6= 0,ξ ∈ F2n . But α2 = ζ α +ξ implies that α is a root of an

equation of degree 2 contradicting the fact that α is of degree 2p over F2n . Hence we conclude

that there is no affine set fixed under 〈σ〉.

3.4. Applying the Cauchy Frobenius Theorem: We use Table 3.4.1 to present the informa-

tion in Section 3.3 . This table shows the number of affine sets which are fixed under the action

of various subgroups of G. The subgroups are listed in ascending order of the number of ele-

ments in the subgroup. Only subgroups which fix some elements have been included. So the

first row is the subgroup 〈σ2pn〉 which is merely the trivial subgroup containing the identity.

Column 3 lists the number of elements in subgroup which are not already counted in subgroups

in the rows above it in the table. This is to avoid repetition when we multiply column 3 by
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column 4 in order to get the total number of fixed affine sets by the elements in G.

Subgroup Order of No. of elements No. of fixed Product

of G Subgroup not in previous affine sets of columns

subgroup 3 and 4

〈σ2pn〉 1 1 |S|/(2n(2n−1)) |S|/(2n(2n−1))

〈σ pn〉 2 1 2(p−1)n−1 2(p−1)n−1

〈σ2p〉 n n−1 22p−1−2p−1−1 (n−1)(22p−1−2p−1−1)

〈σ p〉 2n n−1 2p−1−1 (n−1)(2p−1−1)

Table 3.4.1

Remark 20. The total number of fixed affine sets is the sum of the column which gives us

|S|/(2n(2n−1))+(2(p−1)n−1)+(n−1)(22p−1−2). By the Cauchy Frobenius Theorem, the

number of orbits in A under the action of G is

|S|/(2n(2n−1))+(2(p−1)n−1)+(n−1)(22p−1−2)
2pn

Remark 21. The number of orbits in A under the action of G gives us an upper bound on the

number of irreducible Goppa codes.

3.5. The Action of G on OF : To find the number of orbits in OF under the action of G we

count the number of elements in OF which are fixed by the various subgroups of G and then

apply Cauchy Frobenius Theorem.

Since we are dealing with the action of G on OF then it is crucial that we find the number of el-

ements which are in OF . In Section 3.2, we found that |S|= 2n(2n−1)(2n+1)
[(

2(p−1)n−1
22n−1

)
(2pn +2n−1)

]
and by Theorem 15, |O(α)|= 2n(2n−1)(2n +1). So |OF |= |S|/(2n(2n−1)(2n +1)).

As in Section 3.3, the orbits in OF under the action of G are expected to have the length 1,

2, p, 2p, n, 2n, pn or 2pn. Note that every O(α) in OF is fixed under 〈σ2pn〉. We only need to

consider the remaining subgroups of G. We start with the subgroup 〈σ pn〉.

3.5.1. 〈σ pn〉 a subgroup of G of order 2: Suppose O(α) ∈ OF is fixed under 〈σ pn〉. Then

〈σ pn〉 acts on O(α) = A(α)∪A( 1
α
)∪A( 1

α+1)∪A( 1
α+ξ1

)∪A( 1
α+ξ2

)∪·· ·∪A( 1
α+ξ2n−2

). O(α) is
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considered as a set of 2n +1 affine sets. 〈σ pn〉 partitions this set of 2n +1 affine sets. The only

possibility are orbits of length 1 or 2. Since O(α) contains an odd number of affine sets then the

possibility that all orbits are of length 2 is excluded. So there has to be at least one orbit of length

1, i.e., O(α) must contain an affine set which is fixed under 〈σ pn〉. By Subsection 3.3.1, there

are 2(p−1)n−1 such affine sets. We claim that each of O(α) fixed under 〈σ pn〉 in OF contains

precisely one affine set which is fixed under 〈σ pn〉. It suffices to show that O(α) cannot contain

two affine sets which are fixed under 〈σ pn〉. Without loss of generality, suppose A(α) is fixed

under 〈σ pn〉. We show that none of the affine sets after A(α) in the above decomposition of

O(α) is fixed under 〈σ pn〉. This is done by showing that no element in any of these affine sets

satisfies the equation x2pn− x−1 = 0 (see Equation (1) in Subsection 3.3.1). It is sufficient to

show that no element in A( 1
α
) satisfies x2pn−x−1 = 0. A typical element in A( 1

α
) has the form

ζ

α
+ξ and substituting this in x2pn−x−1 we get ( ζ

α
+ξ )2pn− ( ζ

α
+ξ )−1 = α2+α+ζ

α2+α
6= 0, since

α is an element of degree 2p over F2n . We conclude that A( 1
α
) is not fixed under 〈σ pn〉 and in

fact A(α) is the only affine set in O(α) fixed under 〈σ pn〉. It follows that the number of O(α)

in OF which are fixed under 〈σ pn〉 is 2(p−1)n−1.

