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1. Introduction

A binary relation on a set V is a subset E of V × V . A digraph is a pair (V,E) where

V is a non empty set (called vertex set) and E is a binary relation on V . The elements

of E are called edges. Let V be a non empty set and let E1, E2, . . . , En be mutually

disjoint binary relations on V . Then the (n + 1)-tuple G = (V ;E1, E2, . . . , En) is called

a digraph structure[8]. The elements of V are called vertices and the elements of Ei are

called Ei-edges. The following definition were introduced in [8].

A digraph structure (V ;E1, E2, . . . , En) is called (i)E1E2 · · ·En-trivial if Ei = ∅ for all

i, and Ei- trivial if Ei = ∅ (ii)E1E2 · · ·En- reflexive if for all x ∈ G, (x, x) ∈ Ei for some i,

and Ei- reflexive if for all x ∈ V , (x, x) ∈ Ei(iii) E1E2 · · ·En- symmetric if Ei = E−1i for
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all i, and Ei- symmetric if Ei = E−1i (iv) E1E2 · · ·En- anti symmetric, if (x, y) ∈ Ei and

(y, x) ∈ Ei implies x = y for all i, and Ei- anti symmetric if (x, y) ∈ Ei and (y, x) ∈ Ei

implies x = y (v) E1E2 · · ·En- transitive if for every i and j, Ei ◦ Ej ⊆ Ek for some k,

and Ei transitive if Ei ◦ Ei ⊆ Ei (vi) an E1E2 · · ·En- hasse diagram if for every positive

integer n ≥ 2 and every v0, v1, . . . , vn of V , (vi, vi+1) ∈ ∪Ei for all i = 0, 1, 2, . . . , n − 1,

implies (v0, vn) /∈ Ei for all i, and Ei- hasse diagram if for every positive integer n ≥ 2 and

every v0, v1, . . . , vn of V , (vi, vi+1) ∈ Ei for all i = 0, 1, 2, . . . , n− 1, implies (v0, vn) /∈ Ei,

(viii)E1E2 · · ·En- complete if ∪Ei = V × V , and Ei complete if Ei = V × V .

A digraph structure (V ;E1, E2, . . . , En) is called (i) an E1E2 · · ·En- quasi ordered set if

it is both E1E2 · · ·En- reflexive and E1E2 · · ·En -transitive (ii)an E1E2 · · ·En - partially

ordered set if it is E1E2 · · ·En- anti symmetric and E1E2 · · ·En- quasi ordered set. Sim-

ilarly, we can define Ei quasi ordered set and Ei partially ordered set as in the case of

ordinary relations.

An E1E2 · · ·En- walk of length k in a digraph structure is an alternating sequence

W = v0, e0, v1, . . . , ek−1, vk, where ei = (vi, vi+1) ∈ ∪Ei. An E1E2 · · ·En -walk W

is called a E1E2 · · ·En- path if all the internal vertices are distinct. We use notation

(v0, v1, v2, . . . , vn) for the E1E2 · · ·En - path W . As in digraphs, we define Ei− walk and

Ei- path. For example, an Ei- path between two vertices u and v consists of only Ei- edges.

A digraph structure (V ;E1, E2, . . . , En) is called (i) E1E2 · · ·En- connected if there exits

at least one E1E2 · · ·En- path from v to u for all u, v ∈ V , (ii)E1E2 · · ·En- quasi connected

if for every pair of vertices x, y there is a vertex z such that there is an E1E2 · · ·En-path

from z to x and an E1E2 · · ·En-path from z to y, (iii) E1E2 · · ·En- locally connected iff

for every pair of vertices u, v ∈ V there is an E1E2 · · ·En - path from v to u whenever

there is an E1E2 · · ·En - path from u to v and (iv) E1E2 · · ·En- semi connected for every

pair of vertices u, v, there is an E1E2 · · ·En- path from u to v or an E1E2 · · ·En- path

from v to u.

