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1. Introduction

A binary relation on a set V is a subset E of V' x V. A digraph is a pair (V, E') where
V' is a non empty set (called vertex set) and F is a binary relation on V. The elements
of E are called edges. Let V be a non empty set and let Ei, F»,..., E, be mutually
disjoint binary relations on V. Then the (n + 1)-tuple G = (V; Ey, Es, ..., E,) is called
a digraph structure[8]. The elements of V' are called vertices and the elements of E; are
called E;-edges. The following definition were introduced in [8].

A digraph structure (V; Ey, Es, ..., E,) is called (i)E1Es - - - E,-trivial if E; = () for all
i, and E;- trivial if E; = () (1) E1E; - - - E,- reflezive if for all x € G, (x,z) € E; for some 1,
and E;- reflezive if for all x € V, (z, 1) € E;(iii) BBy - - - E,- symmetric if E; = E;* for
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all i, and Es- symmetric if E; = E;'(iv) E1Ey--- E,- anti symmetric, if (z,y) € E; and
(y,x) € E; implies © = y for all i, and E;- anti symmetric if (z,y) € E; and (y,z) € E;
implies * = y (v) EyEsy - - - E,- transitive if for every ¢ and j, E; o E; C Ej, for some k,
and F; transitive if E; o E; C E; (vi) an EyEs - - E,- hasse diagram if for every positive
integer n > 2 and every vy, vy, ...,v, of V., (v;,v;41) € UE; for all i =0,1,2,...,n — 1,
implies (vg,v,) ¢ E; for all i, and F;- hasse diagram if for every positive integer n > 2 and
every vg, vy, ..., v, of V, (v, vi41) € E; for all i = 0,1,2,...,n — 1, implies (vo, v,) ¢ Ej,
(viii) Ey By - - - B~ complete if UE; =V x V, and E; complete if E; =V x V.

A digraph structure (V; By, Es, ..., F,) is called (i) an Ey Es - - - E,- quasi ordered set if
it is both EyEy - - - E,- reflexive and Fy Es - - - B, -transitive (ii)an EyFs - - E,, - partially
ordered set if it is F1FE> - - - E,- anti symmetric and E;FEs - - - E,- quasi ordered set. Sim-
ilarly, we can define F; quasi ordered set and F; partially ordered set as in the case of
ordinary relations.

An EFE,--- FE,- walk of length k£ in a digraph structure is an alternating sequence
W = wvg,e0,01,...,€5_1,0, Where ¢; = (v;,v;41) € UE;. An Ey\Ey---E, -walk W
is called a F1F,--- E,- path if all the internal vertices are distinct. We use notation
(vo, V1,2, ..., v,) for the By Ey - -+ E, - path W. As in digraphs, we define F;— walk and

E- path. For example, an E;- path between two vertices u and v consists of only F;- edges.

A digraph structure (V; Ey, Es, ..., E,) iscalled (i) Ey1 Es - - - E,- connected if there exits
at least one 1 Fy - - - E,- path from v to u for all u,v € V, (ii) 1 Es - - - E,,- quasi connected
if for every pair of vertices x,y there is a vertex z such that there is an F1F5 - - - E,-path
from z to x and an EyFs--- E,-path from z to y, (iii) EyFEs -« E,- locally connected iff
for every pair of vertices u,v € V there is an E1F5--- E, - path from v to u whenever
there is an E1Es - - - E,, - path from u to v and (iv) E1Es - - - E,- semi connected for every
pair of vertices u, v, there is an F1F5--- E,- path from u to v or an F1FEs--- E,- path
from v to wu.

A digraph structure (V; Ey, Es, ..., E,) is called E; -connected if there exits at least one

E; path from v to u for all u,v € V. Similarly we can define E; quasi connected, E;
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-locally connected and F; - semi connected digraph structures.

The E1Fs--- F, - distance between two vertices x and y in a digraph structure G is
the length of the shortest Ey Es - - - E,- path between = and y, denoted by dy 23 »(7,y).
Let G = (V; Fy, Es, ..., E,) be a finite E1F;--- E,- connected digraph structure. Then
we can define E; distance and F; diameter as in digraphs.

