

Available online at http://scik.org
J. Math. Comput. Sci. 2 (2012), No. 6, 1660-1670

ISSN: 1927-5307

ITERATIVE APPROXIMATION FOR THE COMMON SOLUTIONS OF A INFINITE VARIATIONAL INEQUALITY SYSTEM FOR INVERSE-STRONGLY ACCRETIVE MAPPINGS

HONGPING LUO AND YUANHENG WANG*

Department of Mathematics, Zhejiang Normal University
Zhejiang 321004, P.R. China

Abstract

The aim of this paper is to introduce and study a system of the infinite variational inequalities for inverse-strongly accretive mappings by using relaxed extradient method. Results proved in this paper may be viewed as an improvement and refinement of the recent results of X.Qin ${ }^{[1]}$ and Aoyama, $\mathrm{K}^{[2]}$ Keywords: variational inequalities; viscosity approximation; inverse-strongly accretive mapping; fixed point.

2000 AMS Subject Classification: 47H05, 47H10

1. Introduction

Let H be a real Hilbert space with norm $\|\cdot\|$ and inner product $\langle\cdot, \cdot\rangle$, C be a nonempty closed convex subset of H and A be a operator from C into H . The classical variational inequality problem is formulated as finding a point $u \in C$ such that

$$
\langle A u, v-u\rangle \geq 0
$$

[^0]Received April 27, 2012
for all $v \in C$. Such a point $u \in C$ is called a solution of the problem. Variational inequalities were initially studied by Stampacchia [3, 4] and ever since have been widely studied. The set of solutions of the variational inequality problem is denoted by $\mathrm{VI}(\mathrm{C}, \mathrm{A})$. For given $z \in H, u \in C$, we see that the following inequality holds

$$
\langle u-z, v-u\rangle \geq 0
$$

if and only if $u=P_{C} z:\left\|P_{C} z-z\right\|=i n f_{v \in C}\|v-z\|$. It is known that projection operator P_{C} is nonexpansive. It is also know that P_{C} satisfies

$$
\left\langle x-y, P_{C} x-P_{C} y\right\rangle \geq\left\|P_{C} x-P_{C} y\right\|^{2}, \forall x, y \in H
$$

One can see that the variational inequality is equivalent to a fixed point problem. An element $x^{*} \in C$ is a solution of the variational inequality if and only if $x^{*} \in C$ is a fixed point of the mapping $P_{C}(I-\lambda A)$, where I is the identity mapping and $\lambda>0$ is a constant.This alternative equivalent formulation has played a significant role in the studies of variational inequalities and related optimization problems.

In this paper, let C be a nonempty closed convex subset of a real Banach space E . Let A, B be two inverse-strongly accretive mappings. We consider the following problem of finding $(\widetilde{x}, \widetilde{y}) \in C \times C$ such that

$$
\left\{\begin{array}{l}
\left\langle\lambda_{n} A \widetilde{y}+\widetilde{x}-\widetilde{y}, J(x-\widetilde{x})\right\rangle \geq 0, \forall x \in C \tag{1}\\
\left\langle\mu_{n} B \widetilde{x}+\widetilde{y}-\widetilde{x}, J(x-\widetilde{y})\right\rangle \geq 0, \forall x \in C
\end{array}\right.
$$

which is called a general system of infinite variational inequalities, where $\left\{\lambda_{n}\right\},\left\{\mu_{n}\right\} \subset$ $(0, \infty)$. In particular, if $A=B, \lambda_{n}=\mu_{n}=\lambda$, then problem reduces to finding $(\widetilde{x}, \widetilde{y}) \in$ $C \times C$ such that

$$
\left\{\begin{array}{l}
\langle\lambda A \widetilde{y}+\widetilde{x}-\widetilde{y}, J(x-\widetilde{x})\rangle \geq 0, \forall x \in C \tag{2}\\
\langle\lambda A \widetilde{x}+\widetilde{y}-\widetilde{x}, J(x-\widetilde{y})\rangle \geq 0, \forall x \in C
\end{array}\right.
$$

which is defined by Verma ${ }^{[5]}$ and is called the new system of variational inequalities. Further, if we add up the requirement that $\widetilde{x}=\widetilde{y}$, then problem (1) reduces to the classical variational inequality $\operatorname{VI}(\mathrm{A}, \mathrm{C})$.

Recently, many authors studied the problem of finding a common element of the fixed point set of nonexpansive mappings and the solution set of variational inequalities for α-inverse-strongly monotone mappings in the framework of Banach space.In 2006, Aoyama, Iiduka and Takahashi ${ }^{[2]}$ obtained a weak Theorem about weak convergence of an iterative sequence for accretive operators in a uniformly convex and 2-uniformly smooth Banach space. In2009,X.Qin ${ }^{[1]}$, et al.consider the problem of strong convergence of an iterative algorithm for systems of variational inequalities and nonexpansive mapping with applications.

