
Available online at http://scik.org

J. Math. Comput. Sci. 2 (2012), No. 2, 305-316

ISSN: 1927-5307

THE GENERALIZED BESSEL MATRIX POLYNOMIALS

Z. M. G. KISHKA1, A. SHEHATA2, AND M. ABUL-DAHAB3,∗

1Department of Mathematics, Faculty of Science, Sohag University, Sohag 82524, Egypt

2Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt

3Department of Mathematics, Faculty of Science, South Valley University, Qena 83523, Egypt

Abstract.In this paper, the generalized Bessel matrix polynomials are introduced, starting from the

hypergeometric matrix function. Integral form, Rodrigues’s formula and generating matrix function are

then developed for the generalized Bessel matrix polynomials. These polynomials appear as finite series

solutions of second-order matrix differential equations and orthogonality property for the generalized

Bessel matrix polynomials are given. Finally, connections between generalized Bessel matrix polynomials

with Laguerre matrix polynomials and Whittaker matrix functions are established.
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1. Introduction

The theory of generalized special matrix functions has witnessed a rather significant

evolution during the last years. The reasons of interest have a manifold motivation.

Restricting ourselves to the applicative field, we note that for some physical problems the

use of new classes of special matrix functions provided solutions hardly achievable with

conventional analytical and numerical means. Hermite, Chebyshev, Jacobi, Laguerre and
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Gegenbauer matrix polynomials were introduced and studied in [1, 4, 5, 13, 17]. Recently,

a new extension of hypergeometric matrix functions and Humbert matrix functions have

been introduced as a matrix power series in [15, 18].

The Bessel polynomials were proposed nearly a century ago [3, 16]. Since then, they

have been recognized as a unique tool in both pure and applied mathematics. the main

object of this paper is study some important properties of the generalized Bessel matrix

polynomials which is a matrix extension of Bessel scalar polynomials [2, 6, 7, 8, 9, 19, 20].

The paper is organized as follows: Section 2, provides the definition of the generalized

Bessel matrix polynomials, Yn(A,B; z), for parameter matrices A and B, and integral for-

m of the generalized Bessel matrix polynomials is given. Section 3, Rodrigues’s formula

and the generating matrix function of Bessel matrix polynomials is established. In Section

4, these polynomials appear as finite series solutions of second-order matrix differential

equations and orthogonality property for the Bessel matrix polynomials is given. Sec-

tion 5, connections between generalized Bessel matrix polynomials with Laguerre matrix

polynomials and Whittaker matrix functions are obtained.

Throughout this paper, consider the complex space CN×N of complex matrices of com-

mon order N . A matrix A is a positive stable matrix in CN×N if Re(λ) > 0 for all

λ ∈ σ(A) where σ(A) is the set of all eigenvalues of A. If A0, A1, ..., An are elements of

CN×N and An 6= 0, then we call

Pn(z) = Anz
n + An−1z

n−1 + An−2z
n−2 + ....+ A0,

a matrix polynomial of degree n in z.

If f(z) and g(z) are holomorphic functions of the complex variable z which are defined

in an open set Ω of the complex plane and A is a matrix in CN×N such that σ(A) ⊂ Ω,

then from the properties of the matrix functional calculus [10], it follows that

f(A)g(A) = g(A)f(A).(1.1)

Hence, if B in CN×N is a matrix for which σ(B) ⊂ Ω and if AB = BA, then

f(A)g(B) = g(B)f(A).(1.2)
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The reciprocal gamma function denoted by Γ−1(z) = 1
Γ(z)

is an entire function of the

complex variable z. Then for any matrix A in CN×N , the image of Γ−1(z) acting on A

denoted by Γ−1(A) is a well defined matrix. Furthermore, if

A+ nI is invertible for all integer n ≥ 0(1.3)

where I is the identity matrix in CN×N , then Γ(A) is invertible, its inverse coincides with

Γ−1(A) and one gets the formula [12]

(A)n =A(A+ I)...(A+ (n− 1)I) = Γ(A+ nI)Γ−1(A); n ≥ 1; (A)0 = I.(1.4)

Jódar and Cortés have proved in [12] that

Γ(A) = lim
n−→∞

(n− 1)![(A)n]−1nA.(1.5)

