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Abstract. In [5], we found an upper bound on the number of edges, E (G), of a graph G containing no r vertex-

disjoint cycles of length 3. In this paper we generalize this result to graphs containing no r vertex-disjoint cycles

of length 2k+ 1. We showed that E (G) 6 b (n−r+1)2

4 c+(r− 1)(n− r+ 1) for every G ∈ G (n,Vr,2k+1), the class

of all graphs on n vertices containing no r vertex-disjoint cycles of length 2k+1. Determination of the maximum

number of edges in a given graph that contains no specific subgraphs is one of the important problems in graph

theory. Solving such problems has attracted the attention of many researchers in graph theory.
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1. Introduction

In this paper, we only consider simple graphs. That is, graphs that has no loops or multiple

edges. Let V (G) denote the set of vertices of a graph G and E(G) be the set of edges of G. If

an edge e ∈ E(G) is incident with the two vertices u and v in V (G), we write e = uv = vu. For
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a vertex u ∈ V (G) we denote the neighborhood of u by NG(u), which is the set of all vertices

v ∈ V (G) such that uv ∈ E(G). For a vertex u ∈ V (G), we define the degree dG(u) to be the

number of edges incident with u.

For vertex-disjoint subgraphs H1 and H2 of G, we let E(H1,H2) to be the set of all edges

that are incident to a vertex in H1 and a vertex in H2. That is E(H1,H2) = {uv ∈ E(G) | u ∈

V (H1),v ∈H2}. We also define E (G) to be the number of edges of G. That is, E (G) equals the

|E(G)| and E (H1,H2) = |E(H1,H2)|. The cycle on n vertices is denoted by Cn and the complete

tripartite graph with partitioning sets of order m, n and k is denoted by Km,n,k. For given graphs

G1 and G2 we denote the union of G1 and G2 by G1+G2 such that V (G1+G2)=V (G1)∪V (G2)

and E(G1+G2) = E(G1)∪E(G2). We also denote the joint of G1 and G2 by G1∨G2 such that

V (G1∨G2) =V (G1)∪V (G2) and E(G1∨G2) = E(G1)∪E(G2)∪E(G1,G2).

The determination of maximum number of edges in a given graph that has no specific sub-

graphs has attracted the attention of many graph theorists. For example, Höggkvist et al in [6]

proved that E (G)6 b (n−1)2

4 c+1 for a non bipartite graph G with n vertices that contains no odd

cycle C2k+1 for all positive integers k, Jia in [7] proved that E (G)6 b (n−1)2

4 c+3 for a nonpartite

graph G with n vertices such that contains no odd cycle for n> 10, and Hailat in [5] proved that

E (G)6 b (n−r+1)2

4 c+(r−1)(n− r+1) for every G ∈ G (n,Vr,3).

In [2], M. Bataineh and M. Jaradat proved that E (G) 6 bn2

4 c+ r− 1 for any graph G ∈

S (n;r,2k+ 1) for large n and r > 2, k > 1, where S (n;r,2k+ 1) is the set of all graphs on n

vertices containing no r edge-disjoint cycles of length 2k+1.

In this paper, we generalize the result of [5] to the case where G is a graph that contains

no r vertex-disjoint cycle of length 2k+ 1. This result is parallel to the result of [1] in which

the author considered the case of vertex-disjoint cycles instead of edge-disjoint cycles that was

addressed in [2].

2. Important Lemmas and Theorems

In this section, we introduce the following results that will be used to prove the main theorem

of this paper.
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2.1. Theorem (Jia [7]). Let G ∈ G (n,5), n> 10. Then E (G)6 b (n−2)2

4 c+3.

2.2. Theorem (Batineh [1]). Let k > 3 be a positive integer and G ∈S (n;2k+ 1). Then for

large n, E (G)6 b (n−2)2

4 c+3.

Let G (n,r,2k+1) denote the class of graphs on n vertices containing no r edge-disjoint cycles

of length 2k+ 1, and G (n,Vr,2k+ 1) denote the class of graphs on n vertices containing no r

vertex-disjoint cycles of length 2k+1. Note that G (n,Vr,2k+1)⊆ G (n,r,2k+1).

2.3. Theorem (Batineh and Jaradat [2]). Let G ∈ G (n,2,3). Then for large n, E (G)6 bn2

4 c+1.

Furthermore. equality holds if and only if G ∈Ω(n,2) = K1,b n
2 c,d

n
2e.

2.4. Lemma (Bondy and Murty [3]). Let G be a graph on n vertices. If E (G) > n2

4 , then G

contains a cycle of length 2k+1 for each 16 k 6 bn+3
4 c−

1
2 .

2.5. Theorem (Batineh and Jaradat [2]). Let k> 1, r> 2 be two integers and g∈ G (n;r,2k+1).

For large n, E (G) 6 bn2

4 c+ r− 1. Furthermore. equality holds if and only if G ∈ Ω(n,r) =

Kr−1,b n−r+1
2 c,d n−r+1

2 e.

