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Abstract. In this paper, we study the dynamical behavior of a stochastic SIRS epidemic model with specific non-

linear incidence rate and vaccination. We show the existence and positivity of the solution of the SIRS stochastic

differential equation. We defined a number R and we prove the disease free equilibrium is almost sure expo-

nentially stable if R < 1. We studying the behavior around the endemic equilibrium E*. Numerical simulations

presented our theoretical results.
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1. Introduction

Mathematical epidemiology play an important role in the study and control of the infectious

diseases, the objective of this study is to implement measures to combat and terminate the
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spread of these diseases.

In recent years many authors have been developed the mathematics model for the transmis-

sion dynamics of infectious diseases, amid these models there are the classical deterministic

SIR epidemic model [1, 2], the population are divide into three classes or S represents the num-

ber of the individuals susceptible, I represents the number of infective individuals, R represents

the number of recovered individuals with temporary immunity acquired from a disease.

In the other hand the modeling of population dynamics of diseases have recognized the intro-

duction of stochastic term into deterministic models witch do incorporate the effect of fluctuat-

ing environment. To formulate stochastic differential equation (SDE) there is many approach,

D. Greenhalgh et al. [3] have used The technique of parameter perturbation by the white noise.

They proved Almost sure exponential stability of the disease free equilibrium and stability in

probability. Adnani et al.[4] and Lahrouz et al.[13] have utilized The technique of perturba-

tions stochastic by withe noise around the endemic equilibrium state. They have proved the

asymptotically mean square stable of stochastic linearized system. The case of a color noise

was introduced by Lahrouz et al., and Gray et al.[5],[6]. They have made a full analysis on

asymptotic behavior of an SIS epidemic model under a finite regimes-switching.

Men et al.[7], have studied the SIR Models with horizontal and vertical transmission de-

scribed by the system of differential equations :

(1)

dS
dt

=−βSI−bS+(1−m)pdI +b(1−m)(S+R),
dI
dt

= βSI− (pd + r)I,
dR
dt

= rI−bR+dmpI +mb(S+R),

where β is the contact rate, b is the mortality rate in the susceptible and the recovered indi-

viduals, d is the mortality rate in the infective individuals, r is the recover rate in the infective

individuals into recovered individuals, p is the proportion of the offspring of infective parents

that are susceptible individuals, and q is the proportion of the offspring of infective parents that

are infective individuals, p,q verify p+ q = 1, m is the successful vaccination proportion to
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the newborn from S and R, Men et al. have defined the reproduction number of system (1)

by R0 =
(1−m)β

pd+r , and proved that If R0 < 1 then the infection-free equilibrium E0(1−m,0) is

globally stable, else if R0 > 1 then the epidemic equilibrium E∗(S∗, I∗) is globally asymptot-

ically stable. For biological reasons, we assume that b− pd > 0 . We consider the following

SIRS model with non-linear incidence rate :

(2)

dS
dt

=− βSI
f (S, I)

−bS+(1−m)pdI +b(1−m)(S+R)+ γR,

dI
dt

=
βSI

f (S, I)
− (pd + r)I,

dR
dt

= rI−bR+dmpI +mb(S+R)− γR,

where f (S, I) = 1 +α1S + α2I + α3SI. The incidence rate βSI/(1 +α1S + α2I + α3SI)

have been introduced by Hattaf et al.[8], where α1,α2,α3 ≥ 0 are constants, this incidence rate

generalise the incidence rate existing in the literature, if α1 = α2 = α3 = 0 then we get the

bilinear incidence rate βSI, if we put α2 = α3 = 0 then we have the saturated incidence rate

βSI/(1+α1I), we get functional response of Crowley Martin [9] if α3 = α1α2, and if α3 = 0

we obtained Beddington-DeAnglis functional response [10],[11].

In this paper, we consider the stochastic version of SIRS model (2)with a general incidence

rate find it by perturbing the parameter β by the white noise :

(3)

dS
dt

=

(
− βSI

f (S, I)
−bS+(1−m)pdI +b(1−m)(S+R)+ γR

)
dt− σSI

f (S, I)
dB(t),

dI
dt

=

(
βSI

f (S, I)
− (pd + r)I

)
dt +

σSI
f (S, I)

dB(t),

dR
dt

= (rI−bR+dmpI +mb(S+R)− γR)dt.

