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Abstract. In this paper the well known notion of a cyclic contraction for a finite family of non-empty

subsets of a metric space X and a mapping T of X into X (respectively, into the collection of nonempty

subsets of X) has been generalized. Subsequently, the above idea is used to obtain some new fixed point

theorems for single and multi-valued mappings. The results obtained herein generalize some recent fixed

point theorems.
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1. Introduction and Preliminaries

Throughout this paper N denotes the set of natural numbers and Φ the class of functions

ϕ : [0,∞)→ [0,∞) satisfying:

(a): ϕ is continuous and monotone nondecreasing,

(b): ϕ(t) = 0⇔ t = 0.

The function ϕ ∈ Φ is also known as altering distance function (see, for instance, [1]).

In [2], Dutta and Chaudury obtained the following generalization of the well known Ba-

nach contraction principle.
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Theorem 1.1. Let (X, d) be a complete metric space and T : X → X a self-mapping

satisfying

(1.1) ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− ϕ(d(x, y))

for all x, y ∈ X, where ψ, ϕ ∈ Φ. Then T has a unique fixed point.

The mapping T satisfying (1.1) is known as (ψ, ϕ)-weakly contraction [3].

Notice that when ψ(t) = t and ϕ(t) = (1−k)t, we get the well know Banach contraction

principle as a special case of Theorem 1.1.

On the other hand Kirk et al. [4] introduced the following notion of cyclic mappings and

obtained a fixed point theorem (see Theorem 1.3 below).

Definition 1.2. Let A1, A2, ..., Ap be nonempty subsets of a metric space (X, d). A

mapping T :
⋃p

i=1

Ai →
⋃p

i=1

Ai is called a cyclic mapping (or p-cyclic mapping) if

T (Ai) ⊂ Ai+1, where Ap+1 = A1.

Theorem 1.3. Let A1, A2, ..., Ap be nonempty closed subsets of a complete metric space

and T :
⋃p

i=1

Ai →
⋃p

i=1

Ai a cyclic mapping. Assume that there exists k ∈ (0, 1) such that

d(Tx, Ty) ≤ kd(x, y) ∀x ∈ Ai and y ∈ Ai+1.

Then T has a unique fixed point.

For a detailed study of cyclic mappings, we refer to [4 -13] and references thereof.

Recently, Karapinar and Sadarangani [12] (see also [11]) combined the ideas of (ψ, ϕ)-

weakly contractions, and cyclic contractions and introduced the notion of cyclic weak

(ψ, ϕ)-contraction as follows:

Definition 1.4. Let A1, A2, ..., Ap be nonempty subsets of a metric space (X, d) such that

X =
⋃p

i=1

Ai. A mapping T : X → X is said to be cyclic weak (ψ, ϕ)-contraction if

(1): X =
⋃p

i=1

Ai is a cyclic representation of X with respect to T ;
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(2): ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− ϕ(d(x, y)) for all x ∈ Ai and y ∈ Ai+1,

where ψ, ϕ ∈ Φ and Ap+1 = A1.

Example 1.5. [11, Example 4]. Let X = [−1, 1] with the usual metric, i.e., d(x, y) =

|x − y|. Let A1 = [−1, 0] = A3 and A2 = [0, 1] = A4. Then X =
⋃4

i=1

Ai = [−1, 1]. Define

T : X → X by

Tx = −x
3

for all x ∈ X.

It is clear that T is a cyclic mapping on X. Further, if ψ, ϕ : [0,∞)→ [0,∞) are defined

by ψ(t) = t and ϕ(t) = t/2, then ψ, ϕ ∈ Φ and T is a cyclic weak (ψ, ϕ)-contraction.

Following theorem is the main result in [12].

Theorem 1.6. Let (X, d) be a metric space and A1, A2, ..., Ap nonempty closed subsets of

X such that X =
⋃p

i=1

Ai. Let T : X → X be a cyclic weak (ψ, ϕ)-contraction. Then T has

a unique fixed point z ∈
⋂p

i=1

Ai.

In this paper we obtain two types of generalizations of the above theorem, One, for

single valued mappings, and other for multi-valued mappings in a metric space. Our

results extend and generalize certain fixed point theorems of [4], [11], [12] and others.

2. Generalized cyclic weak (ψ, ϕ)-contraction

First we extend Definition 1.2 as follows.