Let S (n,V2k+1) denote the class of graphs on n vertices containing no vertex disjoint cycles

of length 2k+1.

2.6. Theorem (Batineh [1]). Let k > 1 be an integer and G ∈ S (n,V2k+1). Then for n >

max{4k3+15k2+11k−5
2 ,4(4k2 + 8k− 3) + 1}, E (G) 6 b (n−1)2

4 c+ n− 1. Furthermore, equality

holds if and only if G = Ω(n,2).

2.7. Theorem (Hailat [5]). Let G ∈S (n,Vr,3). Then for large n, E (G) 6 b (n−r+1)2

4 c+(r−

1)(n− r+1). Furthermore, equality holds if and only if G = Ω(n,r).

3. Main Result

In this section, we generalize the result of Theorem 2.7 to the case where G ∈S (n,Vr,2k+1).

That is to the case where G is a graph on n vertices containing no r vertex-disjoint cycles of

length 2k+1. We prove our main result using induction on r and we start with r = 2.
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3.1. Theorem. Let k be a positive integer and G ∈S (n,2,2k+1). Then for large n, E (G) 6

b (n−1)2

4 c+n−1. Furthermore, equality holds if and only if G = Ω(n,2).

Proof. Since G ∈ S (n,2,2k + 1), then G has no two vertex-disjoint cycles of length 2k + 1.

Suppose first that G has no cycle of length 2k+ 1. The for n > 4k− 1, we have 3 6 2k+ 1 6
1
2(4k+2)6 bn+3

3 c, so that, using Lemma 2.4 (Bondy and Murty [3])

E (G)6

⌊
n2

4

⌋
=

⌊
((n−1)+1)2

4

⌋
6

⌊
(n−1)2

4

⌋
+

2(n−1)
4

+
1
4
+1

6

⌊
(n−1)2

4

⌋
+(n−1) for n> 4k−1

Suppose second that G has a cycle of length 2k+1. Then for large n, E (G)6 b (n−1)2

4 c+n−1

by Theorem 2.6. Note that if G = Ω(n,2) = K1,b n−1
2 c,d

n−1
2 e

then

E (G) =

⌈
n−1

2

⌉
+

⌊
n−1

2

⌋
+

⌈
n−1

2

⌉⌊
n−1

2

⌋
=

⌊
(n−1)2

4

⌋
+(n−1)

Therefore equality holds if and only if G = Ω(n,2). �

To prove the main result we need to introduce Turán graphs, since these graphs play a major

role in the proof.

3.2. Definition. The complete s-partite graph on n vertices with part sizes being
⌈n

s

⌉
or
⌊n

s

⌋
is

called Turán graph. We denote this graph by Tn,s.

Note that Turán graph is Ks+1 free, where Ks+1 is the complete graph on (s+1)-vertices. In

[4], David Conlon introduced the following statement of Turán’s theorem.

3.3. Theorem. (Turán) If G is an n-vertex Ks+1-free graph, then it contains at most E (Tn,s)

edges.

In addition, Conlon introduced three different proofs of Turáns Theorem. In this paper we use

the result of 2 (Zykovs Symmetrization). In this proof it was concluded that the set of vertices
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of a Ks+1-free graph G on n vertices with maximum number of edges can be partitioned into s

equivalence classes. In these classes, vertices in the same class are non-adjacent and vertices

in different classes are adjacent. Since the graph G is Ks+1-free, it must be a complete s-partite

graph. Note that Tn,s is the unique graph that maximizes the number of edges among such

graphs.

3.4. Theorem. Let G be a graph that has (r−1) vertex-disjoint cycles C1, C2,. . . ,Cr−1, but has

no r vertex disjoint cycles of length 2k+1 and let H =G−
⋃r−1

i=1 G(Ci). Then E (
⋃r−1

i=1 G(Ci),H)6

2(r−1)(n− r+1)−4k(r−1)2 and E (
⋃r−1

i=1 G(Ci))6 (2k+1)(k+1)(r−1)2.

Proof. Note that H is K2k+1 free graph since, otherwise, G would have r vertex-disjoint cycles

of length 2k+1, a contradiction to the assumption. Let H ′ be a graph on the vertices of H with

a maximum number of edges. Note that |V (H)|= |V (H ′)|= n−(2k+1)(r−1) = (n−r+1)+

2k(r−1), E (H)6 E (H ′), and E (
⋃r−1

i=1 G(Ci),H) = E (
⋃r−1

i=1 G(Ci),H ′).

Let n′= n−(2k+1)(r−1) = (n−r+1)−2k(r−1) = (|V (H ′)|. Since H ′ is K2k+1-free graph

then, using proof 2 of Turáns theorem, H ′ is Tn′,2k and the vertices of H ′ can be partitioned into

2k equivalent classes H ′1,H
′
2, . . . ,H2k, where |V (H ′i )| = d n′

2ke or b n′
2kc. Note that vertices of H ′i

are non-adjacent for all i = 1, . . . ,2k, but vertices of H ′i are adjacent to all vertices of H ′j. In

Figure 1, let

C1 = v11 . . .v1(2k+1)v11

...