In this paper, motivated by $[1,2,6,7]$, let E be a uniformly convex and q-uniformly smooth Banach space, C be a nonempty closed convex subset of E . We introduce a general iterative algorithm for the system of infinite variational inequality (1) and a sunny nonexpansive mapping.

$$
\left\{\begin{array}{c}
x_{1}=u \in C \tag{3}\\
y_{n}=Q_{C}\left(x_{n}-\mu_{n} B x_{n}\right) \\
x_{n+1}=\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n}\left(\delta T x_{n}+(1-\delta) Q_{C}\left(y_{n}-\lambda_{n} A y_{n}\right), n \geq 0\right.
\end{array}\right.
$$

The problem (1) is proven to be equivalent to a fixed point problem of nonexpansive mapping. By using a relaxed extradient methods, we prove that under some conditions the iterative sequence $\left\{x_{n}\right\}$ converges strongly to $\widetilde{x} \in C$ and $(\widetilde{x}, \widetilde{y})$ is a solution of the problem(1), where $\widetilde{y}=Q_{C}\left(\widetilde{x}-\mu_{n} B \widetilde{x}\right)$. The results here improve and extend the related results of other authors, such as $[1,2,6]$.

2. Preliminaries

Recall that a mapping T of C into itself is called nonexpansive, if

$$
\|T x-T y\| \leq\|x-y\|
$$

for all $x, y \in C$. We denote by $F(T)$ the set of fixed points of T .
For $\alpha>0$, an operator A of C into E is said to be α-inverse strongly accretive if

$$
\langle A x-A y, J(x-y)\rangle \geq \alpha\|A x-A y\|^{2} .
$$

for all $x, y \in C$. It is obviously that

$$
\|A x-A y\| \leq \frac{1}{\alpha}\|x-y\| .
$$

Let D be a subset of C and Q be a mapping of C into D, then Q is said to be sunny if

$$
Q(Q x+t(x-Q x))=Q x
$$

whenever $Q x+t(x-Q x) \in C$ for $x \in C$ and $t \geq 0$. A mapping Q of C into itself is called a retraction if $Q^{2}=Q$. If a mapping Q of C into itself is a retraction, then $Q z=z$ for every $z \in R(Q)$, where $R(Q)$ is the range of Q . A subset D of C is called a sunny nonexpansive retract of C if there exists a sunny nonexpansive retraction from C into D .

Assume E be a real Banach space, C be a nonempty closed convex subset of E . Let $U=$ $\{x \in E: x=1\}$, A Banach space E is said to be uniformly convex, if for each $\epsilon \in$ $(0,2]$, there exists $\delta>0$ such that for any $x, y \in U,\|x-y\| \leq \epsilon$, which implies $\frac{\|x-y\|}{2} \leq$ $1-\delta$. It is known that a uniformly convex Banach space is reflexive and strictly convex.

A Banach space E is said to be smooth if the limit $\lim _{t \rightarrow 0} \frac{\|x-t y\|-\|y\|}{t}$ exists for all $x, y \in$ U. It is also said to be uniformly smooth if the limit is attained uniformly for $x, y \in U$. The norm of E is said to be Frećhet differentiable if for each $x \in U$, the limit is attained uniformly for $y \in U$. And we define a function $\rho:[0, \infty) \rightarrow[0, \infty)$ called the modulus of smoothness of E as follows:

$$
\rho(t)=\sup \left\{\frac{1}{2}(\|x+y\|+\|x-y\|)-1:\|x\|=1,\|y\|=t\right\} .
$$

It is known that E is uniformly smooth if and only if $\lim _{t \rightarrow 0} \frac{\rho(t)}{t}=0$. Let q be a fixed real number with $1<q \leq 2$. Then a Banach space E is said to be q-uniformly smooth if there exists a constant $c>0$ such that $\rho(t) \leq c t^{q}$ for all $t>0$. We could obtain the following lemma.
Lemma 2.1. ${ }^{[8,9]}$ Let q be a real number with $1<q \leq 2$ and let E be a Banach space. Then E is q -uniformly smooth if and only if there exists a constant $K \geq 1$ such that

$$
\frac{1}{2}\left(\|x+y\|^{q}+\|x-y\|^{q}\right) \leq\|x\|^{q}+\|K y\|^{q}
$$

for all $x, y \in E$.