A digraph structure (V ;E1, E2, . . . , En) is called Ei -connected if there exits at least one

Ei path from v to u for all u, v ∈ V . Similarly we can define Ei quasi connected, Ei
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-locally connected and Ei - semi connected digraph structures.

The E1E2 · · ·En - distance between two vertices x and y in a digraph structure G is

the length of the shortest E1E2 · · ·En- path between x and y, denoted by d1,2,3,...,n(x, y).

Let G = (V ;E1, E2, . . . , En) be a finite E1E2 · · ·En- connected digraph structure. Then

the E1E2 · · ·En diameter of G is defined as d(G) = maxx,y∈G{d1,2,3,...,n(x, y)}. Similarly

we can define Ei distance and Ei diameter as in digraphs.

Two digraph structures (V1;E1, E2, . . . , En) and (V2;R1, R2, . . . , Rm) are said to be

isomorphic if (i) m = n and (ii) there exits a bijective function f : V1 → V2 such that

(x, y) ∈ Ei ⇔ (f(x), f(y)) ∈ Ri. This concept of isomorphism is a generalization of

isomorphism between two digraphs. An isomorphism of a digraph structure onto itself

is called an automorphism. A digraph structure (V ;E1, E2, . . . , En) is said to be vertex-

transitive if, given any two vertices a and b of V , there is some digraph automorphism

f : V → V such that f(a) = b. Let (V ;E1, E2, . . . , En) be a digraph structure and let

v ∈ V . Then the E1E2 · · ·En out-degree of u is |{v ∈ V : (u, v) ∈ ∪Ei}| and E1E2 · · ·En

in-degree of u is |{v ∈ V : (v, u) ∈ ∪Ei}|. Similarly we can define the Ei out- degree and

Ei in- degree as in the case of digraphs.

Let (V1;E1, E2, . . . , En) be a digraph structure. A vertex v ∈ G is called an E1E2 · · ·En

-source if for every vertex x ∈ G, there is an E1E2 · · ·En - path from v to x. Similar-

ly a vertex u ∈ G is called an E1E2 · · ·En- sink if for very vertex y ∈ G there is an

E1E2 · · ·En- path from y to u. As in digraphs, we define Ei - source and Ei - sink. Let

(V1;E1, E2, . . . , En) be a digraph structure and let v ∈ G. Then the E1E2 · · ·En reach-

able set R1,2,3,··· ,n(u) is {x ∈ G : there is an E1E2 · · ·En- path from u to x}. Similarly,

the E1E2 · · ·En- antecedent set Q1,2,...,n(u) is defined as

Q1,2,...,n(u) = {x ∈ G : there is an E1E2 · · ·En- path from x to u}.

As in the case of digraphs, we can define the Ei- reachable set and Ei-antecedent set of a

vertex.

A non empty set G, together with a mapping ∗ : G × G −→ G is called a groupoid.

The mapping ∗ is called a binary operation on the set G. If a, b ∈ G, we use the symbol
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ab to denote ∗(a, b). A groupoid (G, ∗) is called a quasigroup, if for every a, b ∈ G, the

equations, ax = b and ya = b are uniquely solvable in G [6]. This implies both left and

right cancelation laws. A quasigroup with an identity element is called a loop. Observe

that a loop is a weaker algebraic structure than a group.

A subset A of a loop G is said to be a right associative subset of G(R associative), if for

every x, y ∈ G, (xy)A = x(yA). This means, if x, y ∈ G and a ∈ A, then (xy)a = x(ya′)

for some a′ ∈ A. Observe that the R associative law not only allows to interchange the

positions of parenthesis, the two elements that are on the left should be in G and they

will be same on both sides, the rightmost element in the left hand side is in A and is

changed to another element a′ ∈ A as the right most element in the right side [12].

Here we have the following result:

Theorem 1.1.([9]) Let A and B be R associative subsets of a loop G. Then AB is also

R associative.

3. Cayley digraph structures induced by loops

In [11] the authors introduced a class of Cayley digraph structures induced by groups.

