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Abstract. In this paper the well known notion of a cyclic contraction for a finite family of non-empty
subsets of a metric space X and a mapping T of X into X (respectively, into the collection of nonempty
subsets of X) has been generalized. Subsequently, the above idea is used to obtain some new fixed point
theorems for single and multi-valued mappings. The results obtained herein generalize some recent fixed

point theorems.
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1. INTRODUCTION AND PRELIMINARIES
Throughout this paper N denotes the set of natural numbers and ® the class of functions
¢ :[0,00) — [0, 00) satisfying:
(a): ¢ is continuous and monotone nondecreasing,
(b): ¢(t) =0t =0.

The function ¢ € @ is also known as altering distance function (see, for instance, [1]).

In [2], Dutta and Chaudury obtained the following generalization of the well known Ba-
nach contraction principle.
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Theorem 1.1. Let (X, d) be a complete metric space and T : X — X a self-mapping
satisfying

(1.1) P(d(Tx, Ty)) < P(d(z,y)) — ld(z,y))

for all x,y € X, where v, € ®. Then T has a unique fixed point.

The mapping T satisfying (1.1) is known as (¢, p)-weakly contraction [3].
Notice that when ¢ (t) = t and ¢(t) = (1—k)t, we get the well know Banach contraction

principle as a special case of Theorem 1.1.

On the other hand Kirk et al. [4] introduced the following notion of cyclic mappings and

obtained a fixed point theorem (see Theorem 1.3 below).

Definition 1.2. Let Ay, A, ..., A, be nonempty subsets of a metric space (X,d). A

mapping T : | J'A; — (J'A; is called a cyclic mapping (or p-cyclic mapping) if
i=1 i=1

T(AZ> C Ai+17 where Ap+1 = Al.

Theorem 1.3. Let Ay, Ag, ..., A, be nonempty closed subsets of a complete metric space

and T : |JPA; — P A; a cyclic mapping. Assume that there exists k € (0,1) such that
i1 i=1

d(Tz,Ty) < kd(z,y) YV € A; and y € Ai41.
Then T has a unique fixed point.

For a detailed study of cyclic mappings, we refer to [4 -13] and references thereof.

Recently, Karapinar and Sadarangani [12] (see also [11]) combined the ideas of (¢, ¢)-
weakly contractions, and cyclic contractions and introduced the notion of cyclic weak

(1, p)-contraction as follows:

Definition 1.4. Let Ay, Ao, ..., A, be nonempty subsets of a metric space (X, d) such that
X =JA;. A mapping T : X — X is said to be cyclic weak (1), )-contraction if
i=1

(1): X =J"A; is a cyclic representation of X with respect to T’
i=1
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(2): Y(d(Tz, Ty)) < Y(d(x,y)) — p(d(x,y)) for all x € A; and y € A4,
where ¢, p € ® and A,1; = A;.

Example 1.5. [11, Example 4]. Let X = [—1,1] with the usual metric, i.e., d(z,y) =
|z —y|. Let Ay =[—1,0] = A3 and Ay = [0,1] = Ay. Then X = U4Ai = [—1,1]. Define
i=1

T:X — X by

T:L':—g forall z € X.

It is clear that T is a cyclic mapping on X. Further, if ¢, ¢ : [0,00) — [0, 00) are defined
by ¥(t) =t and ¢(t) = t/2, then ¢, o € & and T is a cyclic weak (1), p)-contraction.

Following theorem is the main result in [12].

Theorem 1.6. Let (X, d) be a metric space and Ay, As, ..., A, nonempty closed subsets of
X such that X =J'A;. Let T : X — X be a cyclic weak (¢, )-contraction. Then T has
i=1
a unique fized point z € (' A;.
i=1
In this paper we obtain two types of generalizations of the above theorem, One, for
single valued mappings, and other for multi-valued mappings in a metric space. Our

results extend and generalize certain fixed point theorems of [4], [11], [12] and others.
2. GENERALIZED CYCLIC WEAK (%, ¢)-CONTRACTION
First we extend Definition 1.2 as follows.