The best constant K in Lemma 2.1 is called the q-uniformly smoothness constant of E . Let q be a given real number with $q>1$. The (generalized) duality mapping J_{q} from E into $2^{E^{*}}$ is defined by

$$
J_{q}(x)=\left\{x^{*} \in E^{*}:\left\langle x, x^{*}\right\rangle=\|x\|^{q},\left\|x^{*}\right\|=\|x\|^{q-1}\right\}
$$

for all $x \in E$. In particular, $J=J_{2}$ is called the normalized duality mapping. It is known that J_{q}

$$
J_{q}(x)=\|x\|^{q-2} J(x)
$$

Lemma 2.2. ${ }^{[10]}$ Let q be a given real number with $1<q \leq 2$ and let E be a q-uniformly smooth Banach space. Then

$$
\|x+y\|^{q} \leq\|x\|^{q}+q\left\langle y, J_{q}(x)\right\rangle+2\|K y\|^{q}
$$

for all $x, y \in E$, where J_{q} is the generalized duality mapping of E and K is the q-uniformly smoothness constant of E .

Lemma 2.3. ${ }^{[1]}$ Let C be a nonempty closed convex subset of a real Hilbert space H. Let T_{1} and T_{2} be two nonexpansive mappings from C into itself with a common fixed point. Define a mapping $T: C \rightarrow C$ by $T x=\delta T_{1} x+(1-\delta) T_{2} x$, where $\delta \in(0,1)$. Then T is nonexpansive and $F(T)=F\left(T_{1}\right) \bigcap F\left(T_{2}\right)$.

Lemma 2.4. ${ }^{[11]}$ In a Banach space E,there holds the inequality

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, j(x+y)\rangle, \forall x, y \in C, \text { wherej }(x+y) \in J(x+y)
$$

Lemma 2.5. ${ }^{[15]}$ Let C be a nonempty closed con- vex subset of a smooth Banach space E. Let Q_{C} be a sunny nonexpansive retraction from E onto C and let A be an accretive operator of C into E . Then,for all $\lambda>0$,

$$
\Omega=F\left(Q_{C}(I-\lambda A)\right)
$$

Lemma 2.6. ${ }^{[15]}$ Let E be a uniformly convex Banach space, C a nonempty closed convex subset of E and $T: K \rightarrow K$ a nonexpansive mapping. Then $I-T$ is demi-closed at zero.

Lemma 2.7. ${ }^{[12,13]}$ Let $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ be a sequence of nonnegative real numbers satisfying the property

$$
\alpha_{n+1} \leq\left(1-\gamma_{n}\right) \alpha_{n}+\gamma_{n} \delta_{n}, n \geq 0
$$

where $\left\{\gamma_{n}\right\} \subset(0,1)$ and $\left\{\delta_{n}\right\}$ are such that

$$
\text { (1) } \lim _{n \rightarrow \infty} \gamma_{n}=0, \Sigma \gamma_{n}=\infty ;(2) \limsup _{n \rightarrow \infty} \frac{\delta_{n}}{\gamma_{N}} \leq 0\left(\text { or } \Sigma\left|\delta_{n}\right|<\infty\right)
$$

then $\lim _{n \rightarrow \infty} \alpha_{n}=0$.

Lemma 2.8. ${ }^{[14]}$ Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be bounded sequences in a Banach space X and Let $\left\{\alpha_{n}\right\} \subset$ $[0,1]$ with $0<\lim \inf _{n \rightarrow \infty} \alpha_{n} \leq \lim \sup _{n \rightarrow \infty} \alpha_{n}<1, n \geq 0$,such that

$$
\text { (1) } x_{n+1}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) y_{n} ;(2) \limsup _{n \rightarrow \infty}\left(\left\|y_{n+1}-y_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0
$$

then $\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0$.

Lemma 2.9. For given $(\widetilde{x}, \widetilde{y}) \in C \times C$, where $\widetilde{y}=Q_{C}\left(\widetilde{x}-\mu_{n} B \widetilde{x}\right), \widetilde{x}, \widetilde{y}$ is a solution of problem(1), if and only if \widetilde{x} is a common fixed point of the mapping $S_{n}: C \rightarrow C$ defined by

$$
S_{n}(x)=Q_{C}\left[Q_{C}\left(x-\mu_{n} B x\right)-\lambda_{n} A Q_{C}\left(x-\mu_{n} B x\right)\right], \forall n \in N
$$

where $\left\{\lambda_{n}\right\},\left\{\mu_{n}\right\} \subset(0,1)$ and Q_{C} is a sunny nonexpansive retraction from E onto C.
Proof.