Let P and Q be two positive stable matrices in CN×N . The gamma matrix function Γ(P )

and the beta matrix function B(P,Q) have been defined in [11] as follows

Γ(P ) =

∫ ∞
0

e−ttP−Idt;

tP−I = exp

(
(P − I) ln t

)(1.6)

and

B(P,Q) =

∫ 1

0

tP−I(1− t)Q−Idt.(1.7)

In [15] Kishka et al are given the definition of hypergeometric matrix series as

F (α, β; γ;X) =
∞∑
k=0

(α)k(β)(k)[(γ)k]
−1

k!
Xk.(1.8)

Laguerre matrix polynomials may be defined in [13] by

LAn (z) =
n∑

m=0

(−1)m

m! (n−m)!
(A+ I)n [(A+ I)m]−1 zm.(1.9)
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2. On generalized Bessel matrix polynomials

Definition 2.1. Let A and B be a matrix in CN×N satisfying the spectral condition (1.3).

For any natural number n ≥ 0, the n-th generalized Bessel matrix polynomial Yn(A,B; z)

is defined by

Yn(A,B; z) =
n∑
k=0

(n
k

)
(A+ (n+ k − 2)I)(k)(z B−1)k; (n ∈ N0 := {0, 1, 2, ..}).(2.1)

If we replace A by A+ 2I then the n-th generalized Bessel matrix polynomial Yn(A,B; z)

given by

Yn(A,B; z) =
n∑
k=0

(n
k

)
(A+ (n+ 1)I)k(z B

−1)k; (n ∈ N0 := {0, 1, 2, ..}),(2.2)

where

(n
k

)
is a binomial coefficient and (A)(k) as usual means (A)(A−I)...(A− (k−1)I).

By the explicit formulas for generalized Bessel matrix polynomials Yn(A,B; z) the first

four of these polynomials are therefore given by

Y0(A,B; z) = I,

Y1(A,B; z) = I + A(z B−1),

Y2(A,B; z) = I + 2(A+ I)(z B−1) + (A+ I)(A+ 2I)(z B−1)2

and

Y3(A,B; z) = I+3(A+2I)(z B−1)+3(A+2I)(A+3I)(z B−1)2+(A+2I)(A+3I)(A+4I)(z B−1)3.

From (1.8) we can written

2F0(−nI,A+ (n− 1)I;−;−z B−1)

=
n∑
k=0

(−nI)(I − nI)(2I − nI)..(kI − nI − I)(A+ (n+ 1)I)..(A+ (n+ k − 2)I)

k!
(−z B−1)k

=
n∑
k=0

(nI)(In− I)(nI − 2I)..(nI − kI + I)(A+ (n+ 1)I)..(A+ (n+ k − 2)I)

k!
(z B−1)k

=
n∑
k=0

(n
k

)
(A+ (n+ k − 2)I)(k)(z B−1)k,
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where

(−1)k

(n− k)!
I =

(−n)k
n!

I =
(−nI)k
n!

; 0 ≤ k ≤ n.

This gives the generalized Bessel matrix polynomials

Yn(A,B; z) = 2F0(−nI,A+ (n− 1)I;−;−z B−1); (n ∈ N0 := {0, 1, 2, ..}).(2.3)

To get an integral form for the generalized Bessel matrix polynomials of complex variable.

By (2.3), we can write

Yn(A,B; z) =2F0(−nI,A+ (n− 1)I;−;−z B−1)

=
∞∑
k=0

(−nI)kΓ
−1(A+ (n− 1)I)Γ(A+ (k + n− 1)I)

k!
(z B−1)k.

(2.4)

According to (1.6), we find that

Γ(A+ (k + n− 1)I) =

∫ ∞
0

tA+(n+k−2)I e−tdt,(2.5)

therefore, we see that

Yn(A,B; z) =Γ−1(A+ (n− 1)I)

∫ ∞
0

tA+(n−2)I e−t
∞∑
k=0

(−nI)k
k!

(−t z B−1)kdt,(2.6)

thus,

Yn(A,B; z) =Γ−1(A+ (n− 1)I)

∫ ∞
0

tA+(n−2)I
1F0(−nI;−;−t z B−1) e−tdt

=Γ−1(A+ (n− 1)I)

∫ ∞
0

tA+(n−2)I(I + t z B−1)ne−tdt.