In this paper, we introduce a class of Cayley digraph structures induced by loops. These

class of Cayley digraphs structures can be viewed as a generalization of those obtained in

[11]. Further, many graph properties are studied in terms of algebraic properties.

We start with the following definition:

Definition 2.1. Let G be a loop and S1, S2, . . . , Sn be mutually disjoint R associative

subsets of G. Then Cayley digraph structure of G with respect to S1, S2, . . . , Sn is defined

as the digraph structure X = (G;E1, E2, . . . , En), where

Ei = {(x, y) : z ∈ Si}

where z denotes the solution of the equation y = xz.
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The sets S1, S2, . . . , Sn are called connection sets of X. The Cayley digraph structure

of G with respect to S1, S2, . . . , Sn is denoted by Cay(G;S1, S2, . . . , Sn).

In this paper we may use the following notations:

(1) Let S1, S2, . . . , Sn be subsets of a loopG, then we may define the product S1, S2, . . . , Sn

as follows:

S1S2 . . . Sn = {(((s1s2)s3) . . .)sn : si ∈ Si, i = 1, 2, . . . , n}.

If S1 = S2 = · · · = Sn = S, we denote the above product as Sn.

(2) Let Ak be the union of set of all k products of the form Si1Si2 · · ·Sik from the set

{S1, S2, . . . , Sn}. Then
⋃

k Ak. is denoted by [S].

(3) Let D be a subset of G. We define D` = {z` : z`z = 1 for some z ∈ D}, where 1

is the identity element in G.

(4) Let A be a subset of a loop G, then the semi group generated by A is denoted by

< A >.

Theorem 2.2. If G is a loop and let S1, S2, . . . , Sn are mutually disjoint R associative

subsets of G, then the Cayley digraph structure Cay(G;S1, S2, . . . , Sn) is vertex transitive.

Proof. Let a and b be any two arbitrary elements in G. Define a mapping ϕ : G→ G by

ϕ(x) = (b/a)x for all x ∈ G.

where (b/a) denotes the solution of the equation b = za. This mapping defines a permu-

tation of the vertices of Cay(G;S1, S2, . . . , Sn). It is also an automorphism. Let x, y ∈ G

such that y = xz. Note that

(x, y) ∈ Ei ⇔ z ∈ Si for some i.

The equation y = xz can be written as

(b/a)y = (b/a)(xz)

= ((b/a)x)z′ for some z′ ∈ Si
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The above equation tells us that ((b/a)x, (b/a)y) ∈ Ei. That is, (ϕ(x), ϕ(y)) ∈ Ei.

Similarly, assume that (ϕ(x), ϕ(y)) ∈ Ei. Then (b/a)y = ((b/a)x)z for some z ∈ Si. This

implies that (b/a)y = (b/a)(xz′) for some z′ ∈ Si . By left cancellation law, we obtain

y = xz′. This tells us that (x, y) ∈ Ei. Also we note that ϕ(a) = (b/a)a = b. Hence

Cay(G;S1, S2, . . . , Sn) is vertex transitive.

Proposition 2.3 Cay(G;S1, S2, . . . , Sn) is an E1E2 · · ·En -trivial digraph structure if and

only if Si = ∅ for all i.

Proof. By definition, Cay(G;S1, S2, . . . , Sn) is E1E2 · · ·En - trivial if and only if Ei = ∅

for all i. This implies that Si = ∅ for all i.

Proposition 2.4 Cay(G;S1, S2, . . . , Sn) is an Ei- trivial digraph structure if and only if

Si = ∅.

Proposition 2.5 Cay(G;S1, S2, . . . , Sn) is E1E2 · · ·En- reflexive if and only if 1 ∈ Si for

some i.

Proof. Assume that Cay(G;S1, S2, . . . , Sn) is an E1E2 · · ·En- reflexive digraph structure.

Then for every x ∈ G, (x, x) ∈ Ei for some i. This implies that the equation x = xz has

a unique solution in Si for some i. That is, 1 ∈ Si for some i.

