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Abstract. In this paper we have investigated Hybrid Projective Synchronization, between the fractional order

chaotic systems of different dimensions. We have synchronized the fractional order chaotic Lü system, as a master

system, with the fractional order hyperchaotic Rössler system as the slave system. Further, a fractional order

hyperchaotic system is controlled by the fractional order chaotic financial system as the slave system. Numerical

simulations are carried out using Matlab to show the effectiveness of the method.
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1. Introduction

Chaos is an interesting phenomenon of non linear systems. Since Pecora and Carroll [1] es-

tablished a chaos synchronization scheme for two identical systems, with different initial con-

ditions, chaos synchronization has attracted much attention of the researchers. Various effective
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methods have been proposed to synchronize chaotic systems such as the sliding mode control

method [2], active control method [3-6], linear and non linear feedback control method [7-8],

adaptive control method [9-10], backstepping control [11-12] and impulse control method [13-

14]. Using these methods, numerous synchronization problems of well- known chaotic systems

such as Lü, Rössler, Lorenz, Chen, Genesio have been studied.

Fractional calculus is a classical mathematical notion with a history as long as calculus it-

self. Fractional calculus deals with derivatives and integration of arbitrary order and has deep

connections with many fields of applied mathematics, physics and engineering. Many systems

display fractional order dynamics such as dielectric polarization [15], electromagnetic waves

[16], viscoelastic systems [17-18], electrode - electrolyte polarization [19], quantitative finance

[20], bio-engineering [21] etc.

The first attempt to study the synchronization in fractional order systems was by Deng and Li

[22] and they have summarized the theory and technique of synchronization in [23]. Recently,

synchronization in fractional order chaotic systems is discussed by various researchers [24-28]

due to its potential applications in secure communication and control processing.

A hyperchaotic system is characterized as a chaotic system with at least two positive Lya-

punov exponents together with a zero exponent and a negative exponent to ensure the bound-

edness of the solution. It is believed that chaotic systems with higher dimensions have much

wider applications. Synchronization in hyperchaotic fractional order systems is discussed by

various researchers [29-31]. The activation feedback control technique is used by Wang and

Song [32] to synchronize hyperchaotic Lorenz system, the Laplace tranformation theory and

variational iteration method is used by Yu and Li to study Rössler system [33], feedback control

technique is used in [34-35] to synchronize various hyperchaotic systems, Wang, Yu and Diao

in [36] discussed the synchronization between the fractional order chaotic systems of different

dimensions. Zhang and Lü in [37] introduced a new type of synchronization called full state

hybrid log projective synchronization and applied it to Rössler system and hyperchaotic Lorenz

system to numerically verify their results.
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The co-existance of Complete synchronization and Anti synchronization, known as Hybrid

synchronization, has good application prospects in digital communication. It may enhance

security in communication and chaotic encryption schemes.

This paper is organized as follows: In section 2, the fractional derivative and its applications

are studied, section 3 gives a brief introduction of the methodology for synchronizing the frac-

tional order chaotic systems. In section 4 we have studied the increased order synchronization

by synchronizing a fractional order chaotic system by a fractional order hyperchaotic system

together with the numerical simulations, section 5 is devoted to the the study of decreased or-

der synchronization, where a hyperchaotic system is being synchronized by a fractional order

chaotic system, with numerical simulations. In section 6 we provide the conclusion of the paper.

2. Fractional Derivative and its Approximation

Fractional calculus is a generalization of integration and differentiation to a non-integer-order

integro-differential operator aDq
t defined by

aDq
t =


dq

dtq if R(q)> 0

1 if R(q) = 0∫ t
a (dτ)−q if R(q)< 0

where q is the fractional order which can be a complex number, R(q) denotes the real part of

q and a < t, where a is the fixed lower terminal and t is the moving upper terminal.