Two digraph structures (Vi; By, Es, ..., E,) and (Va; Ry, Rs, ..., R,,) are said to be
isomorphic if (i) m = n and (ii) there exits a bijective function f: V; — V5 such that
(x,y) € E; < (f(z), f(y)) € R;. This concept of isomorphism is a generalization of
isomorphism between two digraphs. An isomorphism of a digraph structure onto itself
is called an automorphism. A digraph structure (V; Ey, Fs, ..., E,) is said to be vertex-
transitive if, given any two vertices a and b of V| there is some digraph automorphism
f:V — V such that f(a) = b. Let (V;Ey, Es, ..., E,) be a digraph structure and let
v € V. Then the F 1 Es - - E, out-degree of uw is [{v € V : (u,v) € UE;}| and E1Ey--- E,
in-degree of u is [{v € V : (v,u) € UE;}|. Similarly we can define the E; out- degree and
E; in- degree as in the case of digraphs.

Let (Vi; Ey, Es, ..., E,) be a digraph structure. A vertex v € G is called an F1Es - -+ E,
-source if for every vertex x € G, there is an F1FEs--- FE, - path from v to x. Similar-
ly a vertex u € G is called an F1FE,--- E,- sink if for very vertex y € G there is an
E\E,--- E,- path from y to u. As in digraphs, we define F; - source and E; - sink. Let
(Vi; By, Es, ..., E,) be a digraph structure and let v € G. Then the EyEs - - - E,, reach-
able set Rya3.. n(u) is {x € G : there is an E Fs - - - E,- path from u to z}. Similarly,
the EyEy - - - E,- antecedent set Q12 ,(u) is defined as

Q2. .n(u) ={x € G: thereis an E\Ey--- E,- path from z to u}.
As in the case of digraphs, we can define the E;- reachable set and F;-antecedent set of a
vertex.

A non empty set G, together with a mapping *x : G x G — G is called a groupoid.

The mapping * is called a binary operation on the set G. If a,b € G, we use the symbol
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ab to denote *(a,b). A groupoid (G, *) is called a quasigroup, if for every a,b € G, the
equations, ar = b and ya = b are uniquely solvable in G [6]. This implies both left and
right cancelation laws. A quasigroup with an identity element is called a loop. Observe
that a loop is a weaker algebraic structure than a group.

A subset A of a loop G is said to be a right associative subset of G(R associative), if for
every z,y € G, (vy)A = x(yA). This means, if z,y € G and a € A, then (zy)a = x(ya’)
for some a’ € A. Observe that the R associative law not only allows to interchange the
positions of parenthesis, the two elements that are on the left should be in G and they
will be same on both sides, the rightmost element in the left hand side is in A and is
changed to another element o’ € A as the right most element in the right side [12].

Here we have the following result:

Theorem 1.1.([9]) Let A and B be R associative subsets of a loop G. Then AB is also

R associative.

3. Cayley digraph structures induced by loops

In [11] the authors introduced a class of Cayley digraph structures induced by groups.
In this paper, we introduce a class of Cayley digraph structures induced by loops. These
class of Cayley digraphs structures can be viewed as a generalization of those obtained in
[11]. Further, many graph properties are studied in terms of algebraic properties.

We start with the following definition:

Definition 2.1. Let G be a loop and Si,5s,...,5S, be mutually disjoint R associative
subsets of G. Then Cayley digraph structure of G with respect to S1,Ss,...,S, is defined
as the digraph structure X = (G; Ey, Es, ..., E,), where

E,={(z,y):z €S}

where z denotes the solution of the equation y = xz.
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The sets 51,9, ...,5, are called connection sets of X. The Cayley digraph structure
of G with respect to Si,Ss, ..., S, is denoted by Cay(G; Si,Ss, ..., ).