$$
\left\{\begin{array}{l}
\left\langle\lambda_{n} A \widetilde{y}+\widetilde{x}-\widetilde{y}, J(x-\widetilde{x})\right\rangle \geq 0, \forall x \in C \tag{4}\\
\left\langle\mu_{n} B \widetilde{x}+\widetilde{y}-\widetilde{x}, J(x-\widetilde{y})\right\rangle \geq 0, \forall x \in C
\end{array}\right.
$$

$$
\Leftrightarrow
$$

$$
\left\{\begin{array}{l}
\widetilde{x}=Q_{C}\left(\widetilde{y}-\lambda_{n} A \widetilde{y}\right) \tag{5}\\
\widetilde{y}=Q_{C}\left(\widetilde{x}-\mu_{n} B \widetilde{x}\right)
\end{array}\right.
$$

$$
\Leftrightarrow \widetilde{x}=Q_{C}\left(Q_{C}\left(\widetilde{x}-\mu_{n} B \widetilde{x}\right)-\lambda_{n} A Q_{C}\left(\widetilde{x}-\mu_{n} B \widetilde{x}\right)\right)
$$

3. Main results

Theorem 3.1 Let E be a uniformly convex and q-uniformly smooth Banach space with the best smooth constant K, C a nonempty closed convex subset of E. Let $Q_{C}: E \rightarrow C$ be a sunny nonexpansive retraction and $A, B: C \rightarrow E$ be α-inverse-strongly accretive mapping and β-inverse-strongly accretive mapping. Let $T: C \rightarrow C$ be a nonexpansive mapping with a fixed point and assume that $F=F(T) \cap\left(\cap_{n=1}^{\infty} F\left(S_{n}\right)\right) \neq \varnothing$, where S_{n} is defined as Lemma 2.9. Suppose $\left\{\lambda_{n}\right\} \subset\left[a, \sqrt[q-1]{\frac{q \alpha^{q-1}}{2 K^{q}}}\right],\left\{\mu_{n}\right\} \subset\left[a, \sqrt[q-1]{\frac{q \beta^{q-1}}{2 K^{q}}}\right], a>0, \delta \in(0,1)$. If the sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ in $[0,1]$ satisfy the following conditions:
$(C 1) \alpha_{n}+\beta_{n}+\gamma_{n}=1 ;$
$(C 2) \Sigma \alpha_{n}=\infty, \lim _{n \rightarrow \infty} \alpha_{n}=0 ;$
$(C 3) 0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup \operatorname{sum}_{n \rightarrow \infty} \beta_{n}<1$;
$(C 4) \lim _{n \rightarrow \infty}\left(\lambda_{n+1}-\lambda_{n}\right)=0, \lim _{n \rightarrow \infty}\left(\mu_{n+1}-\mu_{n}\right)=0$.
Then the sequence $\left\{x_{n}\right\}$ defined by (3) convergence strongly to $\widetilde{x}=Q_{F} u$, and ($\widetilde{x}, \widetilde{y}$) is a solution of the problem(1), where $\widetilde{y}=Q_{C}\left(\widetilde{x}-\mu_{n} B \widetilde{x}\right)$.

Proof. Step1 We show that F is closed and convex.
Since A is an α-inverse-strongly accretive mapping, applying lemma2.1,2.2and $\left\{\lambda_{n}\right\} \subset$ $\left[a, \sqrt[q-1]{\frac{q \alpha^{q-1}}{2 K^{q}}}\right]$, we get

$$
\begin{aligned}
\left\|\left(I-\lambda_{n} A\right) x-\left(I-\lambda_{n} A\right) y\right\|^{q} & =\left\|(x-y)-\lambda_{n}(A x-A y)\right\|^{q} \\
& \leq\|x-y\|^{q}-q \lambda_{n}\left\langle A x-A y, J_{q}(x-y)\right\rangle+2\left\|K \lambda_{n}(A x-A y)\right\|^{q} \\
& =\|x-y\|^{q}-\lambda_{n} q\|x-y\|^{q-2}\langle A x-A y, J(x-y)\rangle \\
& +2 K^{q} \lambda_{n}^{q}\|A x-A y\|^{q} \\
& \leq\|x-y\|^{q}-\lambda_{n} q \alpha^{q-1}\|A x-A y\|^{q}+2 K^{q} \lambda_{n}^{q}\|A x-A y\|^{q} \\
& =\|x-y\|^{q}+\lambda_{n}\left(2 K^{q} \lambda_{n}^{q-1}-q \alpha^{q-1}\right)\|A x-A y\|^{q}
\end{aligned}
$$

which implies that $I-\lambda_{n} A$ is nonexpansive, so is $I-\mu_{n} B$. From lemma 2.9, we obtain that

$$
\begin{aligned}
S_{n} & =Q_{C}\left(Q_{C}\left(I-\mu_{n} B\right)-\lambda_{n} A Q_{C}\left(I-\mu_{n} B\right)\right) \\
& =Q_{C}\left(I-\lambda_{n} A\right) Q_{C}\left(I-\mu_{n} B\right)
\end{aligned}
$$

S_{n} is nonexpansive. Consequently, $F=\left(\cap_{n=1}^{\infty} F\left(S_{n}\right)\right) \cap F(T)$ is closed and convex.