There are two commonly used definitions for fractional derivatives [38], they are Grunward

-Letnikov definition and Riemann- Liouville definition. The Riemann- Liouville definition is

given by

Dqx(t) =
dη

dtη
Jη−qx(t), q > 0

where η is the first integer that is not less than q , Jβ is the β - order Riemann- Liouville

integral operator defined as follows:
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Jβ f (t) =
1

Γ(β )

∫ t

0
f (t)(t− τ)β−1 dτ

where Γ(.) is the Gamma function, 0 < β ≤ 1.

3. Methodology

Consider the fractional order chaotic system

(1) Dqx = f (x)

as a master system ,where x ∈ Rn is the state vector of the master system and f : Rn→ Rn is

a continuous vector function, and the fractional order chaotic system

(2) Dqy = g(y)+u(x,y)

as a slave system , where y ∈ Rm is the state vector of the slave system, g : Rm → Rm is a

continuous vector function and u : Rn+m→ Rm is the control function to be determined.

Writing the fractional order chaotic systems (1) and (2) as

(3) Dqx = Ax+F(x)

and

(4) Dqy = By+G(y)+u(x,y)

where A ∈ Rn×n , B ∈ Rm×m are linear parts and F : Rn→ Rn and G : Rm→ Rm are non linear

parts of the master and slave systems respectively.

Choosing a real matrix C ∈ Rm×n, if we define the error function e = (e1,e2, ...,em)
T as

(5) e = y−Cx

then the systems (3) and (4) are synchronized when limt→∞ ‖e‖= 0.
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Using equations (3) and (4), the error system (5) reduces to

Dqe = Dqy−CDqx

= By+G(y)+u(x,y)−CAx−CF(x)

= By−BCx+G(y)+u(x,y)+BCx−CAx−CF(x)

= Be+G(y)+BCx−CAx−CF(x)+u(x,y)(6)

Choosing the control function u(x,y) as

(7) u(x,y) = (A−B)Cx+CF(x)−G(y)+Ke

where K ∈ Rm×m is the control Gain matrix(to be determined), the error system (6)reduces to

(8) Dqe = (B+K)e

The system (8) is asymptotically stable if and only if all the eigenvalues λi of B+K satisfy

|arg(λi)|> qπ

2 , i = 1,2, ...,m i.e., limt→∞ ‖e‖= 0 or the system (3) and(4) are hybrid projective

synchronized.

4. Increased order synchronization

In this section, the method discussed in the above section is being applied on the chaotic

systems. Here we will consider the case of the increased order synchronization when n < m

Consider the fractional order chaotic Lü system (master system) given by

dqx1
dtq = a1(x2− x1),

dqx2
dtq =−x1x3 + c1x2,

dqx3
dtq = x1x2−b1x3


(9)

which exhibits the chaotic nature when q = 0.9 and (a1,b1,c1) = (35,3,28). The chaotic

attractor of the Lü system are shown in figure 1.

The fractional order hyper chaotic Rössler system(slave system) given by
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FIGURE 1. Phase Potraits of Lü fractional order chaotic Dynamical system in

(a) the x1− x2− x3 space and the projections on (b) the x1− x2 plane , (c) the

x1− x3 plane and (d) the x2− x3 plane.

dqy1
dtq =−(y2 + y3)+u1,

dqy2
dtq = y1 +a2y2 + y4 +u2,

dqy3
dtq = b2 + y1y3 +u3,

dqy4
dtq =−c2y3 +d2y4 +u4


(10)

which exhibits the hyper chaotic behaviour when q = 0.9 and (a2,b2,c2,d2) = (0.32,3,0.5,0.05)

as the slave system , and u1,u2,u3,u4 are control functions to be determined.The chaotic attrac-

tors of the Rössler system are shown in figure 2.

Comparing systems (9) and (10) with the systems (3) and (4) respectively, we get

A =


−a1 a1 0

0 c1 0

0 0 −b1

 ,F(x) =


0

−x1x3

x1x2


and
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FIGURE 2. Phase Potraits of Rössler fractional order chaotic Dynamical system

in (a) the y1−y2−y3 space, (b) the y1−y2−y4 space , (c) the y1−y3−y4 space

and (d) the y2− y3− y4 space.