(2.7)

Summarizing, the following result has been established.

Theorem 2.1. Let A and B be a matrix in CN×N satisfying the spectral condition (1.3),

let z, t be a complex numbers. Then for any integer n ≥ 0, expressions (2.7) hold true.

3. The generating function of generalized Bessel matrix polynomials

It is well known the interest in the applications of the generating function of classical

generalized Bessel polynomials, (see [8, 9, 19, 20]). The aim of this section to obtain

formula for the generating function of generalized Bessel matrix polynomials.
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Lemma 3.1. Let A and B be a matrix in CN×N satisfying the spectral condition (1.3)

and let Yn(A,B; z) be the n-th generalized Bessel matrix polynomial. Then the following

formula holds for n ≥ 0

Yn(A,B; z) = B−nz2I−Ae
B
z Dn(zA+(2n−2)Ie−

B
z ); D ≡ d

dz
.(3.1)

Proof. By expanding the right side of (3.1) and identifying it which formula (2.1) for

Yn(A,B; z). We see that

B−nz2I−Ae
B
z Dn(zA+(2n−2)Ie−

B
z )

= B−nz2I−A
∞∑
m=0

Bm

m!zm
Dn(

∞∑
s=0

(−1)s
Bs

s!
zA+(2n−2−s)I)

= B−nz2I−A
∞∑
m=0

Bm

m!zm

∞∑
s=0

(−1)s
Bs

s!
(A+ (2n− 2− s)I)(n), zA+(n−2−s)I ,

(3.2)

set m+ s = k, then the double sum can be written as

B−nz2I−Ae
B
z Dn(zA+(2n−2)Ie−

B
z )

=
∞∑
k=0

2k−nzn−k

k!

k∑
s=0

(−1)s
(k
s

)
((A+ 2(n− 1)I)− sI)(n).

(3.3)

Using lemma 2 in [9] and applying the matrix functional calculus [10], one gets

k∑
s=0

(−1)s
(k
s

)
((A+ 2(n− 1)I)− sI)(n) =

{0, for k>n,

n(k)((A+2(n−1)I−kI)(n−k) for k≤n,
(3.4)

the final expression in (3.3) reduces to

B−nz2I−Ae
B
z Dn(zA+(2n−2)Ie−

B
z )

=
n∑
k=0

Bk−nzn−k

k!
n(k)(A+ (2n− 2− k)I)(n−k)

=
n∑
k=0

(n
k

)
(A+ (n+ k − 2)I)(k)(z B−1)k = Yn(A,B; z).

(3.5)

�

The following result formula for the generating function of generalized Bessel matrix

polynomials.
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Theorem 3.1. Let A and B be a matrix in CN×N satisfying the spectral condition (1.3)

and let z, t be complex number. Then the generating function for generalized Bessel matrix

polynomial is given by

[1
2

+
1

2

√
1− 2zt

]2I−A
(1− 2zt)−

1
2 exp

[B (1−
√

1− 2zt)

2z

]
=
∞∑
n=0

(B/2)n Yn(A,B; z)

n!
tn.

(3.6)

Proof. Lagrange’s theorem, c.f [8] states that if w = z + tψ(w); when w is many valued,

that branch is taken which converges to z when t→ 0, then

f(w) = f(z) +
∞∑
n=1

tn

n!

dn−1

dzn−1

[
{ψ(z)}n d

dz
f(z)

]
.(3.7)

From (3.7) we easily deduce that

∂

∂z
f(w) =

∞∑
n=0

tn

n!
Dn
[
{ψ(n)}n.f ′(z)

]
.(3.8)

Now, let us rediscover the generating function (3.6) by use of Lagrange’s theorem for this

purpose we take ψ(z) = z2

f ′(z) = zA−2I e−
B
z and w = z + (

t

2
)w2,

so that

w =
1

t
(1− (

√
1− 2zt)),

since we are to have w = z, when t→ 0. Thus it at once follows from (3.8) that

f ′(w)
∂w

∂z
=
∞∑
n=0

(t/2)n

n!
Dn
[
z2n.zA−2Ie−

B
z

]
.(3.9)

Thus, we obtain from (3.1) and (3.9)

wA−2I e−
B
w (1− 2zt)−

1
2 = zA−2I e−

B
z

∞∑
n=0

(B/2)n Yn(A,B; z)

n!
tn,

�
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whence, we derive[
1− 1

2
(1−

√
1− 2zt)

]2I−A
(1− 2zt)−

1
2 exp

[B (1−
√

1− 2zt)

2z

]
=
∞∑
n=0

(B/2)n Yn(A,B; z)

n!
tn.

