

Available online at http://scik.org

J. Math. Comput. Sci. 2 (2012), No. 5, 1401-1416

ISSN: 1927-5307

A CLASS OF CAYLEY DIGRAPH STRUCTURES INDUCED BY LOOPS

ANIL KUMAR V¹, PARAMESWARAN ASHOK NAIR^{2,*}

¹Department of Mathematics, University of Calicut, Malappuram, Kerala, India 673 635

²Mannaniya College of Arts & Science, Pangode, Trivandrum, Kerala, India 695 609

Abstract. In this paper, we generalize the results in [8] to produce a new classes of Cayley digraph structures induced by loops.

Keywords: Loops, Cayley digraph, Digraph structure, Cayley digraph structure.

2000 AMS Subject Classification: 05C25 (20N05)

1. Introduction

A binary relation on a set V is a subset E of $V \times V$. A digraph is a pair (V, E) where V is a non empty set (called vertex set) and E is a binary relation on V. The elements of E are called edges. Let V be a non empty set and let E_1, E_2, \ldots, E_n be mutually disjoint binary relations on V. Then the (n + 1)-tuple $G = (V; E_1, E_2, \ldots, E_n)$ is called a digraph structure[8]. The elements of V are called vertices and the elements of E_i are called E_i -edges. The following definition were introduced in [8].

A digraph structure $(V; E_1, E_2, ..., E_n)$ is called (i) $E_1 E_2 \cdots E_n$ -trivial if $E_i = \emptyset$ for all i, and E_i -trivial if $E_i = \emptyset$ (ii) $E_1 E_2 \cdots E_n$ -treflexive if for all $x \in G$, $(x, x) \in E_i$ for some i, and E_i -treflexive if for all $x \in V$, $(x, x) \in E_i$ (iii) $E_1 E_2 \cdots E_n$ -symmetric if $E_i = E_i^{-1}$ for

*Corresponding author

Received May 4, 2012

1401

all i, and E_i -symmetric if $E_i = E_i^{-1}(iv)$ $E_1E_2\cdots E_n$ - anti symmetric, if $(x,y) \in E_i$ and $(y,x) \in E_i$ implies x = y for all i, and E_i - anti symmetric if $(x,y) \in E_i$ and $(y,x) \in E_i$ implies x = y (v) $E_1E_2\cdots E_n$ - transitive if for every i and j, $E_i \circ E_j \subseteq E_k$ for some k, and E_i transitive if $E_i \circ E_i \subseteq E_i$ (vi) an $E_1E_2\cdots E_n$ - hasse diagram if for every positive integer $n \geq 2$ and every v_0, v_1, \ldots, v_n of V, $(v_i, v_{i+1}) \in \cup E_i$ for all $i = 0, 1, 2, \ldots, n-1$, implies $(v_0, v_n) \notin E_i$ for all i, and E_i - hasse diagram if for every positive integer $n \geq 2$ and every v_0, v_1, \ldots, v_n of V, $(v_i, v_{i+1}) \in E_i$ for all $i = 0, 1, 2, \ldots, n-1$, implies $(v_0, v_n) \notin E_i$, (viii) $E_1E_2\cdots E_n$ - complete if $\cup E_i = V \times V$, and E_i complete if $E_i = V \times V$.

A digraph structure $(V; E_1, E_2, \ldots, E_n)$ is called (i) an $E_1 E_2 \cdots E_n$ - quasi ordered set if it is both $E_1 E_2 \cdots E_n$ - reflexive and $E_1 E_2 \cdots E_n$ - transitive (ii) an $E_1 E_2 \cdots E_n$ - partially ordered set if it is $E_1 E_2 \cdots E_n$ - anti symmetric and $E_1 E_2 \cdots E_n$ - quasi ordered set. Similarly, we can define E_i quasi ordered set and E_i partially ordered set as in the case of ordinary relations.

An $E_1E_2\cdots E_n$ - walk of length k in a digraph structure is an alternating sequence $W=v_0,e_0,v_1,\ldots,e_{k-1},v_k$, where $e_i=(v_i,v_{i+1})\in \cup E_i$. An $E_1E_2\cdots E_n$ -walk W is called a $E_1E_2\cdots E_n$ - path if all the internal vertices are distinct. We use notation (v_0,v_1,v_2,\ldots,v_n) for the $E_1E_2\cdots E_n$ - path W. As in digraphs, we define E_i - walk and E_i - path. For example, an E_i - path between two vertices u and v consists of only E_i - edges.

A digraph structure $(V; E_1, E_2, \ldots, E_n)$ is called (i) $E_1 E_2 \cdots E_n$ - connected if there exits at least one $E_1 E_2 \cdots E_n$ - path from v to u for all $u, v \in V$, (ii) $E_1 E_2 \cdots E_n$ - quasi connected if for every pair of vertices x, y there is a vertex z such that there is an $E_1 E_2 \cdots E_n$ -path from z to x and an $E_1 E_2 \cdots E_n$ -path from z to z t

A digraph structure $(V; E_1, E_2, ..., E_n)$ is called E_i -connected if there exits at least one E_i path from v to u for all $u, v \in V$. Similarly we can define E_i quasi connected, E_i

-locally connected and E_i - semi connected digraph structures.