Definition 2.1. Let Ay, As, ..., A, be nonempty subsets of a metric space (X, d). A cyclic
mapping T : | J'A; — |J'A; will be called a Generalized cyclic weak (1, @)-contraction if
i=1 i=1

(2.1) P(d(Tx, Ty)) < P(M(x,y)) — (M (z,y))

forall x € A; and y € A1, where ,p € ®, A1 = A; and
d(z, Ty) + d(y, Tx) }
5 :

M(x,y) = max {d(x, y),d(x, Tx),d(y, Ty),

Remark 2.2. When M (z,y) = d(x,y) in Definition 2.1, we recover Definition 1.4. Hence
the class of generalized cyclic weak (1, p)-contraction is larger than cyclic weak (¢, ¢)-

contraction.
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Now we present our first result.

Theorem 2.3. Let Ay, As, ..., A, be nonempty closed subsets of a complete metric space
(X,d) and T : | J' A; — U’ A; be a generalized cyclic weak (1, @)-contraction on X. Then
i=1 i=1
T has a unique fized point z € (' A;.
i=1

Proof. Suppose for some i € {1,2,..,p} there exists an = € A; satisfying (2.1). Since for

any n € N, either n or n + 1 is even, we have

(2.2) YTz, T z)) < P(M(T" 2, T z)) — (M (T" 'z, T"))
< B(M(T" 2, ).

Since v is nondecreasing, we have

d(T"z, T"'z) < max{d(T" 'z, T"z),d(T" ‘'z, T"z),d(T"z, T" ),
d(Tn_l.CE, Tn+1.23) + d(Tn+1.T, Tn—H.CE) }
2

< d(T" 'z, T'z).

for n € N. Thus {d(T"z,T""'z)} is a decreasing sequence of nonnegative real numbers.

If limd(T"z, T""'z) = 0 then we are done. Suppose that lim d(T"z, T""'x) = r for
n— o0

n—o0

some r > 0. Making n — oo in (2.2) and using the continuity of ¢) and ¢, we have

P(r) <p(r) —o(r) <P(r),
which is a contradiction. Hence

lim d(T"z, T""'z) = 0.

n—soo
We show that {T"z} is a Cauchy sequence. Suppose {T"z} is not Cauchy. Then there
exists p1 > 0 and increasing sequences {my} and {n,} of positive integers such that for all
n < mg < ng,

d(T™x, T™x) > p and d(T™z, T™ 'z) < p.

By the triangle inequality,

d(T™ex, T x) < d(T™x, T 'z) + d(T™ 1o, T ).
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It follows that lim d(7T™*z, T™x) = u. Now by (2.1), we have

k—o0
(d(T™ g, T ) = (d(TT™x, TT™ 1))
< Y(M(T™x, T™x)) — e(M(T™* x, T™ 1))

< Y(M(T™x, T™x)).

Making k — oo,
Y(p) < P(p) — p(p) < P(p),

a contradiction unless g = 0. Therefore {T"z} is Cauchy. Since X is complete there

exists a point z € [J'A; such that {T"z} converges to z. Now for some i € {1,2,...,p}
i=1

there exist sequences {T?"z} and {T?" 'z} in A; and A; ;1 respectively, with 4,,; = A,

both converging to z.
Using (2.1), we get

Y(d(T*x,T2)) = P(d(TT* 'z,Tz))

A
=
=
=
d
\oH)_‘
&
|
pS}
=
=
d
\'&H
&

IA
=
=
~
3
L
=
&

Making k — oo, we get

P(d(z,Tz)) < (d(z,2)) = (0) = 0,
and ¥(d(z,Tz)) = 0. This implies d(z,7%) = 0 and z = T'z. Uniqueness of the fixed
point follows easily. O

Corollary 2.4. Theorem 1.6.