In this paper we may use the following notations:

(1) Let Sy, 5%,...,S, besubsets of a loop G, then we may define the product Sy, S, ..., S,

as follows:
5152 .8, = {(((s182)83) .. )Sp : 8; € Siyi =1,2,... ,n}.

IfS;=95=---=5,=.5, we denote the above product as 5.

(2) Let Ag be the union of set of all k£ products of the form S;,S;, - - - S;, from the set
{51,52,...,5,}. Then J, Ag. is denoted by [S].

(3) Let D be a subset of G. We define D, = {zy : zpz = 1 for some z € D}, where 1
is the identity element in G.

(4) Let A be a subset of a loop G, then the semi group generated by A is denoted by

< A >.

Theorem 2.2. If G is a loop and let S1, S, ...,S, are mutually disjoint R associative

subsets of G, then the Cayley digraph structure Cay(G; Sy, Sa, . .., Sy) is vertez transitive.

Proof. Let a and b be any two arbitrary elements in G. Define a mapping ¢ : G — G by
o(z) = (b/a)x for all x € G.

where (b/a) denotes the solution of the equation b = za. This mapping defines a permu-
tation of the vertices of Cay(G; Sy, Sa,...,S,). It is also an automorphism. Let xz,y € G
such that y = zz. Note that

(z,y) € E; & z € S; for some 1.

The equation y = xz can be written as

(b/a)y = (b/a)(xz)

= ((b/a)x)z’ for some 2’ € S;
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The above equation tells us that ((b/a)z, (b/a)y) € E;. That is, (p(z),¢(y)) € E;.
Similarly, assume that (p(z), ¢(y)) € E;. Then (b/a)y = ((b/a)x)z for some z € S;. This
implies that (b/a)y = (b/a)(zz") for some 2’ € S; . By left cancellation law, we obtain
y = xz’. This tells us that (z,y) € E;. Also we note that ¢(a) = (b/a)a = b. Hence

Cay(G; Sy, Sa, ..., Sp) is vertex transitive.

Proposition 2.3 Cay(G; Sy, Sy, ..., S,) is an E1Ey - - - E,, -trivial digraph structure if and
only if S; = 0 for all i.

Proof. By definition, Cay(G; Sy, S, ..., Sy,) is E1Ey - -+ E,, - trivial if and only if E; = ()
for all . This implies that S; = ) for all 7.

Proposition 2.4 Cay(G; Sy, Ss,...,S,) is an E;- trivial digraph structure if and only if

Proposition 2.5 Cay(G; Sy, Ss,...,S,) is E1Es - - - E,- reflexive if and only if 1 € S; for

some 1.

Proof. Assume that Cay(G; Sy, Sa,...,S,) is an Ey Es - - - E,- reflexive digraph structure.
Then for every z € G, (z,z) € E; for some ¢. This implies that the equation x = xz has
a unique solution in .S; for some ¢. That is, 1 € S; for some .

Conversely, assume that 1 € S; for some ¢. This implies for each x € G, (z,z) € E; for

some 4. That is, (z,2) € UE; for all z € G.

Proposition 2.6 Cay(G; Sy, 52, ...,5,) is E1Es - - - E, - symmetric if and only if S; = S;,
for all 1.

Proof. First, assume that Cay(G; S1,S2,...,5,) is an E1FEs - -+ E, -symmetric digraph
structure. Let a € S;. Then (1,a) € E;. Since Cay(G; S, Ss,...,S,) is symmetric
(a,1) € E;. This implies that the equation 1 = at has a solution in S;. That is a € S;,.
Hence S; C S;,. Similarly, we can prove that S;, C S;.

Conversely, assume that S; = S;, for all i. Suppose that (z,y) € E;. Then the equation

y = xz has a solution in S;. That is z € S;. Consider the equation x = yt. This equation
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can be written as:
xz = (yt)z
. / /
i.e., y=uy(tz'") for some 2’ € S;
i.e., yl=y(t)
i.e., 1=tz (by left cancelation law).

The above equation tells us that ¢ € S;,. Since S; = 5, it follows that ¢ € S;. Hence the

equation z = yt has a solution in S;. That is (y,x) € E;.