The $E_1E_2\cdots E_n$ - distance between two vertices x and y in a digraph structure G is the length of the shortest $E_1E_2\cdots E_n$ - path between x and y, denoted by $d_{1,2,3,\dots,n}(x,y)$. Let $G=(V;E_1,E_2,\dots,E_n)$ be a finite $E_1E_2\cdots E_n$ - connected digraph structure. Then the $E_1E_2\cdots E_n$ diameter of G is defined as $d(G)=\max_{x,y\in G}\{d_{1,2,3,\dots,n}(x,y)\}$. Similarly we can define E_i distance and E_i diameter as in digraphs.

Two digraph structures $(V_1; E_1, E_2, \ldots, E_n)$ and $(V_2; R_1, R_2, \ldots, R_m)$ are said to be isomorphic if (i) m = n and (ii) there exits a bijective function $f: V_1 \to V_2$ such that $(x,y) \in E_i \Leftrightarrow (f(x),f(y)) \in R_i$. This concept of isomorphism is a generalization of isomorphism between two digraphs. An isomorphism of a digraph structure onto itself is called an automorphism. A digraph structure $(V; E_1, E_2, \ldots, E_n)$ is said to be vertextransitive if, given any two vertices a and b of V, there is some digraph automorphism $f: V \to V$ such that f(a) = b. Let $(V; E_1, E_2, \ldots, E_n)$ be a digraph structure and let $v \in V$. Then the $E_1E_2 \cdots E_n$ out-degree of u is $|\{v \in V: (u,v) \in \cup E_i\}|$ and $E_1E_2 \cdots E_n$ in-degree of u is $|\{v \in V: (v,u) \in \cup E_i\}|$. Similarly we can define the E_i out-degree and E_i in-degree as in the case of digraphs.

Let $(V_1; E_1, E_2, \ldots, E_n)$ be a digraph structure. A vertex $v \in G$ is called an $E_1E_2 \cdots E_n$ -source if for every vertex $x \in G$, there is an $E_1E_2 \cdots E_n$ - path from v to x. Similarly a vertex $u \in G$ is called an $E_1E_2 \cdots E_n$ - sink if for very vertex $y \in G$ there is an $E_1E_2 \cdots E_n$ - path from y to u. As in digraphs, we define E_i - source and E_i - sink. Let $(V_1; E_1, E_2, \ldots, E_n)$ be a digraph structure and let $v \in G$. Then the $E_1E_2 \cdots E_n$ reachable set $E_1E_2 \cdots E_n$ antecedent set $E_1E_2 \cdots E_n$ path from $E_1E_2 \cdots E_n$ antecedent set $E_1E_2 \cdots E_n$ is defined as

$$Q_{1,2,\dots,n}(u) = \{x \in G : \text{ there is an } E_1 E_2 \cdots E_n\text{- path from } x \text{ to } u\}.$$

As in the case of digraphs, we can define the E_i - reachable set and E_i -antecedent set of a vertex.

A non empty set G, together with a mapping $*: G \times G \longrightarrow G$ is called a *groupoid*. The mapping * is called a *binary operation* on the set G. If $a, b \in G$, we use the symbol ab to denote *(a,b). A groupoid (G,*) is called a *quasigroup*, if for every $a,b \in G$, the equations, ax = b and ya = b are uniquely solvable in G [6]. This implies both left and right cancelation laws. A quasigroup with an identity element is called a *loop*. Observe that a loop is a weaker algebraic structure than a group.

A subset A of a loop G is said to be a right associative subset of $G(\mathcal{R}$ associative), if for every $x, y \in G$, (xy)A = x(yA). This means, if $x, y \in G$ and $a \in A$, then (xy)a = x(ya') for some $a' \in A$. Observe that the \mathcal{R} associative law not only allows to interchange the positions of parenthesis, the two elements that are on the left should be in G and they will be same on both sides, the rightmost element in the left hand side is in A and is changed to another element $a' \in A$ as the right most element in the right side [12].

Here we have the following result:

Theorem 1.1.([9]) Let A and B be \mathcal{R} associative subsets of a loop G. Then AB is also \mathcal{R} associative.

3. Cayley digraph structures induced by loops

In [11] the authors introduced a class of Cayley digraph structures induced by groups. In this paper, we introduce a class of Cayley digraph structures induced by loops. These class of Cayley digraphs structures can be viewed as a generalization of those obtained in [11]. Further, many graph properties are studied in terms of algebraic properties. We start with the following definition:

Definition 2.1. Let G be a loop and S_1, S_2, \ldots, S_n be mutually disjoint \mathcal{R} associative subsets of G. Then Cayley digraph structure of G with respect to S_1, S_2, \ldots, S_n is defined as the digraph structure $X = (G; E_1, E_2, \ldots, E_n)$, where

$$E_i = \{(x, y) : z \in S_i\}$$

where z denotes the solution of the equation y = xz.