Step 2 We observe $\left\{x_{n}\right\}$ is bounded.
Indeed ,taking a fixed point \bar{x} of F , we have $\bar{x}=Q_{C}\left(Q_{C}\left(\bar{x}-\mu_{n} B \bar{x}\right)-\lambda_{n} A Q_{C}\left(\bar{x}-\mu_{n} B \bar{x}\right)\right)$
Let $\bar{y}=Q_{C}\left(\bar{x}-\mu_{n} B \bar{x}\right)$, then $\bar{x}=Q_{C}\left(\bar{y}-\lambda_{n} A \bar{y}\right)$. And let $l_{n}=\delta T x_{n}+(1-\delta) Q_{C}\left(y_{n}-\right.$ $\lambda_{n} A y_{n}$), we get

$$
\begin{aligned}
\left\|l_{n}-\bar{x}\right\| & =\delta_{n}\left\|T x_{n}-\bar{x}\right\|+\left(1-\delta_{n}\right)\left\|Q_{C}\left(y_{n}-\lambda_{n} A y_{n}\right)-\bar{x}\right\| \\
& \leq \delta_{n}\left\|x_{n}-\bar{x}\right\|+\left(1-\delta_{n}\right)\left\|Q_{C}\left(y_{n}-\lambda_{n} A y_{n}\right)-Q_{C}\left(\bar{y}-\lambda_{n} A \bar{y}\right)\right\| \\
& \leq \delta_{n}\left\|x_{n}-\bar{x}\right\|+\left(1-\delta_{n}\right)\left\|y_{n}-\bar{y}\right\| \\
& \leq \delta_{n}\left\|x_{n}-\bar{x}\right\|+\left(1-\delta_{n}\right)\left\|Q_{C}\left(x_{n}-\mu_{n} B x_{n}\right)-Q_{C}\left(\bar{x}-\mu_{n} B \bar{x}\right)\right\| \\
& \leq\left\|x_{n}-\bar{x}\right\|
\end{aligned}
$$

Then we arrive at

$$
\begin{aligned}
\left\|x_{n+1}-\bar{x}\right\| & =\left\|\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n} l_{n}-\bar{x}\right\| \\
& =\alpha_{n}\|u-\bar{x}\|+\beta_{n}\left\|x_{n}-\bar{x}\right\|+\gamma_{n}\left\|l_{n}-\bar{x}\right\| \\
& \leq\left(1-\alpha_{n}\right)\left\|x_{n}-\bar{x}\right\|+\alpha_{n}\|u-\bar{x}\| \\
& \leq \max \left\{\left\|x_{n}-\bar{x}\right\|,\|u-\bar{x}\|\right\} \\
& \leq\|u-\bar{x}\|
\end{aligned}
$$

Hence $\left\{x_{n}\right\}$ is bounded, so are the sets $\left\{y_{n}\right\} \operatorname{and}\left\{l_{n}\right\}$.
According to step 1 and by (4), we observe that

$$
\begin{aligned}
\left\|l_{n+1}-l_{n}\right\| & \leq \delta\left\|T x_{n+1}-T x_{n}\right\|+(1-\delta)\left\|Q_{C}\left(y_{n+1}-\lambda_{n+1} A y_{n+1}\right)-Q_{C}\left(y_{n}-\lambda_{n} A y_{n}\right)\right\| \\
& \leq \delta\left\|x_{n+1}-x_{n}\right\|+(1-\delta)\left\|\left(y_{n+1}-\lambda_{n+1} A y_{n+1}\right)-\left(y_{n}-\lambda_{n} A y_{n}\right)\right\| \\
& \leq \delta\left\|x_{n+1}-x_{n}\right\|+(1-\delta) \|\left(y_{n+1}-\lambda_{n+1} A y_{n+1}\right)-\left(y_{n}-\lambda_{n+1} A y_{n}\right) \\
& +\left(\lambda_{n}-\lambda_{n+1}\right) A y_{n} \| \\
& \leq \delta\left\|x_{n+1}-x_{n}\right\|+(1-\delta)\left\|y_{n+1}-y_{n}\right\|+\left|\lambda_{n}-\lambda_{n+1}\right|\left\|A y_{n}\right\| \\
& \leq \delta\left\|x_{n+1}-x_{n}\right\|+(1-\delta)\left\|Q_{C}\left(x_{n+1}-\mu_{n+1} B x_{n+1}\right)-Q_{C}\left(x_{n}-\mu_{n} B x_{n}\right)\right\| \\
& +\left|\lambda_{n}-\lambda_{n+1}\right|\left\|A y_{n}\right\| \\
& \leq\left\|x_{n+1}-x_{n}\right\|+\left|\mu_{n}-\mu_{n+1}\right|\left\|B x_{n}\right\|+\left|\lambda_{n}-\lambda_{n+1}\right|\left\|A y_{n}\right\|
\end{aligned}
$$