The system is constant, so we normalized to unity S(t)+ I(t)+R(t) = 1. therefor, we only

need to consider the model defined as follows:

(4)

dS
dt

=− βSI
f (S, I)

+b(1−m)+ γ− (b+ γ)S+[(1−m)(pd−b)− γ] I,

dI
dt

=
βSI

f (S, I)
− (pd + r)I.



424 A. EL KOUFI, J. ADNANI, A. BENNAR, N. YOUSFI

The stochastic version defined by :

(5)

dS =

[
− βSI

f (S, I)
+b(1−m)+ γ− (b+ γ)S+[(1−m)(pd−b)− γ] I

]
dt− σSI

f (S, I)
dB(t),

dI
dt

=

[
βSI

f (S, I)
− (pd + r)I

]
dt +

σSI
f (S, I)

dB(t).

It is important to note that system (3) includes many special case existing in the literature.

For example, If α i = 0, i=1,2,3 and γ = 0, σ = 0 we obtain the SIR epidemic model concerning

pulse vaccination strategy presented by X. Meng et al.[7]. If α i = 0, i=1,2,3. we obtain the

Stochastic SIR Model with Vertical Transmission and Vaccination presented by Zhang et al.

[15] and Witbooi [16].

the remnant of the paper is organized as flows. In section 3 we prove that system (4) allows

a unique global and positive solution starting from a initial value in Γ, in section 4 we proved

Almost sure exponential stability of the disease free equilibrium, in section 5 we investigate its

asymptotic behavior around the endemic equilibrium of system (5), in section 6 we show the

numerical simulation to illustrate our theoretical result. Finally, the conclusion of our paper is

in Section 5.

2. Preliminaries

Let (Ω,F ,{Ft}t≥0,P) be a complete probability space with a filtration {Ft}t≥0 satisfying

the usual conditions (i.e. it is increasing and right continuous while F0 contains all P-null sets).

Next, we consider the d-dimensional stochastic system :

dx(t) = f (x(t), t)dt +g(x(t), t)dB(t), (2.1)

where f (x, t) is a function in Rd defined in [t0,+∞) and g(x, t) is an d×m matrix, f and g are

locally Lipschitz functions in x. {B(t)}t≥0 is an d-dimensional standard Wiener process defined

on the above probability space.

Let us suppose that f (t,0) = g(t,0) = 0 for all t ≥ 0. We assume that x = 0 is a solution of

the system (2.1).
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Definition 2.1.[13] The trivial solution x = 0 of system (2.1) is said to be almost surely expo-

nentially stable if for all x(0) = x0 ∈Rd :

limsup
t→∞

1
t

ln |x(t,x0)|< 0, almost surely (brie f ly a.s.).

Denote by C 2,1(Rd × [t0,+∞);R+) the family of all nonnegative functions U(x, t) defined

on Rd × [t0,+∞) such that they are continuously twice differentiable in x and once in t. The

differential operator L [17] associated with (2.1) is defined by

L =
∂

∂ t
+

d

∑
i=1

fi(x, t).
∂

∂xi
+

1
2

d

∑
i, j=1

[gT (x, t)g(x, t)]i j.
∂

∂xi∂x j
.

If the differential operator L acts on a function V ∈ C 2,1(Rd× [t0,+∞[;R+), then

LV =Vt(x, t)+Vx(x, t) f (x, t)+
1
2

Trac[g(x, t)TVxx(x, t)g(x, t)]

where Vt(x, t) = ∂V
∂ t , Vx(x, t) =

(
∂V
∂x1

, ....., ∂V
∂xd

)
, Vxx(x, t) =

(
∂ 2V

∂xi∂x j

)
.

lemma 2.1.(Strong Law of Large Numbers) Let M = {Mt}t≥0, t ≥ 0 be a real-valued continuous

local martingale vanishing at t = 0. Then

(i) lim
t→∞
〈M,M〉t = ∞ a.s.⇒ lim

t→∞

Mt

〈M,M〉t
= 0 a.s.

And

(ii) limsup
t→∞

〈M,M〉t
t

< ∞ a.s.⇒ lim
Mt

t
= 0 a.s.