The sets S_1, S_2, \ldots, S_n are called connection sets of X. The Cayley digraph structure of G with respect to S_1, S_2, \ldots, S_n is denoted by $Cay(G; S_1, S_2, \ldots, S_n)$.

In this paper we may use the following notations:

(1) Let S_1, S_2, \ldots, S_n be subsets of a loop G, then we may define the product S_1, S_2, \ldots, S_n as follows:

$$S_1 S_2 \dots S_n = \{(((s_1 s_2) s_3) \dots) s_n : s_i \in S_i, i = 1, 2, \dots, n\}.$$

If $S_1 = S_2 = \cdots = S_n = S$, we denote the above product as S^n .

- (2) Let A_k be the union of set of all k products of the form $S_{i_1}S_{i_2}\cdots S_{i_k}$ from the set $\{S_1, S_2, \ldots, S_n\}$. Then $\bigcup_k A_k$ is denoted by [S].
- (3) Let D be a subset of G. We define $D_{\ell} = \{z_{\ell} : z_{\ell}z = 1 \text{ for some } z \in D\}$, where 1 is the identity element in G.
- (4) Let A be a subset of a loop G, then the semi group generated by A is denoted by A > 0.

Theorem 2.2. If G is a loop and let S_1, S_2, \ldots, S_n are mutually disjoint \mathcal{R} associative subsets of G, then the Cayley digraph structure $Cay(G; S_1, S_2, \ldots, S_n)$ is vertex transitive.

Proof. Let a and b be any two arbitrary elements in G. Define a mapping $\varphi: G \to G$ by

$$\varphi(x) = (b/a)x$$
 for all $x \in G$.

where (b/a) denotes the solution of the equation b = za. This mapping defines a permutation of the vertices of $Cay(G; S_1, S_2, ..., S_n)$. It is also an automorphism. Let $x, y \in G$ such that y = xz. Note that

$$(x,y) \in E_i \Leftrightarrow z \in S_i \text{ for some } i.$$

The equation y = xz can be written as

$$(b/a)y = (b/a)(xz)$$

= $((b/a)x)z'$ for some $z' \in S_i$

The above equation tells us that $((b/a)x, (b/a)y) \in E_i$. That is, $(\varphi(x), \varphi(y)) \in E_i$. Similarly, assume that $(\varphi(x), \varphi(y)) \in E_i$. Then (b/a)y = ((b/a)x)z for some $z \in S_i$. This implies that (b/a)y = (b/a)(xz') for some $z' \in S_i$. By left cancellation law, we obtain y = xz'. This tells us that $(x, y) \in E_i$. Also we note that $\varphi(a) = (b/a)a = b$. Hence $\operatorname{Cay}(G; S_1, S_2, \ldots, S_n)$ is vertex transitive.

Proposition 2.3 $Cay(G; S_1, S_2, ..., S_n)$ is an $E_1E_2 \cdots E_n$ -trivial digraph structure if and only if $S_i = \emptyset$ for all i.

Proof. By definition, $Cay(G; S_1, S_2, ..., S_n)$ is $E_1E_2 \cdots E_n$ - trivial if and only if $E_i = \emptyset$ for all i. This implies that $S_i = \emptyset$ for all i.

Proposition 2.4 $Cay(G; S_1, S_2, ..., S_n)$ is an E_i -trivial digraph structure if and only if $S_i = \emptyset$.

Proposition 2.5 $Cay(G; S_1, S_2, ..., S_n)$ is $E_1E_2 \cdots E_n$ - reflexive if and only if $1 \in S_i$ for some i.

Proof. Assume that $Cay(G; S_1, S_2, ..., S_n)$ is an $E_1E_2 \cdots E_n$ - reflexive digraph structure. Then for every $x \in G$, $(x, x) \in E_i$ for some i. This implies that the equation x = xz has a unique solution in S_i for some i. That is, $1 \in S_i$ for some i.

Conversely, assume that $1 \in S_i$ for some i. This implies for each $x \in G$, $(x, x) \in E_i$ for some i. That is, $(x, x) \in \cup E_i$ for all $x \in G$.

Proposition 2.6 $Cay(G; S_1, S_2, ..., S_n)$ is $E_1E_2 \cdots E_n$ - symmetric if and only if $S_i = S_{i_\ell}$ for all i.

Proof. First, assume that $Cay(G; S_1, S_2, \ldots, S_n)$ is an $E_1 E_2 \cdots E_n$ -symmetric digraph structure. Let $a \in S_i$. Then $(1, a) \in E_i$. Since $Cay(G; S_1, S_2, \ldots, S_n)$ is symmetric $(a, 1) \in E_i$. This implies that the equation 1 = at has a solution in S_i . That is $a \in S_{i_\ell}$. Hence $S_i \subseteq S_{i_\ell}$. Similarly, we can prove that $S_{i_\ell} \subseteq S_i$.

Conversely, assume that $S_i = S_{i\ell}$ for all i. Suppose that $(x, y) \in E_i$. Then the equation y = xz has a solution in S_i . That is $z \in S_i$. Consider the equation x = yt. This equation

can be written as:

$$xz=(yt)z$$
 $i.e., y=y(tz')$ for some $z'\in S_i$ $i.e., y1=y(tz')$ $i.e., 1=tz'$ (by left cancelation law).