Conversely, assume that 1 ∈ Si for some i. This implies for each x ∈ G, (x, x) ∈ Ei for

some i. That is, (x, x) ∈ ∪Ei for all x ∈ G.

Proposition 2.6 Cay(G;S1, S2, . . . , Sn) is E1E2 · · ·En- symmetric if and only if Si = Si`

for all i.

Proof. First, assume that Cay(G;S1, S2, . . . , Sn) is an E1E2 · · ·En -symmetric digraph

structure. Let a ∈ Si. Then (1, a) ∈ Ei. Since Cay(G;S1, S2, . . . , Sn) is symmetric

(a, 1) ∈ Ei. This implies that the equation 1 = at has a solution in Si. That is a ∈ Si` .

Hence Si ⊆ Si` . Similarly, we can prove that Si` ⊆ Si.

Conversely, assume that Si = Si` for all i. Suppose that (x, y) ∈ Ei. Then the equation

y = xz has a solution in Si. That is z ∈ Si. Consider the equation x = yt. This equation
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can be written as:

xz = (yt)z

i.e., y = y(tz′) for some z′ ∈ Si

i.e., y1 = y(tz′)

i.e., 1 = tz′ (by left cancelation law).

The above equation tells us that t ∈ Si` . Since Si = Si` , it follows that t ∈ Si. Hence the

equation x = yt has a solution in Si. That is (y, x) ∈ Ei.

Proposition 2.7 Cay(G;S1, S2, . . . , Sn) is an E1E2 · · ·En - transitive if and only if for

every i, j, SiSj ⊆ Sk for some k.

Proof. First, assume that Cay(G;S1, S2, . . . , Sn) is E1E2 · · ·En - transitive. Let x ∈ SiSj

. Then x = z1z2 for some z1 ∈ Si and z2 ∈ Sj. This implies that (1, z1) ∈ Ei and

(z1, z1z2) ∈ Ej. Since Cay(G,S1, S2, . . . , Sn) is transitive (1, z1z2) ∈ Ek for some k. That

is z1z2 ∈ Sk. Hence SiSj ⊆ Sk for some k.

Conversely assume that for each i, j, SiSj ⊆ Sk for some k. Let x, y and z ∈ G such

that y = xt1 and z = yt2. If (x, y) ∈ Ei and (y, z) ∈ Ej, then t1 ∈ Si and t2 ∈ Sj. Note

that the equation z = yt2 can be written as:

z = (xt1)t2

= x(t1t
′
2) for some t′2 ∈ Sj

= xt3 where t3 = t1t
′
2

Note that t3 ∈ SiSj. Since SiSj ⊆ Sk, t3 ∈ Sk. That the equation z = xt has a solution

t3 in Sk. Hence Cay(G;S1, S2, . . . , Sn) is transitive.

Proposition 2.8 Cay(G;S1, S2, . . . , Sn) is E1E2 · · ·En- complete if and only if G = ∪Si.

Proof. Suppose Cay(G;S1, S2, . . . , Sn) is E1E2 · · ·En- complete. Then for every x ∈ G,

we have (1, x) ∈ ∪Ei. This implies that x ∈ Si for some i. This implies that G = ∪Si.

Conversely, assume that G = ∪Si. Let x and y be two arbitrary elements in G such that
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y = xz. Then z ∈ G. This implies that z ∈ Si for some i. That is, (1, z) ∈ ∪Ei. That is

(x, xz) = (x, y) ∈ ∪Ei. This shows that Cay(G;S1, S2, . . . , Sn) is E1E2 · · ·En- complete.

Proposition 2.9 Cay(G;S1, S2, . . . , Sn) is Ei- complete if and only if G = Si.

Proposition 2.10 Cay(G;S1, S2, . . . , Sn) is E1E2 · · ·En- connected if and only if G = [S].