Step 3 We prove that $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$.
Define $x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) h_{n}$, observe that

$$
\begin{aligned}
h_{n+1}-h_{n} & =\frac{x_{n+2}-\beta_{n+1} x_{n+1}}{1-\beta_{n+1}}-\frac{x_{n+1}-\beta_{n} x_{n}}{1-\beta_{n}} \\
& =\frac{\alpha_{n+1} u+\gamma_{n+1} l_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n} u+\gamma_{n} l_{n}}{1-\beta_{n}} \\
& =\frac{\alpha_{n+1} u}{1-\beta_{n+1}}+\frac{\left(1-\alpha_{n+1}-\beta_{n+1}\right) l_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n} u}{1-\beta_{n}}-\frac{\left(1-\alpha_{n}-\beta_{n}\right) l_{n}}{1-\beta_{n}} \\
& =\frac{\alpha_{n+1}}{1-\beta_{n+1}}\left(u-l_{n+1}\right)-\frac{\alpha_{n}}{1-\beta_{n}}\left(u-l_{n}\right)+\left(l_{n+1}-l_{n}\right) .
\end{aligned}
$$

Applying the conclusion of step 1, we have

$$
\begin{aligned}
\left\|h_{n+1}-h_{n}\right\|-\left\|x_{n+1}-x_{n}\right\| & \leq \frac{\alpha_{n+1}}{1-\beta_{n+1}}\left\|u-l_{n+1}\right\|+\frac{\alpha_{n}}{1-\beta_{n}}\left\|u-l_{n}\right\| \\
& +\left|\mu_{n}-\mu_{n+1}\right|\left\|B x_{n}\right\|+\left|\lambda_{n}-\lambda_{n+1}\right|\left\|A y_{n}\right\|
\end{aligned}
$$

Since $\left\{y_{n}\right\}$ and $\left\{l_{n}\right\}$ are bounded, by(C2),(C3)and(C4), we obtain that $\lim _{n \rightarrow \infty} s u p\left(\| h_{n+1}-\right.$ $\left.h_{n}\|-\| x_{n+1}-x_{n} \|\right) \leq 0$.
Hence by lemma 2.8, we have $\lim _{n \rightarrow \infty}\left\|h_{n}-x_{n}\right\|=0$.
Consequently $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=\lim _{n \rightarrow \infty}\left(1-\beta_{n}\right)\left\|h_{n}-x_{n}\right\|=0$.
On the other hand, from $x_{n+1}=\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n} l_{n}$, we have

$$
x_{n+1}-x_{n}=\alpha_{n}\left(u-x_{n}\right)+\gamma_{n}\left(l_{n}-x_{n}\right), \text { then } \lim _{n \rightarrow \infty}\left\|l_{n}-x_{n}\right\|=0 .
$$

Step 4 We claim that $\lim _{\sup }^{n \rightarrow \infty}, ~\left\langle u-\widetilde{x}, J\left(x_{n}-\widetilde{x}\right)\right\rangle \leq 0$. where $\widetilde{x}=Q_{F} u$ Define a mapping $W_{n}: C \rightarrow C$ by $W_{n} x=\delta T x+(1-\delta) Q_{C}\left(I-\lambda_{n} A\right) Q_{C}\left(I-\mu_{n} B\right) x, \forall x \in C$, which implies that $W_{n} x_{n}=l_{n}$.