Definition 2.1. Let A1, A2, ..., Ap be nonempty subsets of a metric space (X, d). A cyclic

mapping T :
⋃p

i=1

Ai →
⋃p

i=1

Ai will be called a Generalized cyclic weak (ψ, ϕ)-contraction if

(2.1) ψ(d(Tx, Ty)) ≤ ψ(M(x, y))− ϕ(M(x, y))

for all x ∈ Ai and y ∈ Ai+1, where ψ, ϕ ∈ Φ, Ap+1 = A1 and

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
.

Remark 2.2. When M(x, y) = d(x, y) in Definition 2.1, we recover Definition 1.4. Hence

the class of generalized cyclic weak (ψ, ϕ)-contraction is larger than cyclic weak (ψ, ϕ)-

contraction.
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Now we present our first result.

Theorem 2.3. Let A1, A2, ..., Ap be nonempty closed subsets of a complete metric space

(X, d) and T :
⋃p

i=1

Ai →
⋃p

i=1

Ai be a generalized cyclic weak (ψ, ϕ)-contraction on X. Then

T has a unique fixed point z ∈
⋂p

i=1

Ai.

Proof. Suppose for some i ∈ {1, 2, .., p} there exists an x ∈ Ai satisfying (2.1). Since for

any n ∈ N, either n or n+ 1 is even, we have

ψ(d(T nx, T n+1x)) ≤ ψ(M(T n−1x, T nx))− ϕ(M(T n−1x, T nx))(2.2)

≤ ψ(M(T n−1x, T nx)).

Since ψ is nondecreasing, we have

d(T nx, T n+1x) ≤ max{d(T n−1x, T nx), d(T n−1x, T nx), d(T nx, T n+1x),

d(T n−1x, T n+1x) + d(T n+1x, T n+1x)

2
}

≤ d(T n−1x, T nx).

for n ∈ N. Thus {d(T nx, T n+1x)} is a decreasing sequence of nonnegative real numbers.

If lim
n→∞

d(T nx, T n+1x) = 0 then we are done. Suppose that lim
n→∞

d(T nx, T n+1x) = r for

some r > 0. Making n→∞ in (2.2) and using the continuity of ψ and ϕ, we have

ψ(r) ≤ ψ(r)− ϕ(r) ≤ ψ(r),

which is a contradiction. Hence

lim
n→∞

d(T nx, T n+1x) = 0.

We show that {T nx} is a Cauchy sequence. Suppose {T nx} is not Cauchy. Then there

exists µ > 0 and increasing sequences {mk} and {nk} of positive integers such that for all

n ≤ mk < nk,

d(Tmkx, T nkx) ≥ µ and d(Tmkx, T nk−1x) < µ.

By the triangle inequality,

d(Tmkx, T nkx) ≤ d(Tmkx, T nk−1x) + d(T nk−1x, T nkx).
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It follows that lim
k→∞

d(Tmkx, T nkx) = µ. Now by (2.1), we have

ψ(d(Tmk+1x, T nk+1x)) = ψ(d(TTmkx, TT nkx))

≤ ψ(M(Tmkx, T nkx))− ϕ(M(Tmkx, T nkx))

≤ ψ(M(Tmkx, T nkx)).

Making k →∞,

ψ(µ) ≤ ψ(µ)− ϕ(µ) ≤ ψ(µ),

a contradiction unless µ = 0. Therefore {T nx} is Cauchy. Since X is complete there

exists a point z ∈
⋃p

i=1

Ai such that {T nx} converges to z. Now for some i ∈ {1, 2, ..., p}

there exist sequences {T 2nx} and {T 2n−1x} in Ai and Ai+1 respectively, with Ap+1 = A1,

both converging to z.

Using (2.1), we get

ψ(d(T 2nx, Tz)) = ψ(d(TT 2n−1x, Tz))

≤ ψ(M(T 2n−1x, z))− ϕ(M(T 2n−1x, z))

≤ ψ(M(T 2n−1x, z)).

Making k →∞, we get

ψ(d(z, Tz)) ≤ ψ(d(z, z)) = ψ(0) = 0,

and ψ(d(z, Tz)) = 0. This implies d(z, Tz) = 0 and z = Tz. Uniqueness of the fixed

point follows easily. �

Corollary 2.4. Theorem 1.6.

Proof. It comes from Theorem 2.3, when X =
⋃p

i=1

Ai and M(x, y) = d(x, y). �

Corollary 2.5. Theorem 1.3.