Proposition 2.7 Cay(G; Sy, S2,...,5,) is an E1Ey - -+ E, - transitive if and only if for
every i, j, 5;5; C Sk for some k.
Proof. First, assume that Cay(G; Sy, S2,...,5,)is E1Es - - - E, - transitive. Let x € S5
Then © = 212, for some z; € S; and 2z € S§;. This implies that (1,2) € E; and
(21,2122) € E;. Since Cay(G, Sy, Sa, ..., S,) is transitive (1, 2122) € Ej, for some k. That
is 2129 € Si. Hence S;5; C S}, for some k.
Conversely assume that for each i, j, S;5; C Sj for some k. Let z,y and 2 € G such
that y = xt; and z = yty. If (z,y) € E; and (y,2) € Ej, then ¢, € S; and ¢, € S;. Note

that the equation z = yt, can be written as:
z = (xt)ty
= z(t1ty) for some t, € S;
= xt3 where t3 = t1t),

Note that t3 € S;S;. Since 5;5; C Sk, t3 € S. That the equation z = xt has a solution

ts in Sg. Hence Cay(G; Sy, S, ..., Sy,) is transitive.

Proposition 2.8 Cay(G; S, Ss,...,S,) is E1Ey - - E,- complete if and only if G = US;.

Proof. Suppose Cay(G; Sy, S, ...,S,) is E1Ey - -+ E,- complete. Then for every = € G,
we have (1,z) € UE;. This implies that = € S; for some . This implies that G = US;.

Conversely, assume that G = US;. Let x and y be two arbitrary elements in G such that
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y = xz. Then z € G. This implies that z € S; for some . That is, (1, 2) € UE;. That is
(x,x2) = (z,y) € UE;. This shows that Cay(G; S1,S2,...,S,) is E1Es - - - E,- complete.

Proposition 2.9 Cay(G; Sy, Sa, ..., Sy) is E;- complete if and only if G = S;.
Proposition 2.10 Cay(G; Sy, S2, ..., Sy) is EyEy - - - E,- connected if and only if G = [5].

Proof. Suppose Cay(G;Si,Ss,...,S,) is E1Es--- E,- connected and let x € G. Let
(Ly1,92, .-, Yk, x) be a E1FEy--- E,- path leading from 1 to z. Then we have, y; =
21,Y2 = Y122, -+ Yk = Yk—12k, T = Yp2k41 for some z; € S;.,j =1,2,--- , k + 1. Note that

the equation x = yi2;.1 can be written as

r = (yk—lzk)zk—i-l
= ((yk—22k—1)yk—1zk)zk+1

The last equation tells us that x € S; S, ---5;,,, This implies that 2 € A for some
A € [S]. Since z is arbitrary, G = [5].

Conversely, assume that G = [S]. Let z and y be any arbitrary elements in G. Let
y = xz. Then z € G Then z € §;5;--- Sy, for some 4, j,... and k. This implies that z =
$;Sj...sy for some 7,7 ... and k. Then clearly, (1,s;, s;S;,...,5;Sj...s;) is an EyEy--- E,

-path from 1 to z. That is, (z,zs;, ©8;8;,...,28;5;...5;) is a E1Ey - - - E,- path from x to

y. Hence Cay(G; Sy, S, ..., S,) is connected.

Proposition 2.11 Cay(G;S1,Ss,...,S,) is E;- connected if and only if G =< S; >,

where < S; > is the semi group generated by the set S;.