B =


0 −1 −1 0

1 a2 0 1

0 0 0 0

0 0 −c2 d2

 ,G(y) =


0

0

b2 + y1y3

0

 ,u(x,y) =


u1

u2

u3

u4



where x = (x1,x2,x3)
T and y = (y1,y2,y3,y4)

T are the state vectors of the master and slave

systems respectively. Choosing the real matrix

C =


1 −1 0

1 1 1

1 0 −1

0 1 1



the error system e = y−Cx between the systems (9) and (10) becomes
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e1 = y1− (x1− x2),

e2 = y2− (x1 + x2 + x3),

e3 = y3− (x1− x3),

e4 = y4− (x2 + x3)


(11)

Then as discussed in section 3, choosing the controller

(12) u =C(A−B)x+CF(x)−G(y)+Ke,K ∈ Rm×m

we have

u1 = a1(x2− x1)− c1x2 +2x1 + x2 + x1x3 +Ke,

u2 = a1(x2− x1)+ c1x2−b1x3− (x1 + x3)−a2(x1 + x2 + x3)− x1x3 + x1x2 +Ke,

u3 = a1(x2− x1)+b1x3− x1x2−b2− y1y3 +Ke,

u4 = c1x2−b1x3 + c2(x1− x3)−d2(x2 + x3)− x1x3 + x1x2 +Ke


and the 4×4 matrix K as

K =


−1 0 0 0

−1 −1.32 0 −1

0 0 −1 0

0 0 0.5 −1.05


the error system (11) reduces to



HYBRID PROJECTIVE SYNCHRONIZATION BETWEEN THE FRACTIONAL ORDER SYSTEMS 261

dqe1
dtq =−(e1 + e2 + e3),

dqe2
dtq = (a2−1.32)e2,

dqe3
dtq =−e3,

dqe4
dtq = (d2−1.05)e4


(13)

which implies that Dqe = (B+K)e, such that all the eigenvalues λi of B+K satisfies the

condition |arg(λi)| > qπ

2 , i = 1,2,3,4. The trajectories of synchronization error are shown in

figure 4 which shows that hybrid synchronization between the systems (9) and(10) is achieved.

4.1. Numerical Simulation

In numerical simulations, the parameters of the Lü system are taken as [a1,b1,c1] = [35,3,28]

and that of the Rössler system are taken as [a2,b2,c2,d2] = [0.32,3,0.5,0.05]. Time step size is

taken as 0.005 The initial values of the master and slave systems are taken as [x1(0),x2(0),x3(0)]=

[7,−4,4] and [y1(0),y2(0),y3(0),y4(0)] = [−20,0,0,15] respectively. Thus the initial condition

for error system becomes [e1(0),e2(0),e3(0),e4(0)] = [−23,−7,−3,15]. It is observed from

figure (4) that it takes higher time for synchronization of the two fractional order chaotic sys-

tems considered for the fractional order qi = 0.99 for i = 1,2,3,4.
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FIGURE 3. The chaotic tracjectories of the drive and response system after the

controllers are applied.
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FIGURE 4. Error Dynamics versus time t.

5. Reduced order synchronization

Here we discuss the method studied in section 3 and apply it to synchronize a fractional

order hyperchaotic system by a fractional order chaotic system i.e.,the case of decreased order
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synchronization where m < n. Consider the fractional order hyper chaotic system proposed by

Xin and Ling [39]

dqx1
dtq = a1(x2− x1)+ x4,

dqx2
dtq = b1x1 + x1x3− x4,

dqx3
dtq =−c1x3−d1x2

1,

dqx4
dtq = c1x1


(14)

which has hyper chaotic nature when a1 = 10,b1 = 40,c1 = 2.5,d1 = 4 and q = 0.97 , as the

master system. The phase potraits are shown in figure 5

and the slave system, the fractional order chaotic Financial system [40] given by

dqy1
dtq = y3 +(y2−a2)y1 +u1,

dqy2
dtq = 1−b2y2− y2

1 +u2,

dqy3
dtq =−y1− c2y3 +u3


(15)

where u1,u2,u3 are the controllers to be determined. This system exhibits a chaotic nature when

q = 0.97 and (a2,b2,c2) = (3,0.1,1). See figure 6 for phase potraits.