3.5.2. 〈σ2n〉 a subgroup of G of order p: Suppose O(α) ∈ OF is fixed under 〈σ2n〉. Then

〈σ2n〉 acts on O(α) = A(α)∪A( 1
α
)∪A( 1

α+1)∪A( 1
α+ξ1

)∪A( 1
α+ξ2

)∪·· ·∪A( 1
α+ξ2n−2

). O(α) is

considered as the set of 2n+1 affine sets. 〈σ2n〉 partitions this set of 2n+1 affine sets. The only

possibility are orbits of length 1 or p. By Subsection 3.3.2, no affine set is fixed under 〈σ2n〉 so

we preclude the possibility of length 1. We remain to show the possibility of length p. Since by

assumption (2n± 1, p) = 1 then we also preclude the possibility of all orbits to have length p.

Hence it follows that 〈σ2n〉 does not fix any O(α) in OF .

3.5.3. 〈σn〉 a subgroup of G of order 2p: Suppose O(α) ∈ OF is fixed under 〈σn〉. Then

〈σn〉 acts on O(α) which is considered as a set of 2n +1 affine sets. 〈σn〉 partitions this set of

2n+1 affine sets. The only possibility are orbits of length 1, 2, p or 2p. By Subsection 3.3.3, no

affine set is fixed under 〈σn〉 so the possibility of length 1 is precluded. Since O(α) contains an

odd number of affine sets then the possibility that all orbits are of even length is also precluded.

Orbits of the lengths 2 and p or 2, p and 2p in each O(α) are also possible. We claim that none

of these possibilities is true. Suppose O(α) is fixed under the action of 〈σn〉 and contains an
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orbit of length p. This implies that 〈σ pn〉 fixes p affine sets in O(α) since 〈σ pn〉 ⊂ 〈σn〉. But

this is a contradiction since by Subsection 3.3.1 only one affine set is fixed in each O(α) fixed

under 〈σ pn〉. Hence we conclude that no O(α) is fixed under 〈σn〉.

3.5.4. 〈σ2p〉 a subgroup of G of order n: Suppose O(α) ∈ OF is fixed under 〈σ2p〉. Then

〈σ2p〉 acts on O(α) which is seen as a set of 2n + 1 affine sets. 〈σ2p〉 partitions this set of

2n + 1 affine sets. The only possibility are orbits of length 1 or n. Since 2n + 1 ≡ 2+ 1 = 3

(mod n) (by Fermat Little Theorem) then n - 2n + 1 and the possibility that all orbits are of

length n is precluded. So there must be at least three affine sets in O(α) fixed under 〈σ2p〉. We

claim that there are exactly three affine sets in O(α) which are fixed under 〈σ2p〉. Recall that

O(α) = A(α)∪A( 1
α
)∪A( 1

α+1)∪A( 1
α+ξ1

)∪A( 1
α+ξ2

)∪A( 1
α+ξ3

)∪ ·· · ∪A( 1
α+ξ2n−2

). Without

loss of generality, suppose A(α) in O(α) is fixed under 〈σ2p〉. So, by Subsection 3.3.4, A(α)

contains a fixed point, i.e., some elements of A(α) satisfy the equation x22p
= x. Assume that

α satisfies x22p
= x. It is clear that α + 1 in A(α) also satisfies x22p

= x. Since ( 1
α
)22p

= 1
α

and ( 1
α+1)