The above equation tells us that $t \in S_{i_{\ell}}$. Since $S_i = S_{i_{\ell}}$, it follows that $t \in S_i$. Hence the equation x = yt has a solution in S_i . That is $(y, x) \in E_i$.

Proposition 2.7 $Cay(G; S_1, S_2, ..., S_n)$ is an $E_1E_2 \cdots E_n$ - transitive if and only if for every $i, j, S_iS_j \subseteq S_k$ for some k.

Proof. First, assume that $Cay(G; S_1, S_2, ..., S_n)$ is $E_1E_2 \cdots E_n$ - transitive. Let $x \in S_iS_j$. Then $x = z_1z_2$ for some $z_1 \in S_i$ and $z_2 \in S_j$. This implies that $(1, z_1) \in E_i$ and $(z_1, z_1z_2) \in E_j$. Since $Cay(G, S_1, S_2, ..., S_n)$ is transitive $(1, z_1z_2) \in E_k$ for some k. That is $z_1z_2 \in S_k$. Hence $S_iS_j \subseteq S_k$ for some k.

Conversely assume that for each $i, j, S_i S_j \subseteq S_k$ for some k. Let x, y and $z \in G$ such that $y = xt_1$ and $z = yt_2$. If $(x, y) \in E_i$ and $(y, z) \in E_j$, then $t_1 \in S_i$ and $t_2 \in S_j$. Note that the equation $z = yt_2$ can be written as:

$$z = (xt_1)t_2$$

= $x(t_1t'_2)$ for some $t'_2 \in S_j$
= xt_3 where $t_3 = t_1t'_2$

Note that $t_3 \in S_i S_j$. Since $S_i S_j \subseteq S_k$, $t_3 \in S_k$. That the equation z = xt has a solution t_3 in S_k . Hence $Cay(G; S_1, S_2, \ldots, S_n)$ is transitive.

Proposition 2.8 $Cay(G; S_1, S_2, ..., S_n)$ is $E_1E_2 \cdots E_n$ - complete if and only if $G = \cup S_i$.

Proof. Suppose $Cay(G; S_1, S_2, ..., S_n)$ is $E_1E_2 \cdots E_n$ - complete. Then for every $x \in G$, we have $(1, x) \in \bigcup E_i$. This implies that $x \in S_i$ for some i. This implies that $G = \bigcup S_i$. Conversely, assume that $G = \bigcup S_i$. Let x and y be two arbitrary elements in G such that

y = xz. Then $z \in G$. This implies that $z \in S_i$ for some i. That is, $(1, z) \in \cup E_i$. That is $(x, xz) = (x, y) \in \cup E_i$. This shows that $Cay(G; S_1, S_2, \ldots, S_n)$ is $E_1E_2 \cdots E_n$ - complete.

Proposition 2.9 $Cay(G; S_1, S_2, ..., S_n)$ is E_i -complete if and only if $G = S_i$.

Proposition 2.10 $Cay(G; S_1, S_2, ..., S_n)$ is $E_1E_2 \cdots E_n$ - connected if and only if G = [S].

Proof. Suppose $Cay(G; S_1, S_2, ..., S_n)$ is $E_1E_2 \cdots E_n$ - connected and let $x \in G$. Let $(1, y_1, y_2, ..., y_k, x)$ be a $E_1E_2 \cdots E_n$ - path leading from 1 to x. Then we have, $y_1 = z_1, y_2 = y_1z_2, ..., y_k = y_{k-1}z_k, x = y_kz_{k+1}$ for some $z_j \in S_{i_j}, j = 1, 2, \cdots, k+1$. Note that the equation $x = y_kz_{k+1}$ can be written as

$$x = (y_{k-1}z_k)z_{k+1}$$

$$= ((y_{k-2}z_{k-1})y_{k-1}z_k)z_{k+1}$$

$$= (z_1z_2)\cdots z_{k+1}$$

The last equation tells us that $x \in S_{i_1}S_{i_2}\cdots S_{i_{k+1}}$ This implies that $x \in A$ for some $A \in [S]$. Since x is arbitrary, G = [S].

Conversely, assume that G = [S]. Let x and y be any arbitrary elements in G. Let y = xz. Then $z \in G$ Then $z \in S_i S_j \cdots S_k$ for some i, j, \ldots and k. This implies that $z = s_i s_j \ldots s_k$ for some i, j, \ldots and k. Then clearly, $(1, s_i, s_i s_j, \ldots, s_i s_j, \ldots s_k)$ is an $E_1 E_2 \cdots E_n$ -path from 1 to z. That is, $(x, xs_i, xs_i s_j, \ldots, xs_i s_j, \ldots s_k)$ is a $E_1 E_2 \cdots E_n$ - path from x to y. Hence $Cay(G; S_1, S_2, \ldots, S_n)$ is connected.

Proposition 2.11 $Cay(G; S_1, S_2, ..., S_n)$ is E_i -connected if and only if $G = \langle S_i \rangle$, where $\langle S_i \rangle$ is the semi-group generated by the set S_i .