Comparing the systems (14) and (15) with the systems (3) and (4), we get

A =


−a1 a1 0 1

b1 0 0 −1

0 0 −c1 0

c1 0 0 0

 ,F(x) =


0

x1x3

−d1x2
1

0


and

B =


−a2 0 1

0 −b2 0

−1 0 −c2

 ,G(y) =


y1y2

1− y2
1

0

 ,u(x,y) =


u1

u2

u3
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FIGURE 5. Phase Potraits of New fractional order chaotic Dynmical system in

(a) the x1− x2− x3 space , (b) the x1− x2− x4 space , (c) the x1− x3− x4 space

and (d) the x2− x3− x4 space.

−2
0

2

0

5
−2

0

2

y
1
(t)

(a)

y
2
(t)

y 3(t
)

−2 −1 0 1 2
1

2

3

4

5

y
1
(t)

y 2(t
)

(b)

−2 −1 0 1 2
−2

−1

0

1

2

y
1
(t)

y 3(t
)

(c)

1 2 3 4 5
−2

−1

0

1

2

y
2
(t)

y 3(t
)

(d)
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plane.

where x = (x1,x2,x3,x4)
T and y = (y1,y2,y3)

T are the state vectors of the master and slave

systems respectively.

Choosing the real matrix
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C =


1 0 0 0

0 1 0 0

0 0 1 −1


the error system e = y−Cx reduces to

e1 = y1− (x1 + x2),

e2 = y2− x2,

e3 = y3− (x3− x4)


(16)

Then as discussed in section 3, choosing the controllers

u1 = a1(x2− x1)+b1x1 +a2(x1 + x2)− x3 + x4 + x1x3− y1y2 +Ke,

u2 = b1x1− x4 +b2x2 + x1x3 + y2
1−1+Ke,

u3 =−c1(x3 + x1)+ x1 + x2 + c2(x3− x4)−d1x2
1 +Ke


and the 3×3 matrix K as

K =


2 0 −1

0 −0.9 0

1 0 0


the error system (16) reduces to

dqe1
dtq = (2−a2)e1,

dqe2
dtq =−(b2 +0.9)e2,

dqe3
dtq =−c2e3


(17)

i.e., Dqe = (B+K)e such that all the eigenvalues λi of B+K are equal to −1 which satisfy

the condition |arg(λi)|> qπ

2 , i = 1,2,3. The curves of synchronization error are shown in figure

(8) which shows that the systems (14) and(15) are hybrid synchronized.

5.1. Numerical Simulation
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FIGURE 7. State trajectories of the master and slave systems after the con-

trollers are applied.

In numerical simulations, the parameters of the hyperchaotic system are taken as (a1,b1,c1,d1)

= (10,40,2.5,4) and that of the Financial system are taken as (a2,b2,c2) = (3,0.1,1). Time

step size is taken as 0.005. The initial values of the master and slave system are taken as

(x1(0),x2(0),x3(0),x4(0)) = (1,2,3,4) and (y1(0),y2(0),y3(0)) = (2,3,2) respectively. Thus

the initial conditions for error system becomes (e1(0),e2(0),e3(0)) = (−1,1,3). It can be seen

from figure 7 that it takes higher time for synchronization of the two fractional order chaotic

systems considered for the fractional order qi = 0.99 for i = 1,2,3.

6. Conclusion

In this paper, we have investigated hybrid projective synchronization between two fractional

order chaotic systems of different dimensions.The numerical simulation result shows that that
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the states of the fractional order chaotic Lü system and hyperchaotic Rössler system are syn-

chronized and of the hyperchaotic system proposed by Xin and Ling and chaotic Financial sys-

tem are also asymptotically synchronized. Hybrid Projective synchronization is more general

than projective synchronization, in which the master and the slave systems can be synchronized

upto a vector function factor. In hybrid projective synchronization the vector function fac-

tor has more unpredictibility than the same scaling factor in projective synchronization, which

gives more secure communication.
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