Proposition 2.12 Cay(G; Sy, S, ...,S,) is EyEs--- E,- quasi connected if and only if
G = [S]e[S]-
Proof. First, assume that Cay(G; Sy, Ss, ..., S,) is quasi connected. Let = be any arbi-

trary element in GG. Then there exits a vertex y € G such that there is a path from y to 1,

say, (Y, y1,Y2, " ,Yn, 1) and a path from y to x, say,(y, 1, T2, ..., Tm,x). Then we have
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the following system of equations:
y1 = yz; for some 2, € S;,
Ya = Y129 for some z5 € S;,

(1) Y3 = Y23 for some z3 € S,

1 = ypzpy1 for some z,,1 € S;

i1
and

x1 = yty for some z; € S},

X9 = X1ty for some 2o € 5,
(2) T3 = xot3 for some z3 € S,

T = Tty for some 2,11 €55,

Observe that equation (1) can be written as:

(3) 1 =y(wws ... wy4q1) for some wy € S, k=1,2,...,n+ 1
This implies that

(4) y € [S]e

Similarly, equation (2) can be written as:

(5) r=y(v1vy... V1) for some v, € S5, k=1,2,... m+1.
From equations (4) and (5), we have

(6) x € [S]e[5]-

Since z is arbitrary, G = [S]¢[5].
Conversely, assume that G = [S],[S]. Let = and y be two arbitrary vertices in G. Let
y = xz. Then z € G. This implies that z € [S],[S]. Then there exits z; € [S], and 2, € [S5]

such that z = z129. 21 € [S], implies that there exits ¢, € S;, such that 1 = z1(t1ta ... t,).
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That is,1 = (((z171)72)...7y) for some 7, € S; ,k = 1,2,...,m. This implies that
(21,2171, 217172, . . ., 1) is a path from z; to 1. That is,

(yz1,yz171,Y217m172, - . ., y) is a path from yz; to y. Similarly, z; € [S] implies that there
exits a, € S;, such that zo = ajas...a,,. Observe that (22, a1a9,a1az2as,...,1) is a path
from 2z, to 1. That is, (2129, 210109, a1a20a3, ...,21) is a path from z to yz;. That is,
(yz,yz1a1a2, yajasas, . .., yz) is a path from x to yz;. This implies that the digraph
structure Cay(G; Sy, Ss,...,S,) is E1Fs - -+ E,- quasi connected.

Proposition 2.13 Cay(G;S1,Ss,...,S,) is E; quasi connected if and only if G =<

S; >p< S; >

Proposition 2.14 Cay(G; Sy, S, ..., 5,) is EyEsy--- E,- locally connected if and only if

Proof.

Assume that Cay(G;S1,Ss,...,5,) is E1Ey--- E,- locally connected. Let z € [S].
Then x € A,, for some m. Then = s;5;...5,,. Let vg = 1,21 = 5;, 22 = 5;5j,..., 2T, =
5i8;...5m. Then

(To, T1, T2y -+ oy Tin)
is a path leading from 1 to x. Since Cay(G; Sy, Sa, ..., Sy)- is locally connected, there
exits a path from z to 1, say:

(5’579173/27 <oy Ym, 1)

This implies that

y1 = xty for some t; € 5;,

Y2 = Y1t for some ty € S,

1 = Ymtm4q for some t,, 411 €°5;,

This implies that 1 = z(z129- - z,,) for some z; € S; ,k =1,2,3,...(m + 1). That is

k7

x € [S],. Hence [S] C [S],. Similarly, one can prove that [S], C [S]. Hence [S] = [S].
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Conversily, if [S] = [S]e, one can easily verify that Cay(G; S1, Sz, ..., 5S,) is
E\Es - - E,- locally connected
Proposition 2.15 Cay(G; Sy, S, . .., Sy) is E;- locally connected if and only if < S; >=<

SZ' >y.

Proposition 2.16 Cay(G; Sy, Ss,...,S,) is EyEy--- E,- semi connected if and only if
G = [S|U[Ye.

Proof. Assume that Cay(G; Sy, Ss,...,S,) is E1Ey - -+ E,- semi connected and let x € G.
Then there is a path from 1 to z, say: (1,z1, %9, - ,x, x) or a path from x to 1, say:
(T, Y1,Y2, -+, Ym, 1). This implies that x € [S] or x € [S],. This implies that G = [S]U[S],.
Similarly, if G = [S]U[S]s, then one can prove that Cay(G; S, Ss,...,S,) is E1Ey -+« E,-

semi connected.