Proposition 2.12 $Cay(G; S_1, S_2, ..., S_n)$ is $E_1E_2 \cdots E_n$ - quasi connected if and only if $G = [S]_{\ell}[S]$.

Proof. First, assume that $Cay(G; S_1, S_2, ..., S_n)$ is quasi connected. Let x be any arbitrary element in G. Then there exits a vertex $y \in G$ such that there is a path from y to 1, say, $(y, y_1, y_2, ..., y_n, 1)$ and a path from y to x, say, $(y, x_1, x_2, ..., x_m, x)$. Then we have

the following system of equations:

$$y_1 = yz_1 \text{ for some } z_1 \in S_{i_1}$$

$$y_2 = y_1z_2 \text{ for some } z_2 \in S_{i_2}$$

$$(1)$$

$$y_3 = y_2z_3 \text{ for some } z_3 \in S_{i_3}$$

$$\vdots$$

$$1 = y_nz_{n+1} \text{ for some } z_{n+1} \in S_{i_{n+1}}.$$

and

$$x_1 = yt_1 \text{ for some } z_1 \in S_{i_1}$$

$$x_2 = x_1t_2 \text{ for some } z_2 \in S_{i_2}$$

$$(2)$$

$$x_3 = x_2t_3 \text{ for some } z_3 \in S_{i_3}$$

$$\vdots$$

$$x = x_mt_{m+1} \text{ for some } z_{m+1} \in S_{i_{m+1}}$$

Observe that equation (1) can be written as:

(3)
$$1 = y(w_1 w_2 \dots w_{n+1}) \text{ for some } w_k \in S_{i_k}, k = 1, 2, \dots, n+1.$$

This implies that

$$(4) y \in [S]_{\ell}$$

Similarly, equation (2) can be written as:

(5)
$$x = y(v_1v_2...v_{m+1})$$
 for some $v_k \in S_{i_k}, k = 1, 2, ..., m + 1$.

From equations (4) and (5), we have

$$(6) x \in [S]_{\ell}[S].$$

Since x is arbitrary, $G = [S]_{\ell}[S]$.

Conversely, assume that $G = [S]_{\ell}[S]$. Let x and y be two arbitrary vertices in G. Let y = xz. Then $z \in G$. This implies that $z \in [S]_{\ell}[S]$. Then there exits $z_1 \in [S]_{\ell}$ and $z_2 \in [S]$ such that $z = z_1 z_2$. $z_1 \in [S]_{\ell}$ implies that there exits $t_k \in S_{i_k}$ such that $1 = z_1(t_1 t_2 \dots t_m)$.

That is,1 = $(((z_1r_1)r_2)...r_m)$ for some $r_m \in S_{i_k}, k = 1, 2, ..., m$. This implies that $(z_1, z_1r_1, z_1r_1r_2, ..., 1)$ is a path from z_1 to 1. That is,

 $(yz_1, yz_1r_1, yz_1r_1r_2, \ldots, y)$ is a path from yz_1 to y. Similarly, $z_2 \in [S]$ implies that there exits $a_k \in S_{i_k}$ such that $z_2 = a_1a_2 \ldots a_m$. Observe that $(z_2, a_1a_2, a_1a_2a_3, \ldots, 1)$ is a path from z_2 to 1. That is, $(z_1z_2, z_1a_1a_2, a_1a_2a_3, \ldots, z_1)$ is a path from z to yz_1 . That is, $(yz, yz_1a_1a_2, ya_1a_2a_3, \ldots, yz_1)$ is a path from z to z_1 . This implies that the digraph structure $Cay(G; S_1, S_2, \ldots, S_n)$ is $z_1z_2 \cdots z_n$ quasi connected.

Proposition 2.13 $Cay(G; S_1, S_2, ..., S_n)$ is E_i quasi connected if and only if $G = < S_i >_{\ell} < S_i >$.

Proposition 2.14 $Cay(G; S_1, S_2, ..., S_n)$ is $E_1E_2 \cdots E_n$ - locally connected if and only if $[S] = [S]_{\ell}$.

Proof.

Assume that $Cay(G; S_1, S_2, \ldots, S_n)$ is $E_1E_2\cdots E_n$ - locally connected. Let $x\in [S]$. Then $x\in A_m$ for some m. Then $x=s_is_j\ldots s_m$. Let $x_0=1, x_1=s_i, x_2=s_is_j, \ldots, x_m=s_is_j\ldots s_m$. Then

$$(x_0, x_1, x_2, \dots, x_m)$$

is a path leading from 1 to x. Since $Cay(G; S_1, S_2, \ldots, S_m)$ - is locally connected, there exits a path from x to 1, say:

$$(x, y_1, y_2, \ldots, y_m, 1)$$

This implies that

$$y_1 = xt_1$$
 for some $t_1 \in S_{i_1}$
 $y_2 = y_1t_2$ for some $t_2 \in S_{i_2}$
:

$$1 = y_m t_{m+1}$$
 for some $t_{m+1} \in S_{i_n}$

This implies that $1 = x(z_1 z_2 \cdots z_m)$ for some $z_k \in S_{i_k}, k = 1, 2, 3, \dots (m+1)$. That is $x \in [S]_{\ell}$. Hence $[S] \subseteq [S]_{\ell}$. Similarly, one can prove that $[S]_{\ell} \subseteq [S]$. Hence $[S] = [S]_{\ell}$.

