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Abstract. In this paper we constructd the positive permutation braid of pump-modulated Nd-doped fiber laser

dynamics and denoted it by β
+
n,k,r . We study this braid as a permutation, then calculate its inversion matrix. The

braid representatives β
+
n,k,r of the orbits associated to a modulated Nd-doped fiber laser as a permutation are given.

It is shown that pump-modulated Nd-doped fiber laser knots and links are positive permutation braid.

Keywords: laser dynamics; knots and links; braid groups; positive permutation braid; topological invariants;

inversion matrix.
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1. INTRODUCTION

1.1. Knots, links and braids. A subset K of R3 ( or S3) that is homeomorphic to a circle S1

is called a knot, and a knot is a link if it is homeomorphic to a disjoint union, S1∪S1∪ ...∪S1,

of circles. The link of m circles is called a link with multiplicity m. In figure (1), there are some

examples of knots and links.[1]
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FIGURE 1. There are some examples of knots and links.

Braid theory is very useful in studying knot theory since any oriented knot can be represented

as a closed braid. The braid group Bn can be defined via the following presentation, known as

the braid presentation or Artin presentation [2]:

Bn =

 σ i, i = 1,2, ...,n−1 : σ iσ j = σ jσ i if |i− j|> 1,

σ iσ i+1σ i = σ i+1σ iσ i+1 if i = 1,2, ...,n−2


Where σ i and σ

−1
i as in figure (2). Each closed braid is a knot or link, and conversely, as in

figure (3).

A braid β consisting of an ordered sequence of the generators only, in which no inverse of

any generator occurs will be called a positive braid and denoted by B+
n . In braid group Bn,

the braid which is accomplished by holding the top of the braid fixed and attaching the string

bottoms to a rod which is then turned over once (in positive sequence), is known as a half twist

positive braid and denoted by ∆n

∆n=(σ1)(σ2σ1)(σ3σ2σ1) ...(σn−1...σ1)

A positive permutation braid (In short PPB) is a positive braid where each pair of its strings

cross at most once.
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FIGURE 2. Generators of braid group.

FIGURE 3. Trefoil knot as a closed braid.

The set of these braids in Bn is denoted by S+n ,[3] . Hence

S+n ⊂ B+
n ⊂ Bn.

1.2. Inversion matrix. Elements of the braid group Bn can be represented by matrices. A

permutation matrix is a square binary matrix that has exactly one entry 1 in each row and each

column and 0s elsewhere. In the i th row, the entry α (i) equals 1, for a permutation α. An

inversion matrix of α ∈ Sn, is the matrix
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FIGURE 4. Some of the templates observed in the fiber laser.

M(α) = (mi j)n×n =

 1 if i < j and α(i)> α( j)

0 otherwise


The construct a group of inversion matrix is Mn(F) = {M(α) : α ∈ Sn} ∼= Sn, over the field

F = {0,1} with addition mod 2), which is isomorphic to the symmetric group [4]. For example,

M(σ1σ2σ3σ2σ1) =


0 1 1 1

0 0 0 1

0 0 0 1

0 0 0 0

 , M(∆ = σ1σ2σ1σ3σ2σ1) =


0 1 1 1

0 0 1 1

0 0 0 1

0 0 0 0


1.3. Laser dynamics. Lasers are virtually everywhere around us, for example, optical telecom-

munication and medical applications. It is taken from the phrase ”light amplification by stimu-

lated emission of radiation”. Topological analysis can be used in order to study and compare the

attractors of a single system (A modulated Nd-doped fiber laser), at different values of a control

parameter (The modulation frequency w). We do this in an experimental situation where chaotic

behavior is observed when w lies near the subharmonics 1/2,1/3, and 1/4 of the natural relax-

ation frequency wr . In the templates associated to this fiber laser system, it is observed that the

global torsion increases systematically from one tongue to the next, as in figure(4).[5]
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FIGURE 5. a: Lorenz template, b: Lorenz braid template.

In a three dimensional flow, periodic orbits defines knots, according to the uniqueness of

solutions of ordinary differential equations, a Lorenz template or Lorenz attractor is an embed-

ded branched surface in R3with a semiflow. Indeed, the Lorenz template can be viewed as a

branched two dimensional manifold. While the braid representatives of Lorenz knots and links

can be embedded in a template so called Lorenz braid template, as in figure (5). The braid is

called a Lorenz braid of type (k,r) and denoted by β (k,r).[6].

2. POSITIVE PERMUTATION BRAID MOTIVATED BY PUMP-MODULATED ND-DOPED FIBER

LASER DYNAMICS

The closed periodic orbits associated to a modulated Nd-doped fiber laser, with the attractor

in the subharmonic region w 1
n

have the braid representatives

β n,k,r = ∆
2(n−1)
k ∆rL(r,k− r) n,k,r ∈ N,r < k.

and it is in the left canonical form [7].