Proof. It comes from Theorem 2.3, when M(x, y) = d(x, y), ψ(t) = t and ϕ(t) = (1− k)t

where k ∈ (0, 1). �
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Corollary 2.6. [11, Theorem 6]. Let A1, A2, ..., Ap be nonempty closed subsets of a com-

plete metric space (X, d) and T :
⋃p

i=1

Ai →
⋃p

i=1

Ai a cyclic mapping such that

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y))

for all x ∈ Ai and y ∈ Ai+1, where ϕ ∈ Φ, Ap+1 = A1. Then T has a unique fixed point

z ∈
⋂p

i=1

Ai.

Proof. It comes from Theorem 2.3, when M(x, y) = d(x, y), ψ(t) = t. �

The following example shows the generality of Theorem 2.3 over Theorems 1.3 and 1.6.

Example 2.7. Let X = {1, 2, 3, 4, 5} endowed with the metric d defined by

d(1, 2) = d(1, 3) = d(3, 5) =
13

8
, d(1, 4) =

3

2
, d(3, 4) = 2.

d(1, 5) = d(2, 4) =
7

4
, d(2, 3) = d(4, 5) = 1, d(2, 5) =

15

8
.

Suppose A1 = {1, 2, 3} and A2 = {1, 4, 5} then A1 ∪ A2 = X. Consider a mapping

T : X → X defined by

T1 = 1, T2 = T3 = 4, T4 = 1, T5 = 2.

We define ψ(t) = 2t and ϕ(t) = t
20

for all t ≥ 0.

Observe that T (A1) = {1, 4} ⊂ A2 and T (A2) = {1, 2} ⊂ A1. It can be easily verified

that T satisfies all the hypotheses of Theorem 2.3 and T1 = 1 ∈ A1 ∩ A2. However T

does not satisfy Theorems 1.3 and 1.6. For x = 3, y = 5 we have

d(Tx, Ty) =
7

4
>

13

8
− 13

160
= d(x, y)− ϕ(d(x, y).

4. Multi-valued cyclic weak (ψ, ϕ)-contraction

Throughout this section X denotes a metric space (X, d), CB(X) the collection of all

nonempty closed and bounded subsets of X, C(X) the collection of all nonempty compact

subsets of X and H the Hausdorff metric induced by d, i.e.,

H(A,B) = max

{
sup
x∈A

d(x,B), sup
y∈B

d(y, A)

}
,
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for all A,B ⊆ CB(X), where d(x,B) = inf
y∈B

d(x, y).

First we extend Definitions 1.2 and 1.4 for a multi-valued mapping.

Definition 4.1. Let A1, A2, ..., Ap be nonempty subsets of a metric space X such that

X =
⋃p

i=1

Ai. A mapping T : X → CB(X) is said to be a cyclic representation of X with

respect to T if

Tx ⊂ Ai+1 for all x ∈ Ai, where Ap+1 = A1.

Definition 4.2. Let A1, A2, ..., Ap be nonempty subsets of a metric space X such that

X =
⋃p

i=1

Ai. A mapping T : X → CB(X) will be called a multi-valued cyclic weak

(ψ, ϕ)-contraction if

(i): X =
⋃p

i=1

Ai is a cyclic representation of X with respect to T ;

(ii): ψ(H(Tx, Ty)) ≤ ψ(d(x, y))− ϕ(d(x, y)) for all x ∈ Ai and y ∈ Ai+1,

where ψ, ϕ ∈ Φ and Ap+1 = A1.

Theorem 4.3. Let A1, A2, ..., Ap be nonempty closed subsets of a complete metric space X

such that X =
⋃p

i=1

Ai. Let T : X → C(X) be a multi-valued cyclic weak (ψ, ϕ)-contraction

on X. Then T has a fixed point z ∈
⋂p

i=1

Ai.

Proof. We construct a sequence {xn} in X in the following way. Let x0 ∈ A1 and x1 ∈

Tx0 ⊂ A2. If H(Tx0, Tx1) = 0 then x1 ∈ Tx1 i.e., x1 is fixed point of T and we

are done. Assume that H(Tx0, Tx1) > 0. There exits a point x2 ∈ Tx1 ⊂ A3 such

that d(x1, x2) ≤ H(Tx0, Tx1). Such a choice is admissible, since Tx1 is compact (see

Nadler Jr. [14, p. 480]). Since Tx2 is compact, we choose a point x3 ∈ A4 such that

d(x2, x3) ≤ H(Tx1, Tx2). Again, if H(Tx1, Tx2) = 0 then x2 ∈ Tx2 i.e., x2 is fixed point

of T . For n > 0 there exists in0 ∈ {1, 2, ..., p} such that xn−1 ∈ Ain and xn ∈ Ain+1 .