In order to establish the conditions for the exponentially stability of the disease-free equilib-

rium of system (4), we need the following lemma

lemma 2.2. For k ∈ N, let X(t) = (X1(t),X2(t), ..,Xk(t)) be a bounded Rk-valued function. Let

(t0,n) be any increasing unbounded sequence of positive real numbers. Then there is a family of
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sequences (ts,n) such that for each s∈ 1,2, ..,k, (ts,n) is a subsequence of (ts,n) and the sequence

Xs(ts,n) converges to the largest limit point of the sequence Xs(ts−1,n).

3. Global existence and positivity

In this section, we will prove that model (4) has a unique global positive solution for any

initial value in Γ. Where

Γ = {(S, I,R) ∈ R3
+ : S > 0, I > 0,R > 0, S+ I +R = 1}.

Theorem 3.1. For any given initial value (S0, I0,R0) ∈ Γ, there is a unique positive solution

(S(t), I(t),R(t)) of (3) on t ≥ 0 and the solution will remain in Γ with probability 1, namely

(S(t), I(t),R(t)) ∈ Γ for all t ≥ 0 almost surely.

Proof. Since the coefficients of system (3) are locally Lipschitz continuous, then for any initial

value (S0, I0,R0) ∈ Γ there is a unique local solution (S(t), I(t),R(t)) on t ∈ [0,τe], where τe

is the explosion time. To show that this solution is global, we only need to prove τe = ∞ a.s.

Define the stopping time :

τ = inf{t ∈ [0,τe) : S(t)≤ 0, or I(t)≤ 0, or R(t)≤ 0} ,

We set inf /0 = ∞, as usual /0 denotes the empty set. We have τ ≤ τe, If τ = ∞ a.s., then τe = ∞

a.s. and (S(t), I(t),R(t)) ∈ Γ for all t ≥ 0. In addition, to complete the proof we only need to

prove τ = ∞. Assume that τ < ∞, then there exists a T > 0 such that P(τ < T ) > 0. Consider

the C 2-function Q, defined by the expression :

Q(X) =− ln(SIR)

Using Itô’s Formula, we have for all t

dQ =
−1
S

[
− βSI

f (S, I)
−bS+(1−m)pdI +b(1−m)(S+R)+ γR

]
dt

− 1
I

[
βSI

f (S, I)
− (pd + r)I

]
dt− 1

R

[
rI−bR+dmpI +mb(S+R)− γR

]
dt

+

[
1
2

σ2I2

f 2 +
1
2

σ2S2

f 2

]
dt +

σ I
f (S, I)

dB(t)− σS
f (S, I)

dB(t).(6)
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We have f (S, I)≥ 0, implies that

dQ(S, I,R)≤ G(S, I)dt +
σ(I−S)

f (S, I)
dB(t),

where

G(S, I) = β I ++2b+ pd + r+ γ +
σ

2
S2 +

σ

2
I2,

Integrating the above inequality, we obtain

Q(S(t), I(t),R(t))≤ Q(S0, I0,R0)+
∫ t

0
G(S, I)ds+

∫ t

0

σ

f (S, I)
(I−S)dB(s). (3.1)

There is some element of X(τ) equal 0. Then

lim
t→τ

Q(S(t), I(t),R(t)) = +∞

Letting t→ τ in (3.1), we have

+∞≤ Q(X0)+
∫

τ

0
G(S(s), I(s))ds+

∫
τ

0

σ

f (S(s), I(s))
(I(s)−S(s))dB(s)< ∞

Which contradicts our assumption. So we must therefore have τ = ∞ a.s. This completes the

proof of Theorem 3.1.

4. Exponential stability

In this section, we give a sufficient conditions for the exponentially stability of the disease-

free equilibrium. We set X(t) = (S(t), I(t)). We define the following stochastic process Ψ(t) and

U(X(t)) as following

Ψ(t) = (S(t)− c)2 +aI(t),

U(S(t), I(t)) = ln(Ψ(t)).

where c =
b(1−m)+ γ

b+ γ
. We note that Ψ(t) > 0 a.s. for all t, also we defined the following

invariant R with a constant 0 < k≤ 1 and l = 1+α1 +α2 +α3, we will employed in the main

theorem of the stability :

R =
β − 1

2
kσ2

l
pd + r

In the rest of this section we will shown that if R < 1 and kσ
2 < min{β l2,4(b+ γ)l2} then the

disease free equilibrium will almost sure exponentially stable.
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Theorem 4.1. Suppose that the following inequality holds:

kσ
2 < min{β l2,4(b+ γ)l2}

If R < 1 then the disease-free equilibrium of the system (5) is almost surely exponentially

stable.