In this paper we introduced the positive permutation braid of pump-modulated Nd-doped

fiber laser dynamics and denoted it by β
+
n,k,r . Our focus in this study will be on a subgroup of

the braid , where we will study this braid as a permutation, then calculate its inversion matrix.
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Theorem 1. The closed periodic orbits associated to a modulated Nd-doped fiber laser, with

the attractor in the subharmonic region w 1
n

a permutation have the braid representatives

β
+
n,k,r = ∆rL(r,k− r) n,k,r ∈ N,r < k.

Proof. The half twist positive braid is

∆k=(σ1)(σ2σ1)(σ3σ2σ1) ...(σ k−1...σ1)

∆k = (σ1...σ k−1)

, then

∆
m
k = (σ1...σ k−1)

m, m is even number

, then we have (σ1...σ k−1)
m is equal the identity permutation as geometrically. This can

be proved by induction. So ∆
2(n−1)
k = id, and the permutation have the braid representation

∆rL(r,k− r) n,k,r ∈ N,r < k,and is denoted it by β
+
n,k,r.

Lemma 2. The braid representatives β
+
n,k,r = ∆rL(r,k− r) of the orbits associated to a modu-

lated Nd-doped fiber laser as apermutation is a positive permutation braid .

�

Proof. The Lorenz word L(r,k−r) is a positive braid word. So no self-intersection in each band

of strands. Hence the word ∆rL(r,k− r) is a one positive permutation braid.

Then the braid β
+
n,k,r = ∆rL(r,k− r) is a positive permutation braid as a permutation. �

In [4] Elrifai and Anis were able to express the positive permutation braid as inversion matrix

.So, we can also express β
+
n,k,r as an inversion matrix .

Corollary 3. There is one to one correspondence between β
+
n,k,r and its inversion matrix .

We can modify the Algorithm in [4] to write down a positive permutation braid word of β
+
n,k,r

from its inversion matrix as follow:

Algorithm 4. For a given associated PPB of β
+
n,k,r, and its associated inversion matrix M

β
+
n,k,r

.



ON POSITIVE PERMUTATION BRAID 351

1) Each row will be translated to a braid word.

2) The row whose all its entries are zeros will contribute by the identity braid e.(∆2(n−1)
k = id)

3) If the number of ones in the entries of the ith row is k, then the corresponding braid word

will be β i = σ i−1σ i...σ k−1.

4) Then write α+ = wkwk−1...w1.

Example 5. From theorem (1), and for different choices of the integers k and r, we have infinite

number of knots and links. For instance, if n = 2,k = 4and r = 2 the braid

β
+
2,4,2 = ∆2L(2,2) = σ1(σ2σ1σ3σ2)

= σ1σ2σ1σ3σ2.

β
+
2,4,2 = (1423) As a permutation.

and its inversion matrix is,

M(σ1σ2σ1σ3σ2) =


0 1 1 1

0 0 1 1

0 0 0 0

0 0 0 0

 ,


0 1 1 1

0 0 1 1

0 0 0 0

0 0 0 0




σ1σ2σ3

σ2σ3

e

e


M

β
+
2,4,2

stairs of β
+
2,4,2

, from algorithm (4) we have the braid β
+
2,4,2 from its inversion matrix as follow:
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β
+
2,4,2 = e e σ2σ3σ1σ2σ3

= σ2σ1σ3σ2σ3

= σ2σ1σ2σ3σ2

= σ1σ2σ1σ3σ2

Conflict of Interests

The authors declare that there is no conflict of interests.

REFERENCES

[1] C. Adams, The knot book. W. H. Freeman and company. New york, 1994.

[2] E. Artin, Theorie der zopfe. Hamburg Abh, 4 (1925), 47-72.

[3] E. A. Elrifai and H. Morton, Algorithms for positive braids. Quart. J. Math., 45 (1994), 479-497.

[4] E. A. Elrifai and M. Anis, Positive permutation braids and permutation inversions with some applications. J.

Knot Theory Ramifications. 21 (2012), Article ID 1250101.

[5] G.Boulant, M.Lefranc, S.Bielawski and D.Derozier, Horseshoe templates with global torsion in a driven laser.

Phys. Rev. E, 55 (5) (1997), 5082-5091.

[6] J. Birman, Lorenz knots and links. Barnard- Columbia, Feb 13, 2009.

[7] E. A. Elrifai and Nazek A. AL-Essa, Closed braids and knot holders associated to some laser dynamical

systems: A pump-modulated Nd-doped fiber laser. J. Adv. Math. 12 (12) (2017), 6894-6900.