Proposition 2.17 Cay(G; S1, Sa, ..., Sy) is E;- semi connected if and only if G =< S; >
U<S; >y
Proposition 2.18 Cay(G; Sy, S2,...,S,) is an EyEs - - - E,- quasi ordered set if and only
if

(’L) 1€S1USQ"'USn,

(i1) for every(i,j),S;S; C Sy for some k.

Proposition 2.19 Cay(G; S1,Ss,...,S,) is an E;- quasi ordered set if and only if
1€S;, and S? C S;.
Proposition 2.20 Cay(G;S1,Ss,...,S,) if an E1Es--- E,- partially ordered set if and

only if

(1)1 651USQ"'USn,
(i1) for every(i, j), S;S; C Sk for some k,
(i) U (851 5. = (1.
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Proof. Observe that

reu(s;Ns;,) e xe(S;NS;,) for some i
&z e S, and z €5,
& (1,z) € E; and (z,1) € E;

szr=1

From these equivalences, the result follows.

Proposition 2.21 Cay(G; Sy, Ss,...,S,) if an E;- partially ordered set if and only if

(i)1 € S,
(i1)S? C S;
(i11)S; N S;, = {1}

Proposition 2.22 Let A, (m > 2) be the set of all m products of the form S; Sy, -+ S, .
Then Cay(G;Si,Ss,...,Sy,) is an E1Es--- E,- hasse diagram if and only if C NS; = ()
for all i and for all C € A,,.

Proof. Suppose the condition holds. Let zg,x1,..., 2, be (m + 1) elements in G such

that (z;, x;11) € UE; for i = 0,1,...,m — 1. This implies that

x1 = xoty for some t; € 5;,
x9 = X1ty for some ty € 5,

r3 = xoty for some t3 € S,

Ty = Tym—1tn for some t,, € S;

m
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The last equation can be written as:

Tn = ((xn—th—l))tm
= ((xotl)tz) sty

=x0(z122...2m) for some z, € S; , k=1,2,...,m

= xot, where t = 2125...2, € A,

Since C'NS; = () for all i and for all C' € A,,, (o, z,,) ¢ UE;.

Conversely, assume that Cay(G; Sy, Ss,...,S,) is an EjEs - - E, -hasse diagram. We
will show that C'N.S; = () for all ¢ and for all C' € A,,. Let S;,S;,S;, - -+ S;, be any element
in A,,. Let x € 5;,5,5,--5i,. Then v = s;,8,,8i,...5;, for some s; € ;. This
implies that (1, s;,, $i,Sis, - - -, ) is a path from 1 to z. Since Cay(G; Sy, Sy, ..., S,) is an
E\Ey--- E, - hasse diagram, x ¢ S; for any . That is, A,, N.S; =0 for all i.

Proposition 2.23 Let A, (m > 2) be the set of all m products of the form S;S;, -+ S;, ..
Then Cay(G; Sy, Sa, ..., Sy) is an E;- hasse diagram if and only if S"* NS = 0, for all

m > 2.
Proposition 2.24 The E\E;--- E, out-degree of Cay(G;S1,Ss,...,S,) is the cardinal

number |S; U Sy U---US,|.

Proof. Since by Theorem 2.2, Cay(G;Si, S, ...,S,) is vertex- transitive it suffices to

consider the out degree of the vertex 1 € GG. Observe that

p(1) ={u: (1,u) € UE;}
={u:u €S, for some i}

=S5 USU---US,

Hence |[p(1)| = [S1U S U---US,|.

Proposition 2.25 The E; out-degree of Cay(G;Si,Ss,...,S,) is the cardinal number
|5il.-
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Proposition 2.26 The E\FE;--- E, in-degree of Cay(G;Sy,Sa,...,S,) is the cardinal
number |S1, U Sop U -+ - U Syl

Proof. Since Cay(G;Si, Sa,...,S,) is vertex- transitive it suffices to consider the in

degree of the vertex 1 € G. Observe that

o(1)={u: (u,1) € UE;}
={u: (u,1) € E;}
={u:1=uz for some z € S;}
={z,: 2z € S, for some i}

=510 USU---USpu.