Continuing in the same manner for n ∈ N, we get

d(xn, xn+1) ≤ H(Txn−1, Txn) .
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Since T is a multi-valued cyclic weak (ψ, ϕ)-contraction, we have

ψ(d(xn, xn+1)) ≤ ψ(H(Txn−1, Txn)) ≤ ψ(d(xn−1, xn))− ϕ(d(xn−1, xn))(4.1)

≤ ψ(d(xn−1, xn)).

Since ψ is nondecreasing, we have

d(xn, xn+1) ≤ d(xn−1, xn).

for n ∈ N. Thus {d(xn, xn+1)} is a decreasing sequence of nonnegative real numbers. Let

lim
n→∞

d(xn, xn+1) = r for some r ≥ 0. Making n→∞ in (4.1) and using the continuity of

ψ and ϕ, we have

ψ(r) ≤ ψ(r)− ϕ(r) ≤ ψ(r),

which is a contradiction unless r = 0. Hence

lim
n→∞

d(xn, xn+1) = 0.

We show that {xn} is a Cauchy sequence. Suppose {xn} is not Cauchy. Then there

exists µ > 0 and increasing sequences {mk} and {nk} of positive integers such that for all

n ≤ mk < nk,

d(xmk
, xnk

) ≥ µ and d(xmk
, xnk−1) < µ.

By the triangle inequality,

d(xmk
, xnk

) ≤ d(xmk
, xnk−1) + d(xnk−1, xnk

).

It follows that, lim
k→∞

d(xmk
, xnk

) = µ. Using (ii), we get

ψ(d(xmk+1, xnk+1)) ≤ ψ(H(Txmk
, Txnk

))

≤ ψ(d(xmk
, xnk

))− ϕ(d(xmk
, xnk

))

≤ ψ(d(xmk
, xnk

)).

Making k →∞,

ψ(µ) ≤ ψ(µ)− ϕ(µ) ≤ ψ(µ),
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a contradiction unless µ = 0. Therefore {xn} is Cauchy. Since X is complete {xn} has a

limit in X. Call it z. By the property that X =
⋃p

i=1

Ai is a cyclic representation of X with

respect to T , the sequence {xn} has infinite number of terms in each Ai for i ∈ 1, 2, ..., p.

Suppose z ∈ Ai, Tz ∈ Ai+1 and we choose a subsequence {xnk
} of {xn} with xnk

∈ Ai−1

(the existence of this subsequence is guaranteed by the fact that {xn} has infinite number

of terms in each Ai for i ∈ {1, 2, ..., p}). Again by (ii), we have

ψ(d(xnk+1, T z)) ≤ ψ(H(Txnk
, T z))

≤ ψ(d(xnk
, z))− ϕ(d(xnk

, z))

≤ ψ(d(xnk
, z)).

Making k →∞, we get

ψ(d(z, Tz)) ≤ ψ(d(z, z)) = ψ(0) = 0,

and ψ(d(z, Tz)) = 0. This implies d(z, Tz) = 0 and z ∈ Tz. �

Corollary 4.4. Let A1, A2, ..., Ap be nonempty closed subsets of a complete metric space

X such that X =
⋃p

i=1

Ai. Let T : X → C(X) such that

H(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y))

for all x ∈ Ai and y ∈ Ai+1, where ϕ ∈ Φ and Ap+1 = A1. Then T has a fixed point

z ∈
⋂p

i=1

Ai.

Proof. It comes from Theorem 4.3, when ψ(t) = t. �

Corollary 4.5. Let A1, A2, ..., Ap be nonempty closed subsets of a complete metric space

X such that X =
⋃p

i=1

Ai. Let T : X → C(X) such that

H(Tx, Ty) ≤ kd(x, y)

for all x ∈ Ai and y ∈ Ai+1, where k ∈ (0, 1) and Ap+1 = A1. Then T has a fixed point

z ∈
⋂p

i=1

Ai.

Proof. It comes from Theorem 4.3, when ψ(t) = t and ϕ(t) = (1−k)t, where k ∈ (0, 1). �
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