Proof. Suppose Cay(G;S1, S2, . . . , Sn) is E1E2 · · ·En- connected and let x ∈ G. Let

(1, y1, y2, . . . , yk, x) be a E1E2 · · ·En- path leading from 1 to x. Then we have, y1 =

z1, y2 = y1z2, . . . , yk = yk−1zk, x = ykzk+1 for some zj ∈ Sij , j = 1, 2, · · · , k + 1. Note that

the equation x = ykzk+1 can be written as

x = (yk−1zk)zk+1

= ((yk−2zk−1)yk−1zk)zk+1

= (z1z2) · · · zk+1

The last equation tells us that x ∈ Si1Si2 · · ·Sik+1
This implies that x ∈ A for some

A ∈ [S]. Since x is arbitrary, G = [S].

Conversely, assume that G = [S]. Let x and y be any arbitrary elements in G. Let

y = xz. Then z ∈ G Then z ∈ SiSj · · ·Sk for some i, j, . . . and k. This implies that z =

sisj . . . sk for some i, j . . . and k. Then clearly, (1, si, sisj, . . . , sisj . . . sk) is an E1E2 · · ·En

-path from 1 to z. That is, (x, xsi, xsisj, . . . , xsisj . . . sk) is a E1E2 · · ·En- path from x to

y. Hence Cay(G;S1, S2, . . . , Sn) is connected.

Proposition 2.11 Cay(G;S1, S2, . . . , Sn) is Ei- connected if and only if G =< Si >,

where < Si > is the semi group generated by the set Si.

Proposition 2.12 Cay(G;S1, S2, . . . , Sn) is E1E2 · · ·En- quasi connected if and only if

G = [S]`[S].

Proof. First, assume that Cay(G;S1, S2, . . . , Sn) is quasi connected. Let x be any arbi-

trary element in G. Then there exits a vertex y ∈ G such that there is a path from y to 1,

say, (y, y1, y2, · · · , yn, 1) and a path from y to x, say,(y, x1, x2, . . . , xm, x). Then we have
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the following system of equations:

y1 = yz1 for some z1 ∈ Si1

y2 = y1z2 for some z2 ∈ Si2

y3 = y2z3 for some z3 ∈ Si3

...

1 = ynzn+1 for some zn+1 ∈ Sin+1 .

(1)

and

x1 = yt1 for some z1 ∈ Si1

x2 = x1t2 for some z2 ∈ Si2

x3 = x2t3 for some z3 ∈ Si3

...

x = xmtm+1 for some zm+1 ∈ Sim+1

(2)

Observe that equation (1) can be written as:

(3) 1 = y(w1w2 . . . wn+1) for some wk ∈ Sik , k = 1, 2, . . . , n+ 1.

This implies that

(4) y ∈ [S]`

Similarly, equation (2) can be written as:

(5) x = y(v1v2 . . . vm+1) for some vk ∈ Sik , k = 1, 2, . . . ,m+ 1.

From equations (4) and (5), we have

(6) x ∈ [S]`[S].

Since x is arbitrary, G = [S]`[S].

Conversely, assume that G = [S]`[S]. Let x and y be two arbitrary vertices in G. Let

y = xz. Then z ∈ G. This implies that z ∈ [S]`[S]. Then there exits z1 ∈ [S]` and z2 ∈ [S]

such that z = z1z2. z1 ∈ [S]` implies that there exits tk ∈ Sik such that 1 = z1(t1t2 . . . tm).



1410 ANIL KUMAR V1, PARAMESWARAN ASHOK NAIR2,∗

That is,1 = (((z1r1)r2) . . . rm) for some rm ∈ Sik , k = 1, 2, . . . ,m. This implies that

(z1, z1r1, z1r1r2, . . . , 1) is a path from z1 to 1. That is,

(yz1, yz1r1, yz1r1r2, . . . , y) is a path from yz1 to y. Similarly, z2 ∈ [S] implies that there

exits ak ∈ Sik such that z2 = a1a2 . . . am. Observe that (z2, a1a2, a1a2a3, . . . , 1) is a path

from z2 to 1. That is, (z1z2, z1a1a2, a1a2a3, . . . , z1) is a path from z to yz1. That is,

(yz, yz1a1a2, ya1a2a3, . . . , yz1) is a path from x to yz1. This implies that the digraph

structure Cay(G;S1, S2, . . . , Sn) is E1E2 · · ·En- quasi connected.