(3.10)

Therefore, the proof of Theorem 3.1 is completed.

4. Orthogonality for generalized Bessel matrix polynomial

Orthogonal matrix polynomials is an emergent field whose development is reaching

important results from both the theoretical and practical points of view. Important con-

nections between orthogonal matrix polynomials and matrix differential equations appear

in [4, 5, 14].

The operator θ = z( d
dz

), already used in the derivation of the many matrix differential

equations, c.f [15], is helpful in deriving a matrix differential equation satisfied by (2.1),

we obtain

(θI) Yn(A,B; z) =B−1

∞∑
k=0

(−1)kk(−nI)k(A+ (n− 1)I)k z
k (B−1)k−1

k!

=B−1

∞∑
k=1

(−1)k(−nI)k(A+ (n− 1)I)kz
k (B−1)k−1

(k − 1)!
.

(4.1)

A shift of index yields

(θI) Yn(A,B; z) =B−1

∞∑
k=0

(−1)k+1(−nI)k+1(A+ (n− 1)I)k+1z
k+1 (B−1)k

k!

=− (z B−1)
∞∑
k=0

(k − n)I)(A+ (n− 1 + k)I) Uk(z)

=− (z B−1)[(θI − nI)(θI + (A+ (n− 1)I))] Yn(A,B; z),

where, Uk(z) = (−1)k(−nI)k(A+(n−1)I)k
k!

(z B−1), thus,[
(θI) + (z B−1)

(
(θI − nI)(θI + (A+ (n− 1)I))

)]
Yn(A,B; z) = 0.(4.2)

Equation (4.2) is easily put in the form

z2 Y
′′

n (A,B; z) + (Az +B)Y
′

n(A,B; z) = nI(A+ (n− 1)I)Yn(A,B; z).(4.3)
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Therefore, the following result has been established.

Theorem 4.1. For each natural number n ≥ 0, then the generalized Bessel matrix poly-

nomial Yn(A,B; z) satisfies the equation (4.3).

Now, we shall show that the generalized Bessel matrix polynomials form an orthogonal

system with path of integration an arbitrary curve surrounding the origin, and with the

weight function ρ(z) given by

ρ(z) =
1

2πi

∞∑
n=0

Γ(A)Γ−1(A+ (n− 1)I) (
−B
z

)n,(4.4)

which satisfies the related a matrix nonhomogeneous equation

(z2ρ(z))
′
= (Az +B)ρ(z)− 1

2πi
[(A− I)(A− 2I)]z.(4.5)

If equation (4.3) is multiplied by ρ(z), we have

(z2ρ(z)Y
′

n)
′ − (z2ρ(z))

′
Y
′

n + (Az +B)ρ(z)Y
′

n = nI(A+ (n− 1)I)Ynρ(z)

and using (4.5) we find that

(z2ρ(z)Y
′

n)
′
+

[(A− I)(A−B)]z

2πi
Y
′

n = nI(A+ (n− 1)I)Ynρ(z).(4.6)

If we multiply equation (4.6) by Ym(A,B; z) and integrate around the unit circle, we get∫
C

(z2ρ(z)Y
′

n(z))
′
Ym dz +

∫
C

[(A− I)(A− 2I)]z

2πi
Y
′

n Ym dz

= nI(A+ (n− 1)I)

∫
C

ρ(z)YnYm dz.