Hence |O'<].)| = |S1€ USQ(U s USng|.

Proposition 2.27 The E; in-degree of Cay(G; Sy, Sa, ..., Sy) is the cardinal number |S;,|.

Proposition 2.28 For k > 1, let Ay, be the set of all k products of the form S;, S, Si, - - - S, -
If Cay(G; Sy, Sy, ..., Sy) has finite diameter, then the E\Es - - E,, diameter of the Cayley

digraph structure Cay(G; Sy, Ss, ..., S,) is the least positive integer m such that G = A,,.

Proof. Let m be the smallest positive integer such that G = A,,. We will show that the
diameter of Cay(G; Sy, Ss,...,S,) is m. Let x and y be any two arbitrary elements in G
such that y = xz. Then z € G. This implies that x € A,,. But then z has a representation
of the form z = s;,8;, - - - s;,,. This implies that(1, s;,, S, Si,, - - - , 2) is path of m edges from
1 to z. That is,(x, xs;,, S, Siy, - - -, y) is a path of length m from x to y. This shows that
dia,. n(z,y) < m. Since z and y are arbitrary, max, yec{di2,.. n(2,y)} < m. Therefore
the diameter of Cay(G; S1, S, ...,Sy,) is less than or equal to m. On the other hand let
the diameter of Cay(G; Sy, Ss,...,S,) be k. Let x € G and dy 2. »(1,2) = k. Then we
have x € B for some B € A;. That is,G = Aj. Now by the minimality of k, we have

m < k. Hence k£ = m.
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Proposition 2.29 If Cay(G; Sy, Ss,...,S,) has finite diameter, then the E; diameter of
the Cayley digraph structure Cay(G;Si,Sa,...,S,) is the least positive integer m such
that G = S]".

Proposition 2.30 The vertex 1 is an EyEs - - - E,-source of Cay(G; Sy, Sa, ..., Sy) if and
only if G = [9].

Proof. First, assume that 1 is an EyF; - -+ E, -source of Cay(G; Sy, 53,...,S,). Then for
any vertex x € G, there is an Ey Es - - - E,- path from 1 to z. This implies that G = [5].

Conversely, if G = [S], one can prove that 1 is an EyFs - - - E,- source.

Proposition 2.31 The vertex 1 is an E; source of Cay(G; Sy, S, ...,S,) if and only if
G =<5, >.

Proposition 2.32 The vertex 1 is an E1Es--- E,- sink of Cay(G; S1,S2,...,5,) if and
only if G = [S]s.

Proof. First, assume that 1 is an Ey Es - - - E, -sink of Cay(G; Sy, Ss,...,S,). Then for
each z € G, there is an E\Fs - - - E,- path from x to 1. This implies that = € [S],. Hence
G =[5

Conversely, if G = [S]y, one can easily prove that 1 is an E; Es - - - E,- sink of the Cayley
digraph structure Cay(G; Sy, Ss, ..., Sy).

Proposition 2.33 The vertex 1 is an E; sink of Cay(G;S1,Ss,...,S,) if and only if
G =< S5; >y.

-----

Proof. By definition, R(1) = {x : there exits an F1E;--- E, - path from 1 to z}.
Observe that

x € Ry n(l) < there exits an E1Es - - - E, - path from 1 to z, say (1,21, 22,...,Z,, )

< e [S].
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Therefore, Ry 3. n(1) = [S].

Proposition 2.35 The E; reachable set R;(1) of the vertex 1 is the set < S; > .

Proposition 2.36 The E\E,--- E, antecedent set Q2. n(1) of the vertex 1 is the set
[S]e.

Proof. Observe that

r € Q1. n(l) & there exits an E1Es - - - E, -path from = to 1, say (z,z1,22,...,2,,1)
s x e[S

Therefore, Q12 (1) = [S].

Proposition 2.37 The E; antecedent set Q;(1) of the vertex 1 is the set < S; >y .
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