Proof. Tt comes from Theorem 2.3, when X = (J'A; and M(z,y) = d(z,y). O

=1

Corollary 2.5. Theorem 1.5.

Proof. 1t comes from Theorem 2.3, when M (z,y) = d(z,y), ¥(t) =t and ¢(t) = (1 — k)t
where k € (0,1). O
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Corollary 2.6. [11, Theorem 6]. Let Ay, As, ..., A, be nonempty closed subsets of a com-
plete metric space (X, d) and T : | J' A; — U A; a cyclic mapping such that
i=1 i=1
forallz € A; and y € A;yq, where ¢ € ®, Apy1 = Ay, Then T has a unique fized point
A npAz
i=1
Proof. It comes from Theorem 2.3, when M (x,y) = d(z,y), ¥(t) = t. O

The following example shows the generality of Theorem 2.3 over Theorems 1.3 and 1.6.

Example 2.7. Let X = {1,2,3,4,5} endowed with the metric d defined by

d(1,2) = d(1,3) = d(3,5) — g d(1,4) = g d(3,4) = 2.
d(1,5) = d(2,4) — g d(2,3) = d(4,5) =1,  d(2,5) = ?

Suppose A; = {1,2,3} and Ay = {1,4,5} then A; U Ay = X. Consider a mapping
T : X — X defined by

T1=1 T2=T3—=4, Td—1, T5=2.
We define ¢(t) = 2t and ¢(t) = 5 for all t > 0.

Observe that T'(A;) = {1,4} C Ay and T'(Ay) = {1,2} C A;. It can be easily verified
that T satisfies all the hypotheses of Theorem 2.3 and T1 =1 € A; N A;. However T

does not satisfy Theorems 1.3 and 1.6. For x = 3, y = 5 we have

7 13 13

Te,Ty)=->—— — = - .

4. MULTI-VALUED CYCLIC WEAK (1), ¢)-CONTRACTION
Throughout this section X denotes a metric space (X, d), CB(X) the collection of all

nonempty closed and bounded subsets of X, C'(X) the collection of all nonempty compact
subsets of X and H the Hausdorff metric induced by d, i.e.,

H(A, B) = max {sup d(z, B), supd(y, A)} ,

€A yeB
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for all A, B C CB(X), where d(z, B) = infd(z,y).

yeB

First we extend Definitions 1.2 and 1.4 for a multi-valued mapping.

Definition 4.1. Let Ay, As, ..., A, be nonempty subsets of a metric space X such that
X = J’A;. A mapping T : X — CB(X) is said to be a cyclic representation of X with
i=1

respect to T if

Tx C Ajyq for all z € A;, where Ay = Ay

Definition 4.2. Let Ay, Ao, ..., A, be nonempty subsets of a metric space X such that
X = JPA;. A mapping T : X — CB(X) will be called a multi-valued cyclic weak
i=1

(1, p)-contraction if

(i): X =J'A; is a cyclic representation of X with respect to T;
i=1

(ii): v(H(Tz,Ty)) < ¢Y(d(z,y)) — p(d(z,y)) for all z € A; and y € A;qq,
where 9, € ® and Ay, = A;.

Theorem 4.3. Let Ay, As, ..., A, be nonempty closed subsets of a complete metric space X
such that X = J'A;. Let T : X — C(X) be a multi-valued cyclic weak (1, p)-contraction
i=1

on X. Then T has a fized point z € (' A;.

i=1

Proof. We construct a sequence {x,} in X in the following way. Let 2o € A; and x; €
Tzy C Ay, If H(Txy,Txy) = 0 then 2y € Ty ie., x; is fixed point of T and we
are done. Assume that H(Tzo,Tx1) > 0. There exits a point 25 € Tx; C As such
that d(z1,22) < H(Txo,Tx1). Such a choice is admissible, since T'x; is compact (see
Nadler Jr. [14, p. 480]). Since Tz, is compact, we choose a point xz3 € A, such that
d(xe,x3) < H(Txy,Txs). Again, if H(Tzy,Txs) = 0 then xo € Ty i.e., xo is fixed point
of T. For n > 0 there exists i,, € {1,2,...,p} such that 2,1 € A;, and z, € A; ...