Proof. Step 1 : We prove that Ψ(t) converges exponentially to zero a.s. By using Itô’s formula

we obtain

dU(X(t)) = LU(X(t))dt +M (t),

integrating both sides from 0 to t yields that

U(X(t) =U(X0)+
∫ t

0
LU(X(s))ds+M (t).

Where

M (t) =
∫ t

0

(
aσS(s)I(s)

f (S(s), I(s))Ψ(s)
− 2(S(s)− c)σS(s)I(s)

f (S(s), I(s))Ψ(s)

)
dB(s).

We have
aσSI−2(S− c)σSI

f (S, IΨ(t)
≤ σ(a+2c),

it follows that

1
t

∫ t

0

(
aσS(s)I(s)

f (S(s), I(s))Ψ(s)
− 2(S(s)− c)σS(s)I(s)

f (S(s), I(s))Ψ(s)

)2

ds < ∞.

According to Lemma 2.1 we obtain

lim
t→∞

Mt

t
= 0 a.s.

Consequently,
1
t

limsup
t→∞

U(X(t) =
1
t

limsup
t→∞

∫ t

0
LU(X(s))ds.

Step 2 : We prove that limsup
t→∞

LU(X(t))< 0 a.s. Applying the operator L to U we obtain :

LU =
2(S− c)

Ψ

[
− βSI

f (S, I)
+b(1−m)+ γ− (b+ γ)S+

[
(1−m)(pd−b)− γ

]
I
]

+
a
Ψ

[
βSI

f (S, I)
− (pd + r)I

]
+

1
2

(
σSI

f (S, I)Ψ

)2[
−2(S− c)2 +2aI +4(S− c)a−a2

]
.(7)
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Using the inequality

−2(S− c)2 +2aI +4(S− c)a−a2 ≤−2(S− c)2 +2a+4a−a2 ≤−a2(1− 6
a
),

we get

LU ≤2(S− c)
Ψ

[
− βSI

x
− ((1−m)(b− pd)+ γ)I− (b+ γ)(S− c)

]
+

a
Ψ
[βSI− (pd + r)I]− 1

2

(
σSI
Ψl

)2

a2
(

1− 6
a

)
.(8)

In view of Lemma 2.2 we can define the following limits for a suitable increasing, unbounded

sequence tn as

z = lim
n→∞

(S(tn)− c)2

Ψ(tn)
,

x = lim
n→∞

I(tn)
Ψ(tn)

,

y = lim
n→∞

S(tn).

And with

limsup
t→∞

LU(X(t)) = lim
n→∞

LU(X(tn).

In particular then we have z+ax = 1, and y≤ 1. We notice

Π = limsup
t→∞

LU(X(t)).

Therefore, we can write (8) as follows

Π≤ 2(y− c)
[
−βyx

l
− ((1−m)(b− pd)+ γ)x

]
−2(b+ γ)z+a

[
βyx− (pd + r)x

]
− 1

2

(
σ

l
yx
)2

a2(1− 6
a
)

=2(y− c)
[
− ((1−m)(b− pd)+ γ)x

]
−2(b+ γ)z+βyx

[
− 2(y− c)

l
+a
]

− (pd + r)x− 1
2

(
σ

l
yx
)2

a2
(

1− 6
a

)
,

using the inequality

βyx
[
− 2(y− c)

l
+a
]
≤ βyx

(
a− 2

l

)
= aβyx

(
1− 2

al

)
≤ aβyx
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we get

Π≤ ax
[

βy+
2c
a
[(1−m)(b− pd)+ γ

]
−2(b+ γ)z− 1

2

(
σ

x
yx
)2

a2
(

1− 6
a

)
.