(4.7)

By integrating by parts we have

nI(A+ (n− 1)I)

∫
C

ρ(z)YnYm dz = −
∫
C

z2ρ(z)Y
′

nY
′

m dz.(4.8)

Interchanging n and m, that is

mI(A+ (m− 1)I)

∫
C

ρ(z)YmYn dz = −
∫
C

z2ρ(z)Y
′

mY
′

n dz(4.9)

and subtracting gives

[nI(A+ (n− 1)I)−mI(A+ (m− 1)I)]

∫
C

ρ(z)YmYn dz = 0.(4.10)
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Finally, for n 6= m we have ∫
C

ρ(z)YmYn dz = 0,

this shows that the generalized Bessel matrix polynomials are orthogonal with ρ(z) as

weight function.

5. A connections between Bessel with Laguerre matrix Polynomials and

Whittaker matrix functions

In this section, we shall study relations of the generalized Bessel Polynomials and to

other matrix polynomials and matrix functions.

From (1.9), we can written

LAn (z) =
n∑

m=0

(−1)m

m! (n−m)!
(A+ I)n [(A+ I)m]−1 zm.(5.1)

It follows that

L−2nI−A+I
n (

B

z
) =

n∑
m=0

(−1)mBm

m! (n−m)!
(−2nI − A+ 2I)n [(−2nI − A+ 2I)m]−1 z−m

and multiply both sides by n! (−zB−1)n, one gets

n! (−zB−1)n L−2nI−A+I
n (

B

z
) =

n∑
m=0

(−1)m+nBm−n

m! (n−m)!
(−2nI − A+ 2I)nn! [(−2nI − A+ 2I)m]−1 zn−m

=
n∑

m=0

(2nI + A−mI − 2I)...(nI + A− I)n!

m! (n−m)!
(z B−1)n−m.

Here by changing the indices n−m→ k, we have

n∑
k=0

(nI + A+ kI − 2I)...(nI + A− I)n!

k! (n− k)!
(z B−1)k =

n∑
k=0

(nI + A+ kI − 2I)k
k! (n− k)!

(z B−1)k.

This leads to

Yn(A,B; z) = n!(−zB−1)nL−2nI−A+I
n (

B

z
); (n ∈ N0 := {0, 1, 2, ..}).(5.2)

The Whittaker function Wν,−ν+1/n+2(z) is defined by

Wν,−ν+1/n+2(z) = e−z/2 zν
n∑
k=0

n(n+ 1− 2ν)(n− 1)(n+ 2− 2ν)...(n− k + 1)(n+ k − 2ν)

k! zk

= e−z/2 zν 2F0(−n, n+ 1− 2ν;−;−1

z
),

(5.3)
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where ν ∈ N0, see [9, pp.37]. Hence, if C is a matrix satisfying (1.3), then by the properties

of the matrix functional calculus [10] and (2.6), the matrix WC,−C+I/n+2(z) is well defined

for z and

WC,−C+I/n+2(z) = e−z/2 zC
n∑
k=0

(−1)k(−nI)k ((n+ 1)I − 2C)k
k! zk

= e−z/2 zC 2F0(−nI, (n+ 1)I − 2C;−;−1

z
).

(5.4)

From (2.1), we can written

Yn(2I − 2C,B;
1

z
) =

n∑
k=0

(−1)k(−nI)k ((n+ 1)I − 2C)k
k!

(
B−1

z
)k

2F0(−nI, (n+ 1)I − 2C;−;−B
−1

z
),

comparison with (5.4), we obtain

Yn(A,B; z) = eB/2z(z B−1)I−A/2 WI−A/2,(A−I)/n+2 (
B

z
); (n ∈ N0 := {0, 1, 2, ..}).(5.5)

Now, we formalize of the results obtained so far in the following theorem:

Theorem 5.1. With previous notations for hypergeometric matrix functions, Laguerre

matrix polynomials and Whittaker matrix functions, the following relations connect the

generalized Bessel matrix polynomials with these special matrix functions:

(i) Yn(A,B; z) = 2F0(−nI,A+ (n− 1)I;−;−z B−1).

(ii) Yn(A,B; z) = n! (−zB−1)n L−2nI−A+I
n (B

z
).

(iii) Yn(A,B; z) = eB/2z (z B−1)I−A/2 WI−A/2,(A−I)/n+2 (B
z

).
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[11] L. Jódar and J.C. Cortés, Some properties of Gamma and Beta matrix functions, Appl. Math. Lett.,

11 (1998), 89-93.
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