We choose a sequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ that converges weakly to x such that

$$
\limsup _{n \rightarrow \infty}\left\langle u-\widetilde{x}, J\left(x_{n}-\widetilde{x}\right)\right\rangle=\limsup _{i \rightarrow \infty}\left\langle u-\widetilde{x}, J\left(x_{n_{i}}-\widetilde{x}\right)\right\rangle
$$

Since $\left\{\lambda_{n}\right\} \subset\left[a, \sqrt[q-1]{\frac{q \alpha^{q-1}}{2 K^{q}}}\right],\left\{\mu_{n}\right\} \subset\left[a, \sqrt[q-1]{\frac{q \beta^{q-1}}{2 K^{q}}}\right], a>0$, it follows that $\left\{\lambda_{n_{i}}\right\},\left\{\mu_{n_{i}}\right\}$ are bounded. So there exists a subsequence $\left\{\lambda_{n_{i}}\right\}$ of $\left\{\lambda_{n_{i}}\right\}$ which converges to $\left\{\lambda_{0}\right\} \subset$
$\left[a, \sqrt[q-1]{\frac{q \alpha^{q-1}}{2 K^{q}}}\right]$, and a subsequence $\left\{\mu_{n_{i}}\right\}$ of $\left\{\mu_{n_{i}}\right\}$ which converges to $\left\{\mu_{0}\right\} \subset\left[a, \sqrt[q-1]{\frac{q \alpha^{q-1}}{2 K^{q}}}\right]$. Without loss of generality, we assume that $\left\{\lambda_{n_{i}}\right\} \rightarrow \lambda_{0},\left\{\mu_{n_{i}} \rightarrow \mu_{0}\right\}$, then

$$
\begin{aligned}
S_{0} & =Q_{C}\left(Q_{C}\left(I-\mu_{0} B\right)-\lambda_{0} A Q_{C}\left(I-\mu_{0} B\right)\right) \\
& =Q_{C}\left(I-\lambda_{0} A\right) Q_{C}\left(I-\mu_{0} B\right)
\end{aligned}
$$

S_{n} is nonexpansive.
Since Q_{C} is nonexpansive, it follows from $l_{n}=\delta T x_{n}+(1-\delta) Q_{C}\left(y_{n}-\lambda_{n} A y_{n}\right)$, then

$$
\begin{aligned}
\left\|W_{0} x_{n_{i}}-x_{n_{i}}\right\| & \leq\left\|\delta T x_{n_{i}}+(1-\delta) Q_{C}\left(y_{n_{i}}-\lambda_{0} A y_{n-i}\right)-l_{n_{i}}\right\|+\left\|l_{n_{i}}-x_{n_{i}}\right\| \\
& \leq \| \delta T x_{n_{i}}+(1-\delta) Q_{C}\left(y_{n_{i}}-\lambda_{0} A y_{n-i}\right)-\delta T x_{n_{i}}-(1-\delta) Q_{C}\left(y_{n_{i}}\right. \\
& \left.-\lambda_{n} A y_{n-i}\right)\|+\| l_{n_{i}}-x_{n_{i}} \| \\
& \leq(1-\delta)\left|\lambda_{n-i}-\lambda_{0}\right|\left\|A y_{n-i}\right\|+\left\|l_{n_{i}}-x_{n_{i}}\right\|
\end{aligned}
$$

It follows from lemma2.6 that $x \in F\left(W_{0}\right)$. By using lemma2.5 and same as[15], we can obtain that $x \in F\left(W_{0}\right)=Q_{F} u$.

We have $\lim \sup _{n \rightarrow \infty}\left\langle u-\widetilde{x}, J\left(x_{n}-\widetilde{x}\right)\right\rangle \leq 0=\lim \sup _{n \rightarrow \infty}\left\langle u-\widetilde{x}, J\left(x_{n+1}-\widetilde{x}\right)\right\rangle \leq 0$ holds.

Step 5 We show that $\lim _{n \rightarrow \infty}\left\|x_{n}-\widetilde{x}\right\|=0$.

$$
\begin{aligned}
\left\|x_{n+1}-\widetilde{x}\right\|^{2} & =\alpha_{n}\left\langle u-\widetilde{x}, J\left(x_{n+1}-\widetilde{x}\right)\right\rangle+\beta_{n}\left\langle x_{n}-\widetilde{x}, J\left(x_{n+1}-\widetilde{x}\right)\right\rangle+\gamma_{n}\left\langle l_{n}-\widetilde{x}, J\left(x_{n+1}-\widetilde{x}\right)\right\rangle \\
& =\alpha_{n}\left\langle u-\widetilde{x}, J\left(x_{n+1}-\widetilde{x}\right)\right\rangle+\beta_{n}\left\|x_{n}-\widetilde{x}\right\|\left\|x_{n+1}-\widetilde{x}\right\|+\gamma_{n}\left\|l_{n}-\widetilde{x}\right\|\left\|x_{n+1}-\widetilde{x}\right\| \\
& \leq\left(1-\alpha_{n}\right)\left\|x_{n}-\widetilde{x}\right\|\left\|x_{n+1}-\widetilde{x}\right\|+\alpha_{n}\left\langle u-\widetilde{x}, J\left(x_{n+1}-\widetilde{x}\right)\right\rangle \\
& =\frac{1-\alpha_{n}}{2}\left(\left\|x_{n}-\widetilde{x}\right\|^{2}+\left\|x_{n+1}-\widetilde{x}\right\|^{2}\right)+\alpha_{n}\left\langle u-\widetilde{x}, J\left(x_{n+1}-\widetilde{x}\right)\right\rangle
\end{aligned}
$$