Proposition 2.13 Cay(G;S1, S2, . . . , Sn) is Ei quasi connected if and only if G =<

Si >`< Si >.

Proposition 2.14 Cay(G;S1, S2, . . . , Sn) is E1E2 · · ·En- locally connected if and only if

[S] = [S]`.

Proof.

Assume that Cay(G;S1, S2, . . . , Sn) is E1E2 · · ·En- locally connected. Let x ∈ [S].

Then x ∈ Am for some m. Then x = sisj . . . sm. Let x0 = 1, x1 = si, x2 = sisj, . . . , xm =

sisj . . . sm. Then

(x0, x1, x2, . . . , xm)

is a path leading from 1 to x. Since Cay(G;S1, S2, . . . , Sm)- is locally connected, there

exits a path from x to 1, say:

(x, y1, y2, . . . , ym, 1)

This implies that

y1 = xt1 for some t1 ∈ Si1

y2 = y1t2 for some t2 ∈ Si2

...

1 = ymtm+1 for some tm+1 ∈ Sin

This implies that 1 = x(z1z2 · · · zm) for some zk ∈ Sik , k = 1, 2, 3, . . . (m + 1). That is

x ∈ [S]`. Hence [S] ⊆ [S]`. Similarly, one can prove that [S]` ⊆ [S]. Hence [S] = [S]`.
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Conversily, if [S] = [S]`, one can easily verify that Cay(G;S1, S2, . . . , Sn) is

E1E2 · · ·En- locally connected

Proposition 2.15 Cay(G;S1, S2, . . . , Sn) is Ei- locally connected if and only if < Si >=<

Si >`.

Proposition 2.16 Cay(G;S1, S2, . . . , Sn) is E1E2 · · ·En- semi connected if and only if

G = [S] ∪ [S]`.

Proof. Assume that Cay(G;S1, S2, . . . , Sn) is E1E2 · · ·En- semi connected and let x ∈ G.

Then there is a path from 1 to x, say: (1, x1, x2, · · · , xk, x) or a path from x to 1, say:

(x, y1, y2, · · · , ym, 1). This implies that x ∈ [S] or x ∈ [S]`. This implies that G = [S]∪[S]`.

Similarly, if G = [S]∪ [S]`, then one can prove that Cay(G;S1, S2, . . . , Sn) is E1E2 · · ·En-

semi connected.

Proposition 2.17 Cay(G;S1, S2, . . . , Sn) is Ei- semi connected if and only if G =< Si >

∪ < Si >`.

Proposition 2.18 Cay(G;S1, S2, . . . , Sn) is an E1E2 · · ·En- quasi ordered set if and only

if

(i) 1 ∈ S1 ∪ S2 · · · ∪ Sn,

(ii) for every(i, j), SiSj ⊆ Sk for some k.

Proposition 2.19 Cay(G;S1, S2, . . . , Sn) is an Ei- quasi ordered set if and only if

1 ∈ Si, and S2
i ⊆ Si.

Proposition 2.20 Cay(G;S1, S2, . . . , Sn) if an E1E2 · · ·En- partially ordered set if and

only if

(i)1 ∈ S1 ∪ S2 · · · ∪ Sn,

(ii)for every(i, j), SiSj ⊆ Sk for some k,

(iii) ∪ (Si ∩ Si`) = {1}.
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Proof. Observe that

x ∈ ∪(Si ∩ Si`)⇔ x ∈ (Si ∩ Si`) for some i

⇔ x ∈ Si and x ∈ Si`

⇔ (1, x) ∈ Ei and (x, 1) ∈ Ei

⇔ x = 1

From these equivalences, the result follows.

Proposition 2.21 Cay(G;S1, S2, . . . , Sn) if an Ei- partially ordered set if and only if

(i)1 ∈ Si,

(ii)S2
i ⊆ Si

(iii)Si ∩ Si` = {1}

Proposition 2.22 Let Am (m ≥ 2) be the set of all m products of the form Si1Si2 · · ·Sim.