22p
= 1

α+1 it is clear that A( 1
α
) and A( 1

α+1) also contain fixed points, i.e., A( 1
α
) and

A( 1
α+1) are also fixed. We now show that no affine set after A( 1

α+1) in the decomposition of

O(α) is fixed under 〈σ2p〉. It is sufficient to show that an arbitrary affine set after A( 1
α+1) in

the decomposition of O(α) is not fixed under 〈σ2p〉. First observe that, for ν ∈ F2n \ {0,1},

we have ν22p 6= ν since (2p,n) = 1. Furthermore observe that, for ζ

α+ν
+ ξ ∈ A( 1

α+ν
) where

ν ∈ F2n \{0,1}, we have ( ζ

α+ν
+ξ )22p

= ζ 22p

α+ν22p +ξ 22p
= ζ 22p

α+η
+ξ 22p ∈ A( 1

α+η
) which implies

that σ2p(A( 1
α+ν

)) = A( 1
α+η

). It is clear that A( 1
α+ν

) and A( 1
α+η

) are two different affine sets,

thus proving that A( 1
α+ν

) is not fixed under 〈σ2p〉. Therefore A(α), A( 1
α
) and A( 1

α+1) are the

only affine sets fixed under 〈σ2p〉. By Subsection 3.3.4, there are 22p−1− 2p−1− 1 affine sets

which are fixed under 〈σ2p〉. Hence the number of O(α) in OF which are fixed under 〈σ2p〉 is

(22p−1−2p−1−1)/3.

3.5.5. 〈σ p〉 a subgroup of G of order 2n: Suppose O(α)∈OF is fixed under 〈σ p〉. Then 〈σ p〉

acts on O(α) which is seen as a set of 2n +1 affine sets. 〈σ p〉 partitions this set of 2n +1 affine

sets. The only possibility are orbits of length 1, 2, n or 2n. We first consider the possibility

of a fixed O(α) under 〈σ p〉 with no affine set fixed under 〈σ p〉, i.e., the possibility that O(α)

contains orbits of length 2, n or 2n. Since 2n+1≡ 3 (mod n) then the possibility that all orbits



14 AUGUSTINE MUSUKWA

are of length n or 2n is excluded. The fact that O(α) contains an odd number of affine sets

precludes the possibility that all orbits are of even length. We now consider the possibility of

x affine sets partitioned in orbits of length 2 and 2n + 1− x affine sets partitioned in orbits of

length n or 2n, i.e., 2n +1− x≡ 0 (mod n). Since when we divide n into 2n +1 the remainder

is 3 then the only possible values of x are of the form kn+3 where k is an odd positive integer.

The least value of k such that 2 | (kn+3) is clearly k = 1. But the possibility of n+3 affine sets

partitioned in orbits of length 2 would mean that there exist a fixed O(α) under the action of

〈σ2p〉 which contains n+3 affine sets fixed under 〈σ2p〉 contradicting Subsection 3.5.4 which

says that every fixed O(α) under 〈σ2p〉 contains three fixed affine sets under 〈σ2p〉. Using

a similar argument, it is not hard to see that for any value of k it is impossible for an O(α)

fixed under 〈σ p〉 to have orbit lengths of 2, n and 2n. So there must be at least an affine set in

O(α) fixed under 〈σ p〉. We claim that there is only one affine set in O(α) fixed under 〈σ p〉.

By Subsection 3.3.5, there are 3 affine sets fixed under 〈σ p〉. Each of these affine sets fixed

under 〈σ p〉 contains some elements which satisfy the equation x2p − x− 1 = 0. We know that

O(α) = A(α)∪A( 1
α
)∪A( 1

α+1)∪A( 1
α+ξ1

)∪A( 1
α+ξ2

)∪A( 1
α+ξ3

)∪ ·· · ∪A( 1
α+ξ2n−2

). Without

loss of generality, suppose A(α) is fixed under 〈σ p〉. Assume that α satisfies x2p − x− 1 = 0.

It is clear that α + 1 also satisfies the equation x2p − x− 1 = 0. Observe that, for ζ

α
+ ξ ∈

A( 1
α
), we have ( ζ

α
+ξ )2p

= ζ 2p

α+1 +ξ 2p ∈ A( 1
α+1) and similarly ( ζ

α+1 +ξ )2p
= ζ 2p

α
+ξ 2p ∈ A( 1

α
)

which imply that σ p(A( 1
α
)) = A( 1

α+1) and σ p(A( 1
α+1)) = A( 1

α
). We conclude that A( 1

α
) and

A( 1
α+1) form an orbit of length 2. We remain to show that no affine set after A( 1

α+1) in the

decomposition of O(α) is fixed under 〈σ p〉. Since 〈σ2p〉 does not fix any affine set after A( 1
α+1)

in the decomposition of O(α) (by Subsection 3.5.4) then we conclude that 〈σ p〉 does not also

fix any of these affine sets. Therefore A(α) is the only affine set fixed in O(α) under 〈σ p〉.