Then

$$
\begin{aligned}
\left\|x_{n+1}-\widetilde{x}\right\|^{2} & \leq \frac{1-\alpha_{n}}{1+\alpha_{n}}\left\|x_{n}-\widetilde{x}\right\|^{2}+\frac{2 \alpha_{n}}{1+\alpha_{n}}\left\langle u-\widetilde{x}, J\left(x_{n+1}-\widetilde{x}\right)\right\rangle \\
& =\left(1-\frac{2 \alpha_{n}}{1+\alpha_{n}}\right)\left\|x_{n}-\widetilde{x}\right\|^{2}+\frac{2 \alpha_{n}}{1+\alpha_{n}}\left\langle u-\widetilde{x}, J\left(x_{n+1}-\widetilde{x}\right)\right\rangle
\end{aligned}
$$

Where $\gamma_{n}=\frac{2 \alpha_{n}}{1+\alpha_{n}}, \sigma_{n}=\left\langle u-\widetilde{x}, J\left(x_{n+1}-\widetilde{x}\right)\right\rangle$.
Since by (C2),step 3, we have

$$
\lim _{n \rightarrow \infty} \gamma_{n}=0, \sum \gamma_{n}=\infty, \limsup _{n \rightarrow \infty} \sigma_{n} \leq 0
$$

applying lemma 2.7 , we deduce that $\lim _{n \rightarrow \infty}\left\|x_{n}-\widetilde{x}\right\|=0$.
The proof of Theorem 3.1 is completes .

References

[1] X.Qin,S.Y.Cho,S.M.Kang.Convergence of an iterative algorithm for systems of variational inequalities and nonexpansive mappings with applications,Appl. Math. Comput.233(2009):231C240.
[2] Aoyama,K.,Iiduka,H.,Takahashi,W.: Weak convergence of an iterative sequence for accretive operators in Banach spaces. Fixed Point Theory Appl. 2006, 35390 (2006)
[3] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Pure and Applied Mathematics, vol. 88, Academic Press, New York, 1980.
[4] J.-L. Lions and G. Stampacchia, Variational inequalities, Communications on Pure and Applied Mathematics 20 (1967), 493C519.
[5] Verma RU (1999) On a new system of nonlinear variational inequalities and associated iterative algorithms. Math Sci Res, Hot-Line 3(8):65C68
[6] Y. Yao, J.C. Yao On modified iterative method for nonexpansive mappings and monotone mappings Appl. Math. Comput.186(2007):1551C1558.
[7] L.C. Ceng, C.Y. Wang, J.C. Yao. Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities. Math. Meth. Oper. Res., 67 (2008), pp. 375C390
[8] K. Ball, E. A. Carlen, and E. H. Lieb, Sharp uniform convexity and smoothness inequalities for trace norms, Inventiones Mathematicae 115 (1994), no. 3, 463C482.
[9] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Analysis 16 (1991), no. 12, 1127 C 1138.
[10] H K Xu. Iterative algorithms for nonlinear operators,J. London Math Soc.(2)66(2002):240-256.
[11] Aoyama, K., Iiduka, H., Takahashi, W.: Weak convergence of an iterative sequence for accretive operators in Banach spaces. Fixed Point Theory Appl. 2006, 35390 (2006)
[12] Browder, F.E.: Semicontractive and semiaccretive nonlinear mappings in Banach spaces. Bull. Am. Math. Soc. 74, 660C665 (1968)
[13] T Suzuki . Strong convergence of Krasnoselskii and mann's type sequences for one-parameter nonexpansive semigroups without bochner integrals,J. Math Anal and Appl. 305(2005) :227-239.
[14] W Xu, Y H Wang. On the stability of iterative approxinations of inverse-strongly monotone mapping. Nonlinear Functional Anal. Appl.5(2008):817-829.
[15] Y.Hao, Iterative algorithms for inverse-strongly accretive mappings with application, J.App.Math.Comput:31(2009),193-202.

[^0]: *Corresponding author