Then Cay(G;S1, S2, . . . , Sn) is an E1E2 · · ·En- hasse diagram if and only if C ∩ Si = ∅

for all i and for all C ∈ Am.

Proof. Suppose the condition holds. Let x0, x1, . . . , xm be (m + 1) elements in G such

that (xi, xi+1) ∈ ∪Ei for i = 0, 1, . . . ,m− 1. This implies that

x1 = x0t1 for some t1 ∈ Si1

x2 = x1t2 for some t2 ∈ Si2

x3 = x2t3 for some t3 ∈ Si3

...

xm = xm−1tn for some tm ∈ Sim
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The last equation can be written as:

xn = ((xn−2tm−1))tm

= ((x0t1)t2) · · · tn

= x0(z1z2 . . . zm) for some zk ∈ Sik , k = 1, 2, . . . ,m

= x0t, where t = z1z2 . . . zm ∈ Am

Since C ∩ Si = ∅ for all i and for all C ∈ Am, (x0, xm) /∈ ∪Ei.

Conversely, assume that Cay(G;S1, S2, . . . , Sn) is an E1E2 · · ·En -hasse diagram. We

will show that C ∩Si = ∅ for all i and for all C ∈ Am. Let Si1Si2Si3 · · ·Sin be any element

in Am. Let x ∈ Si1Si2Si3 · · ·Sim . Then x = si1si2si3 . . . sim for some sik ∈ Sik . This

implies that (1, si1 , si2si3 , . . . , x) is a path from 1 to x. Since Cay(G;S1, S2, . . . , Sn) is an

E1E2 · · ·En - hasse diagram, x /∈ Si for any i. That is, Am ∩ Si = ∅ for all i.

Proposition 2.23 Let Am (m ≥ 2) be the set of all m products of the form Si1Si2 · · ·Sim.

Then Cay(G;S1, S2, . . . , Sn) is an Ei- hasse diagram if and only if Sm
i ∩ S = ∅, for all

m ≥ 2.

Proposition 2.24 The E1E2 · · ·En out-degree of Cay(G;S1, S2, . . . , Sn) is the cardinal

number |S1 ∪ S2 ∪ · · · ∪ Sn|.

Proof. Since by Theorem 2.2, Cay(G;S1, S2, . . . , Sn) is vertex- transitive it suffices to

consider the out degree of the vertex 1 ∈ G. Observe that

ρ(1) = {u : (1, u) ∈ ∪Ei}

= {u : u ∈ Si for some i}

= S1 ∪ S2 ∪ · · · ∪ Sn

Hence |ρ(1)| = |S1 ∪ S2 ∪ · · · ∪ Sn|.

Proposition 2.25 The Ei out-degree of Cay(G;S1, S2, . . . , Sn) is the cardinal number

|Si|.
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Proposition 2.26 The E1E2 · · ·En in-degree of Cay(G;S1, S2, . . . , Sn) is the cardinal

number |S1` ∪ S2` ∪ · · · ∪ Sn`|.

Proof. Since Cay(G;S1, S2, . . . , Sn) is vertex- transitive it suffices to consider the in

degree of the vertex 1 ∈ G. Observe that

σ(1) = {u : (u, 1) ∈ ∪Ei}

= {u : (u, 1) ∈ Ei}

= {u : 1 = uz for some z ∈ Si}

= {z` : z` ∈ Si` for some i}

= S1` ∪ S2` ∪ · · · ∪ Sn`.

Hence |σ(1)| = |S1` ∪ S2` ∪ · · · ∪ Sn`|.

Proposition 2.27 The Ei in-degree of Cay(G;S1, S2, . . . , Sn) is the cardinal number |Si` |.

Proposition 2.28 For k ≥ 1, let Ak be the set of all k products of the form Si1Si2Si3 · · ·Sik .