Hence the number of O(α) in OF which are fixed under 〈σ p〉 is 2p−1−1.

3.5.6. 〈σ2〉 a subgroup of G of order pn: Suppose O(α)∈OF is fixed under 〈σ2〉. That is we

have σ2(O(α)) = O(α). So we must have σ2(α) = α22
= ζ1α+ξ1

ζ2α+ξ2
where ζ j,ξ j ∈ Fqn , j = 1,2

and ζ1ξ2 6= ζ2ξ1. But α22
= ζ1α+ξ1

ζ2α+ξ2
implies that α is a root of an equation of degree 5 which

contradicts the fact that α is of degree 2p over F2n . So we conclude that there is no O(α) in OF

fixed under 〈σ2〉.
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3.5.7. 〈σ〉 a subgroup of G of order 2pn: Suppose O(α) ∈OF is fixed under 〈σ〉. That is we

have σ(O(α)) = O(α). So we must have σ(α) = α2 = ζ1α+ξ1
ζ2α+ξ2

where ζ j,ξ j ∈ Fqn , j = 1,2 and

ζ1ξ2 6= ζ2ξ1. But α2 = ζ1α+ξ1
ζ2α+ξ2

implies that α is a root of an equation of degree 3 contradicting

the fact that α is of degree 2p over F2n . So we conclude that there is no O(α) in OF fixed under

〈σ〉.

3.6. Applying the Cauchy Frobenius Theorem: As in Section 3.4 we present the information

on the action of G on OF in Table 3.6.1 which gives the number of O(α) in OF fixed under

various subgroups of G.

Subgroup Order of No. of elements No. of fixed Product

of G Subgroup not in previous O(α) of columns

subgroup 3 and 4

〈σ2pn〉 1 1 |S|/(2n(2n−1)(2n +1)) |S|/(2n(2n−1)(2n +1))

〈σ pn〉 2 1 2(p−1)n−1 2(p−1)n−1

〈σ2p〉 n n−1 (22p−1−2p−1−1)/3 (n−1)(22p−1−2p−1−1)/3

〈σ p〉 2n n−1 (2p−1−1) (n−1)(2p−1−1)

Table 3.6.1

Remark 22. The total number of fixed O(α) is the sum of the column which gives us |S|/(2n(2n−

1)(2n +1)+ (2(p−1)n−1)+ (n−1)(22p−1 +2p−4)/3. By Section 3.2, |S|= 2n(2n−1)(2n +

1)
[(

2(p−1)n−1
22n−1

)
(2pn +2n−1)

]
. So applying the Cauchy Frobenius Theorem, the number of

orbits in A under the action of G is

(2(p−1)n−1)(2pn +22n +2n−2)/(22n−1)+(n−1)(22p−1 +2p−4)/3
2pn

.

Since our goal in this paper was to obtain this main result then we state it in the theorem as

follows:

Theorem 23. Let n and p be odd primes such that and p 6= n and (2n± 1, p) = 1. Then the

number of inequivalent extended irreducible binary Goppa codes of degree 2p and length 2n+1
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is at most

(2(p−1)n−1)(2pn +22n +2n−2)/(22n−1)+(n−1)(22p−1 +2p−4)/3
2pn

.

Example 24. The table below compares the upper bound on the number of extended irreducible

binary Goppa codes of degree 2p and length 2n + 1 and non-extended versions of length 2n,

respectively. The bounds on the number of the two versions of codes are obtained using Remark

20 and Theorem 23.

r n Number of extended Number of irreducible

irreducible Goppa codes Goppa codes

7 8,042,636,909,673 1,037,499,670,492,467

10 11 1,373,779,668,165,694,887,189 2,814,874,539,743,974,305,462,579

13 19,045,231,657,451,944,973,334,135 156,037,582,969,219,989,103,853,977,395
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