Conversily, if $[S] = [S]_{\ell}$, one can easily verify that $Cay(G; S_1, S_2, \dots, S_n)$ is $E_1E_2\cdots E_n$ - locally connected

Proposition 2.15 $Cay(G; S_1, S_2, ..., S_n)$ is E_i - locally connected if and only if $\langle S_i \rangle = \langle S_i \rangle_{\ell}$.

Proposition 2.16 $Cay(G; S_1, S_2, ..., S_n)$ is $E_1E_2 \cdots E_n$ - semi connected if and only if $G = [S] \cup [S]_{\ell}$.

Proof. Assume that $Cay(G; S_1, S_2, \ldots, S_n)$ is $E_1E_2 \cdots E_n$ - semi connected and let $x \in G$. Then there is a path from 1 to x, say: $(1, x_1, x_2, \cdots, x_k, x)$ or a path from x to 1, say: $(x, y_1, y_2, \cdots, y_m, 1)$. This implies that $x \in [S]$ or $x \in [S]_{\ell}$. This implies that $G = [S] \cup [S]_{\ell}$. Similarly, if $G = [S] \cup [S]_{\ell}$, then one can prove that $Cay(G; S_1, S_2, \ldots, S_n)$ is $E_1E_2 \cdots E_n$ -semi connected.

Proposition 2.17 $Cay(G; S_1, S_2, ..., S_n)$ is E_i - semi connected if and only if $G = \langle S_i \rangle$ $\cup \langle S_i \rangle_{\ell}$.

Proposition 2.18 $Cay(G; S_1, S_2, ..., S_n)$ is an $E_1E_2 \cdots E_n$ - quasi ordered set if and only if

- (i) $1 \in S_1 \cup S_2 \cdots \cup S_n$,
- (ii) for every $(i, j), S_i S_j \subseteq S_k$ for some k.

Proposition 2.19 $Cay(G; S_1, S_2, ..., S_n)$ is an E_i - quasi ordered set if and only if $1 \in S_i$, and $S_i^2 \subseteq S_i$.

Proposition 2.20 $Cay(G; S_1, S_2, ..., S_n)$ if an $E_1E_2 \cdots E_n$ - partially ordered set if and only if

$$(i)$$
1 $\in S_1 \cup S_2 \cdots \cup S_n$,

(ii) for every
$$(i, j), S_i S_j \subseteq S_k$$
 for some k ,

$$(iii) \cup (S_i \cap S_{i_\ell}) = \{1\}.$$

Proof. Observe that

$$x \in \cup (S_i \cap S_{i_\ell}) \Leftrightarrow x \in (S_i \cap S_{i_\ell}) \text{ for some } i$$

$$\Leftrightarrow x \in S_i \text{ and } x \in S_{i_\ell}$$

$$\Leftrightarrow (1, x) \in E_i \text{ and } (x, 1) \in E_i$$

$$\Leftrightarrow x = 1$$

From these equivalences, the result follows.

Proposition 2.21 $Cay(G; S_1, S_2, ..., S_n)$ if an E_i - partially ordered set if and only if

$$(i)1 \in S_i,$$

 $(ii)S_i^2 \subseteq S_i$
 $(iii)S_i \cap S_{i_\ell} = \{1\}$

Proposition 2.22 Let A_m $(m \ge 2)$ be the set of all m products of the form $S_{i_1}S_{i_2}\cdots S_{i_m}$. Then $Cay(G; S_1, S_2, \ldots, S_n)$ is an $E_1E_2\cdots E_n$ - hasse diagram if and only if $C\cap S_i=\emptyset$ for all i and for all $C\in A_m$.

Proof. Suppose the condition holds. Let x_0, x_1, \ldots, x_m be (m+1) elements in G such that $(x_i, x_{i+1}) \in \bigcup E_i$ for $i = 0, 1, \ldots, m-1$. This implies that

$$x_1 = x_0t_1$$
 for some $t_1 \in S_{i_1}$
 $x_2 = x_1t_2$ for some $t_2 \in S_{i_2}$
 $x_3 = x_2t_3$ for some $t_3 \in S_{i_3}$
 \vdots
 $x_m = x_{m-1}t_n$ for some $t_m \in S_{i_m}$

The last equation can be written as:

$$x_n = ((x_{n-2}t_{m-1}))t_m$$

= $((x_0t_1)t_2)\cdots t_n$
= $x_0(z_1z_2\dots z_m)$ for some $z_k \in S_{i_k}, k = 1, 2, \dots, m$
= x_0t , where $t = z_1z_2\dots z_m \in A_m$

Since $C \cap S_i = \emptyset$ for all i and for all $C \in A_m$, $(x_0, x_m) \notin \bigcup E_i$.