Hence, there exist 0 < k ≤ 1 such that the following inequality hold

−1
2

(
σ

l
yx
)2

a2(1− 6
a
)≤− 1

2

(
σ

x
yx
)2

ka2
(

1− 6
a

)
≤− 1

2
x
(

σ

l
y
)2

ka
(

1− 6
a

)
(1− z)

≤−ax
1
2

k(
σy
l
)2
(

1− 6
a

)
+

1
2

zk
(

σy
l

)2

.(9)

From (9), yields that

Π≤ ax
[

βy+
2c
a
[(1−m)(b− pd)+ γ

]
−2(b+ γ)z−ax

1
2

k
(

σy
l

)2(
1− 6

a

)
+

1
2

zk
(

σy
l

)2

By the inequality kσ2 < β l2, we find

βy− 1
2

k(
σy
l
)2
(

1− 6
a

)
=

1
2

k
σ2

l2

(
1− 6

a

)[
2βal2

kσ2(a−6)
y− y2

]
≤1

2
c

σ

l

(
1− 6

a

)[
2β l2a

kσ2(a−6)
−1
]

=β − 1
2

k
σ2

l2

(
1− 6

a

)
.(10)

Using the inequality (10), we obtain

Π≤ ax
[

β − (pd + r)− 1
2

k
σ2

l2

(
1− 6

a

)
+

2c
a
[(1−m)(b− pd)+ γ]

]
+ z
[

1
2

k
σ2

l2 −2(b+ γ)

]
.

Since kσ
2 < 4(b+ γ)l2 implide that the coefficients of z are negative. as though R < 1 we

deduce that the coefficients of x are negative, gold :

β − 1
2

kσ2

l
− (pd + r)< 0,

we choose a number a such that the following inequality hold,

β − (pd + r)− 1
2

k
σ2

l2

(
1− 6

a

)
+

2c
a

[
(1−m)(b− pd)+ γ

]
< 0

We have z+ax = 1, since the limits z, x cannot all be zero. Consequently, we obtain that Π < 0,

the proof of theorem is completed.
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5. Asymptotic Behavior Around the Endemic Equilibrium

By study epidemic dynamical systems, we are interested by extinction, and persistent in a

population. In the deterministic models, the second problem is solved by showing that the en-

demic equilibrium of the model is globally asymptotic stable. But, there is none of endemic

equilibrium in system (5). So in this section we study the behavior around the endemic equilib-

rium E∗ to indicate that whether the disease will prevail. We find the following result.

Theorem 4.1. Consider the stochastic system (5) with initial condition in Γ, If R0 > 1, then we

have

limsup
t→∞

1
t

∫ t

0
(S(s)−S∗)2 +(I(s)− I∗)2ds≤ aI∗σ2

ϑ

Where ϑ = min{2(b+ γ),2(γ + pd + r− (1−m)(pd−b))}

Proof. Consider the C 2-function V defined by the expression

V (X) = a
(

I− I∗− I∗ log
(

I
I∗

))
+(S−S∗+ I− I∗)2

where a is real constant to be chosen in the sequel. Using Itô’s formula we get

dV (X(t)) = LV (X(t))dt +
S(I− I∗)

f (S, I)
dB(t), (10)

where

LV =

[
b(1−m)+ γ− (b+ γ)S+((1−m)(pd−b)− γ)I− (pd + r)I

]
2(S−S∗+ I− I∗)[

βSI
f (S, I)

− (pd + r)I
]

a(I− I∗)+
aI∗σ2S2

f 2(S, I)
,(11)

At the equilibrium state E∗, we have

βS∗I∗

f (S∗, I∗)
− (pd + r)I∗ = 0,(12)

− βS∗I∗

f (S∗, I∗)
+b(1−m)+ γ− (b+ γ)S∗+((1−m)(pd−b)− γ)I∗ = 0.(13)
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Substituting (12) and (13) into (11), we get

LV =

[
− (b+ γ)(S−S∗)+((1−m)(pd−b)− γ)(I− I∗)− (pd + r)(I− I∗)

]
×2(S−S∗+ I− I∗)+a(I− I∗)

[
βS
(

1
f (S, I)

− 1
f (S∗, I∗)

)
+

β

f (S∗, I∗)
(S−S∗)

]
+

aI∗σ2S2

f 2(S, I)
.(14)

Since f (S, I)≥ 0, we obtain

LV ≤
[
− (b+ γ)(S−S∗)+((1−m)(pd−b)− γ)(I− I∗)− (pd + r)(I− I∗)

]
×2(S−S∗+ I− I∗)+a(I− I∗)(S−S∗)