Continuing in the same manner for n € N, we get

d(!L‘n,ZEn+1) S H(T$n—1;Txn) .
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Since T is a multi-valued cyclic weak (1, ¢)-contraction, we have

(4.1)  Y(d(@n, znt1)) < YHTp1,Tr,)) <P(d(@0-1,70)) — P(d(0-1,75))

S ¢(d($n—1>$n))
Since v is nondecreasing, we have
d(xn7 xn—&—l) S d(xn—ly xn)

for n € N. Thus {d(z,,z,+1)} is a decreasing sequence of nonnegative real numbers. Let

lim d(z,, ©p41) = r for some r > 0. Making n — oo in (4.1) and using the continuity of
n—oo

1 and ¢, we have
() <P(r) —o(r) < ¢(r),

which is a contradiction unless r = 0. Hence

lim d(x,, py1) = 0.
n—oo

We show that {z,} is a Cauchy sequence. Suppose {z,} is not Cauchy. Then there
exists g > 0 and increasing sequences {my} and {n,} of positive integers such that for all

n < mg < ng,

A(Tpmy,, Tpy) > pand d(zp,,, Tnp—1) < p.

By the triangle inequality,
ATy Ty, ) < ATy, Trg—1) + A(Tpy—1, Ty )-

It follows that, lim d(z,,,%,,) = p. Using (ii), we get

k—o00

w(d('xmk+17$nk+1)) S @D(H(TfmmT%k))
W(d(m,, 2n,) — o(d(Tm,, Tn, )

(AT, Tny))-

IN

IN

Making k — oo,
Y(p) <) —plp) < P(p),
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a contradiction unless p = 0. Therefore {z,} is Cauchy. Since X is complete {z,} has a
limit in X. Call it z. By the property that X = [J'A; is a cyclic representation of X with
respect to T, the sequence {z,} has infinite nun;l:)zer of terms in each A; fori € 1,2, ..., p.
Suppose z € A;, Tz € A;41 and we choose a subsequence {z,, } of {z,} with z,, € A;_;

(the existence of this subsequence is guaranteed by the fact that {x,} has infinite number

of terms in each A; for i € {1,2,...,p}). Again by (ii), we have

Y(d(n,11,T2) < P(H(Tp,,T2))
U(d(@n,, 2)) — o(d(@n,, 2))
Y(d(Tn,, 2))-

IA

IN

Making k& — oo, we get

¥(d(z,Tz)) < ¢(d(z,2)) = ¢(0) = 0,

and ¢(d(z,Tz)) = 0. This implies d(z,7z) =0 and z € Tz. O

Corollary 4.4. Let Ay, A, ..., A, be nonempty closed subsets of a complete metric space

X such that X = J’A;. Let T : X — C(X) such that
i=1

H(Tz,Ty) < d(z,y) — (d(z,y))

for allz € A; andy € Aiq, where ¢ € ® and A,y = Ay, Then T has a fized point
S npAZ
i=1

Proof. 1t comes from Theorem 4.3, when ¥(t) = t. O

Corollary 4.5. Let Ay, Ag, ..., A, be nonempty closed subsets of a complete metric space

X such that X = J’A;. Let T : X — C(X) such that

=1

H(Tz,Ty) < kd(z,y)

for all x € A; and y € A;q1, where k € (0,1) and Apyy = Ay. Then T has a fized point

i=1

Proof. 1t comes from Theorem 4.3, when ¢ (t) = t and ¢(t) = (1—k)t, where k € (0,1). O
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