Conversely, assume that $\operatorname{Cay}(G; S_1, S_2, \ldots, S_n)$ is an $E_1 E_2 \cdots E_n$ -hasse diagram. We will show that $C \cap S_i = \emptyset$ for all i and for all $C \in A_m$. Let $S_{i_1} S_{i_2} S_{i_3} \cdots S_{i_n}$ be any element in A_m . Let $x \in S_{i_1} S_{i_2} S_{i_3} \cdots S_{i_m}$. Then $x = s_{i_1} s_{i_2} s_{i_3} \ldots s_{i_m}$ for some $s_{i_k} \in S_{i_k}$. This implies that $(1, s_{i_1}, s_{i_2} s_{i_3}, \ldots, x)$ is a path from 1 to x. Since $\operatorname{Cay}(G; S_1, S_2, \ldots, S_n)$ is an $E_1 E_2 \cdots E_n$ - hasse diagram, $x \notin S_i$ for any i. That is, $A_m \cap S_i = \emptyset$ for all i.

Proposition 2.23 Let A_m $(m \ge 2)$ be the set of all m products of the form $S_{i_1}S_{i_2}\cdots S_{i_m}$. Then $Cay(G; S_1, S_2, \ldots, S_n)$ is an E_i - hasse diagram if and only if $S_i^m \cap S = \emptyset$, for all $m \ge 2$.

Proposition 2.24 The $E_1E_2\cdots E_n$ out-degree of $Cay(G; S_1, S_2, \ldots, S_n)$ is the cardinal number $|S_1 \cup S_2 \cup \cdots \cup S_n|$.

Proof. Since by Theorem 2.2, $Cay(G; S_1, S_2, ..., S_n)$ is vertex- transitive it suffices to consider the out degree of the vertex $1 \in G$. Observe that

$$\rho(1) = \{u : (1, u) \in \cup E_i\}$$

$$= \{u : u \in S_i \text{ for some } i\}$$

$$= S_1 \cup S_2 \cup \dots \cup S_n$$

Hence $|\rho(1)| = |S_1 \cup S_2 \cup \cdots \cup S_n|$.

Proposition 2.25 The E_i out-degree of $Cay(G; S_1, S_2, \ldots, S_n)$ is the cardinal number $|S_i|$.

Proposition 2.26 The $E_1E_2\cdots E_n$ in-degree of $Cay(G; S_1, S_2, \ldots, S_n)$ is the cardinal number $|S_{1\ell} \cup S_{2\ell} \cup \cdots \cup S_{n\ell}|$.

Proof. Since $Cay(G; S_1, S_2, ..., S_n)$ is vertex- transitive it suffices to consider the in degree of the vertex $1 \in G$. Observe that

$$\sigma(1) = \{u : (u, 1) \in \cup E_i\}$$

$$= \{u : (u, 1) \in E_i\}$$

$$= \{u : 1 = uz \text{ for some } z \in S_i\}$$

$$= \{z_{\ell} : z_{\ell} \in S_{i_{\ell}} \text{ for some } i\}$$

$$= S_{1\ell} \cup S_{2\ell} \cup \cdots \cup S_{n\ell}.$$

Hence $|\sigma(1)| = |S_{1\ell} \cup S_{2\ell} \cup \cdots \cup S_{n\ell}|$.

Proposition 2.27 The E_i in-degree of $Cay(G; S_1, S_2, \ldots, S_n)$ is the cardinal number $|S_{i_\ell}|$.

Proposition 2.28 For $k \geq 1$, let A_k be the set of all k products of the form $S_{i_1}S_{i_2}S_{i_3}\cdots S_{i_k}$. If $Cay(G; S_1, S_2, \ldots, S_n)$ has finite diameter, then the $E_1E_2\cdots E_n$ diameter of the Cayley digraph structure $Cay(G; S_1, S_2, \ldots, S_n)$ is the least positive integer m such that $G = A_m$.

Proof. Let m be the smallest positive integer such that $G = A_m$. We will show that the diameter of $\operatorname{Cay}(G; S_1, S_2, \ldots, S_n)$ is m. Let x and y be any two arbitrary elements in G such that y = xz. Then $z \in G$. This implies that $x \in A_m$. But then z has a representation of the form $z = s_{i_1} s_{i_2} \cdots s_{i_m}$. This implies that $(1, s_{i_1}, s_{i_1} s_{i_2}, \ldots, z)$ is path of m edges from 1 to z. That is, $(x, x s_{i_1}, x s_{i_1} s_{i_2}, \ldots, y)$ is a path of length m from x to y. This shows that $d_{1,2,\ldots,n}(x,y) \leq m$. Since x and y are arbitrary, $\max_{x,y \in G} \{d_{1,2,\ldots,n}(x,y)\} \leq m$. Therefore the diameter of $\operatorname{Cay}(G; S_1, S_2, \ldots, S_n)$ is less than or equal to m. On the other hand let the diameter of $\operatorname{Cay}(G; S_1, S_2, \ldots, S_n)$ be k. Let $x \in G$ and $d_{1,2,\ldots,n}(1,x) = k$. Then we have $x \in B$ for some $B \in A_k$. That is, $G = A_k$. Now by the minimality of k, we have $m \leq k$. Hence k = m.