β

f (S∗, I∗)
+

aI∗σ2S2

f 2(S, I)

=−2(b+ γ)(S−S∗)2−2
(

γ + pd + r− (1−m)(pd−b)
)
(I− I∗)2

+a(I− I∗)(S−S∗)
β

f (S∗, I∗)
−2(I− I∗)(S−S∗)

[
b+ pd + r− (1−m)(pd−b)

]
+

aI∗σ2S2

f 2(S, I)
,

≤−2(b+ γ)(S−S∗)2−2
(

γ + pd + r− (1−m)(pd−b)
)
(I− I∗)2

+a(I− I∗)(S−S∗)
β

f (S∗, I∗)
−2(I− I∗)(S−S∗)

[
b+ pd + r− (1−m)(pd−b)

]
+aI∗σ2,

we can choose the number a such that

a
β

f (S∗, I∗)
−2
[

b+ pd + r− (1−m)(pd−b)
]
= 0,

then

LV ≤−2(b+ γ)(S−S∗)2−2
(

γ + pd + r− (1−m)(pd−b)
)
(I− I∗)2 +aI∗σ2.

(15)
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Therefore, At =
∫ t

0
S(s)(I(s)−I∗)

f (S(s),I(s)) dB(s) is continuous local martingale and A(0) = 0. Moreover,

whose quadratic variation is

〈A,A〉t =
∫ t

0

(
S(s)(I(s)− I∗)

f (S, I)

)2

ds≤ ct,

by Lemma 3.3, we get

lim
t→∞

At

t
= 0 a.s.

From(10) and (15), we obtain

dV ≤−2(b+ γ)(S−S∗)2−2
(

γ + pd + r− (1−m)(pd−b)
)
(I− I∗)2 +aI∗σ2

S(s)(I(s)− I∗)
f (S, I)

dB(s),

integrating both sides from 0 to t yields that

V (t)−V (0)≤−ϑ

∫ t

0
(S(s)−S∗)2 +(I(s)− I∗)2ds+aI∗σ2t +At ,

consequently ∫ t

0
(S(s)−S∗)2 +(I(s)− I∗)2ds≤ V (0)

ϑ
+

aI∗σ2

ϑ
t,

finally, we deduce that

limsup
t→∞

1
t

∫ t

0
(S(s)−S∗)2 +(I(s)− I∗)2ds≤ aI∗σ2

ϑ
a.s.

This completes the proof of Theorem 4.1.

6. Numerical simulations

In this section, we illustrate our theoretical results presented above, the system (5) is simulat-

ed for various sets of parameters and by using the Euler-Maruyama method. Fig. 1 illustrates

that the almost sure exponential stabile of stochastic SIRS model (5), whenever the conditions

of theorem is realised R = 0.9375 < 1 and kσ
2 < min{β l2,4(b+ γ)l2}. In Fig. 2 little values

of intensity, will still render the free equilibrium unstable.



434 A. EL KOUFI, J. ADNANI, A. BENNAR, N. YOUSFI

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time in years

.

 

 

S
I

FIGURE 1. Stochastic trajectories of SIRS epidemic model (5) for the parameters: σ =

0.6,β = 0.6,b= 0.2,m= 0.3, p= 0.6,d = 0.4,r = 0.2,α1 = 0.2,α2 = 0.2,α3 = 0.2;γ =

0.2.
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FIGURE 2. Stochastic trajectories of SIRS epidemic model (5) for the parameters:

σ = 0.12,β = 0.6,b = 0.2,m = 0.3, p = 0.6,d = 0.4,r = 0.2,α1 = 0.2,α2 = 0.2,α3 =

0.2,γ = 0.2,

Conclusion

The introduction of stochastic effects into deterministic models gives us a more realistic way

of modeling epidemic models. In this paper we have considerate a stochastic SIRS epidemic

model with vaccination and non-linear incidence rate, we have studied the effects of the envi-

ronmental fluctuation in SIRS epidemic model. we first proved the existence and positivity of

solutions of our stochastic model which implies that the model is well posed. Then, we showed

the stability exponentially almost surely of the disease free equilibrium E0 as R < 1. To indi-

cate that whether the disease will prevail we study the behavior around the endemic equilibrium

E∗. Finally we have simulated our theoretical result.
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