If Cay(G;S1, S2, . . . , Sn) has finite diameter, then the E1E2 · · ·En diameter of the Cayley

digraph structure Cay(G;S1, S2, . . . , Sn) is the least positive integer m such that G = Am.

Proof. Let m be the smallest positive integer such that G = Am. We will show that the

diameter of Cay(G;S1, S2, . . . , Sn) is m. Let x and y be any two arbitrary elements in G

such that y = xz. Then z ∈ G. This implies that x ∈ Am. But then z has a representation

of the form z = si1si2 · · · sim . This implies that(1, si1 , si1si2 , . . . , z) is path of m edges from

1 to z. That is,(x, xsi1 , xsi1si2 , . . . , y) is a path of length m from x to y. This shows that

d1,2,...,n(x, y) ≤ m. Since x and y are arbitrary, maxx,y∈G{d1,2,··· ,n(x, y)} ≤ m. Therefore

the diameter of Cay(G;S1, S2, . . . , Sn) is less than or equal to m. On the other hand let

the diameter of Cay(G;S1, S2, . . . , Sn) be k. Let x ∈ G and d1,2,··· ,n(1, x) = k. Then we

have x ∈ B for some B ∈ Ak. That is,G = Ak. Now by the minimality of k, we have

m ≤ k. Hence k = m.
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Proposition 2.29 If Cay(G;S1, S2, . . . , Sn) has finite diameter, then the Ei diameter of

the Cayley digraph structure Cay(G;S1, S2, . . . , Sn) is the least positive integer m such

that G = Sm
i .

Proposition 2.30 The vertex 1 is an E1E2 · · ·En-source of Cay(G;S1, S2, . . . , Sn) if and

only if G = [S].

Proof. First, assume that 1 is an E1E2 · · ·En -source of Cay(G;S1, S2, . . . , Sn). Then for

any vertex x ∈ G, there is an E1E2 · · ·En- path from 1 to x. This implies that G = [S].

Conversely, if G = [S], one can prove that 1 is an E1E2 · · ·En- source.

Proposition 2.31 The vertex 1 is an Ei source of Cay(G;S1, S2, . . . , Sn) if and only if

G =< Si >.

Proposition 2.32 The vertex 1 is an E1E2 · · ·En- sink of Cay(G;S1, S2, . . . , Sn) if and

only if G = [S]`.

Proof. First, assume that 1 is an E1E2 · · ·En -sink of Cay(G;S1, S2, . . . , Sn). Then for

each x ∈ G, there is an E1E2 · · ·En- path from x to 1. This implies that x ∈ [S]`. Hence

G = [S]`.

Conversely, if G = [S]`, one can easily prove that 1 is an E1E2 · · ·En- sink of the Cayley

digraph structure Cay(G;S1, S2, . . . , Sn).

Proposition 2.33 The vertex 1 is an Ei sink of Cay(G;S1, S2, . . . , Sn) if and only if

G =< Si >`.

Proposition 2.34 The E1E2 · · ·En reachable set R1,2,...,n(1) of the vertex 1 is the set [S].

Proof. By definition, R(1) = {x : there exits an E1E2 · · ·En - path from 1 to x}.

Observe that

x ∈ R1,2,...,n(1)⇔ there exits an E1E2 · · ·En - path from 1 to x, say (1, x1, x2, . . . , xn, x)

⇔ x ∈ [S].
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Therefore, R1,2,3,··· ,n(1) = [S].

Proposition 2.35 The Ei reachable set Ri(1) of the vertex 1 is the set < Si > .

Proposition 2.36 The E1E2 · · ·En antecedent set Q1,2,...,n(1) of the vertex 1 is the set

[S]`.

Proof. Observe that

x ∈ Q1,2,...,n(1)⇔ there exits an E1E2 · · ·En -path from x to 1, say (x, x1, x2, . . . , xn, 1)

⇔ x ∈ [S]`

Therefore, Q1,2,...,n(1) = [S]`.

Proposition 2.37 The Ei antecedent set Qi(1) of the vertex 1 is the set < Si >` .
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