Proposition 2.29 If $Cay(G; S_1, S_2, ..., S_n)$ has finite diameter, then the E_i diameter of the Cayley digraph structure $Cay(G; S_1, S_2, ..., S_n)$ is the least positive integer m such that $G = S_i^m$.

Proposition 2.30 The vertex 1 is an $E_1E_2 \cdots E_n$ -source of $Cay(G; S_1, S_2, \dots, S_n)$ if and only if G = [S].

Proof. First, assume that 1 is an $E_1E_2\cdots E_n$ -source of $\operatorname{Cay}(G; S_1, S_2, \dots, S_n)$. Then for any vertex $x \in G$, there is an $E_1E_2\cdots E_n$ - path from 1 to x. This implies that G = [S]. Conversely, if G = [S], one can prove that 1 is an $E_1E_2\cdots E_n$ - source.

Proposition 2.31 The vertex 1 is an E_i source of $Cay(G; S_1, S_2, ..., S_n)$ if and only if $G = \langle S_i \rangle$.

Proposition 2.32 The vertex 1 is an $E_1E_2\cdots E_n$ - sink of $Cay(G; S_1, S_2, \ldots, S_n)$ if and only if $G = [S]_{\ell}$.

Proof. First, assume that 1 is an $E_1E_2\cdots E_n$ -sink of $Cay(G; S_1, S_2, \ldots, S_n)$. Then for each $x \in G$, there is an $E_1E_2\cdots E_n$ - path from x to 1. This implies that $x \in [S]_{\ell}$. Hence $G = [S]_{\ell}$.

Conversely, if $G = [S]_{\ell}$, one can easily prove that 1 is an $E_1 E_2 \cdots E_n$ - sink of the Cayley digraph structure $Cay(G; S_1, S_2, \dots, S_n)$.

Proposition 2.33 The vertex 1 is an E_i sink of $Cay(G; S_1, S_2, ..., S_n)$ if and only if $G = \langle S_i \rangle_{\ell}$.

Proposition 2.34 The $E_1E_2\cdots E_n$ reachable set $R_{1,2,\dots,n}(1)$ of the vertex 1 is the set [S]. **Proof.** By definition, $R(1) = \{x : \text{there exits an } E_1E_2\cdots E_n \text{ - path from 1 to } x\}$. Observe that

$$x \in R_{1,2,\dots,n}(1) \Leftrightarrow \text{there exits an } E_1 E_2 \cdots E_n \text{ - path from 1 to } x, \text{ say } (1, x_1, x_2, \dots, x_n, x)$$

 $\Leftrightarrow x \in [S].$

Therefore, $R_{1,2,3,\dots,n}(1) = [S]$.

Proposition 2.35 The E_i reachable set $R_i(1)$ of the vertex 1 is the set $< S_i >$.

Proposition 2.36 The $E_1E_2\cdots E_n$ antecedent set $Q_{1,2,...,n}(1)$ of the vertex 1 is the set $[S]_{\ell}$.

Proof. Observe that

$$x \in Q_{1,2,\dots,n}(1) \Leftrightarrow \text{there exits an } E_1 E_2 \cdots E_n \text{ -path from } x \text{ to } 1, \text{ say } (x,x_1,x_2,\dots,x_n,1)$$

 $\Leftrightarrow x \in [S]_{\ell}$

Therefore, $Q_{1,2,...,n}(1) = [S]_{\ell}$.

Proposition 2.37 The E_i antecedent set $Q_i(1)$ of the vertex 1 is the set $\langle S_i \rangle_{\ell}$.

References

- [1] B. Alspach and C. Q. Zhang, Hamilton cycles in cubic cayley graphs on dihedral groups, Ars Combin. **28** (1989), 101 108.
- [2] B. Alspach, S. Locke and D. Witte, The Hamilton spaces of cayley graphs on abelian groups, Discrete Math. 82 (1990), 113 126.
- [3] B. Alspach and Y. Qin, Hamilton-connected cayley graphs on hamiltonian groups, Europ. J. Combin. 22 (2001), 777 – 787.
- [4] C. Godsil and R. Gordon, Algebraic Graph Theory, Graduate Texts in Mathematics, New York: Springer-Verlag, 2001.
- [5] E. Dobson, Automorphism groups of metacirculant graphs of order a product of two distinct primes, Combinatorics, Probability and Computing 15(2006), 150–130.
- [6] G. Sabidussi, On a class of fxed-point-free graphs, Proc. Amer. Math. Soc. 9(1958), 800 804.
- [7] S. J. Curran and J. A. Gallian, Hamiltonian cycles and paths in cayley graphs and digraphs- A survey, Discrete Math., **156** (1996) 1 18.
- [8] V. A. Kumar and Nair P. Ashok, A class of cayley digraph structures induced by groups, Journal of Mathematics Research 4(2) (2012), 28–33.
- [9] V. A. Kumar, A class of double coset cayley digraphs induced by loops, International Journal of Algebra 22(5) (2011), 1073-1084.
- [10] V. A. Kumar, Some studies on point symmetric graphs, Ph.D. Thesis, University of Kerala (1996).