Cr−1 = v(r−1)1 . . .v(r−1)(2k+1)v(r−1)1

Note that |H ′i |=
⌈

n−(2k+1)(r−1)
2

⌉
or
⌊

n−(2k+1)(r−1)
2

⌋
, so that

E (vi j,H ′)6
2k

∑
i=1
|H ′i |= n− (2k+1)(r−1)

= (n− r+1)−2k(r−1)



AN UPPER BOUND ON THE NUMBER OF EDGES OF GRAPHS 649

b
b

b
b b
�
�
�@

@
@

�
��

@
@R

�
�
�
��

�
��

C1:

C2:

Cr−1:

v12

v11

v1(2k+1)

v13 v1(2k). . .. . .

. . .

-

H
HHj

b
b

b
b b
�
�
�@

@
@v22

v21

v2(2k+1)

v23 v2(2k). . .
...

b
b

b
b b
�
�
�@

@
@v(r−1)2

v(r−1)1

v(r−1)(2k+1)

v(r−1)3 v(r−1)(2k).......
.......

b b bb. . .

H ′1

b b bb. . .

H ′2

...

b b bb. . .

H ′2k

Figure 1

In Figure 1, if vi j ∈ V (Ci) is adjacent to a vertex x ∈ V (H ′l ) and to a vertex y ∈ V (H ′j) then we

can construct a cycle of length 2k+ 1, C′i = vi jx . . .yvi j since each vertex in H ′t is adjacent to

every vertex in H ′m, for t 6= m. Now if we take another vertex wi j ∈ V (Ci) and assume that its

adjacent to x′ ∈ V (Ht) and to y′ ∈ V (Hl) then we can construct another disjoint cycle, C′′i of

length 2k+ 1. If we replace Ci with C′i and C′′i then we have r vertex-disjoint cycles in G, a

contradiction. This implies that if a vertex in V (Ci) is adjacent to more that one component of

V (H ′) =V (H) then the other vertices of Ci cannot be adjacent to more than one component of

V (H ′). It follows that

E (G(Ci),H) = E (G(Ci),H ′)

6 (n− r+1)−2k(r−1)+2k
(

1
2k

((n− r+1)−2k(r−1))
)

= (n− r+1)−2k(r−1)+(n− r+1)−2k(r−1)

= 2(n− r+1)−4k(r−1).
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Therefore

E (∪r−1
i=1 G(Ci),H)6 (r−1)(2(n− r+1)−4k(r−1))

= 2(n− r+1)(r−1)−4k(r−1)2.

Now, since |V (∪r−1
i=1 G(Ci)|= (2k+1)(r−1) then

E (
r−1⋃
i=1

G(Ci))6
(2k+1)(r−1)

(
(2k+1)(r−1)−1

)
2

6
(2k+1)(r−1)

(
(2k+2)(r−1)

)
2

= (2k+1)(k+1)(r−1)2.

�

The following lemma is needed for the proof of Theorem 3.6.

3.5. Lemma. Let n, r, k be three positive integers such that r > 2 and n> 6k(r−1). Then

(2− k)(r−1)(n− r+1)+(3k2− k+1)(r−1)2 < (r−1)(n− r+1).

Proof. Suppose not. Then

(2− k)(r−1)(n− r+1)+(3k2− k+1)(r−1)2 > (r−1)(n− r+1),

so that

(2− k)(n− r+1)+(3k2− k+1)(r−1)> (n− r+1).

This implies that

n− r+16
(3k2− k+1)(r−1)

k−1
,

so that

n6 (r−1)
(

3k2− k+1
k−1

+1
)

= (r−1)
( 3k2

k−1
)

6 (r−1)(3k2)(
2
k
) = 6k(r−1),

a contradiction to the fact that n > 6k(r−1). Therefore Lemma 3.5 follows. �
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3.6. Theorem. Let k be a positive integer and G ∈S (n,r,2k+1). Then for n > 6k(r−1):

E (G)6

⌊
(n− r+1)2

2

⌋
+(r−1)(n− r+1).

Furthermore, equality holds if and only if G = Ω(n,r).

Proof. We prove the theorem using induction on r. for r = 2 the theorem holds by Theorem 3.1.

Assume that the result is true for r− 1. We need to show that the result is true for r > 3.

Let G ∈S (n;r,2k+1). If G contains no r−1 vertex disjoint cycles of length 2k+1, then by

induction

E (G)6

⌊
(n− (r−1)+1)2

4

⌋
+((r−1)−1)(n− (r−1)+1)

=

⌊
(n− r+2)2

4

⌋
+(r−2)(n− r+2)

6
(n− r+1)2 +2(n− r+1)+1+4((r−1)−1)(n− (r−1)+1))

4
+1

=
(n− r+1)2

4
+

2(n− r+1)+4(r−1)(n− r+1)+4(r−1)−4(n− r+1)−4
4

+1

=
(n− r+1)2

4
+(r−1)(n− r+1)− 1

2
(n− r+1)(r−1)−1+1

6

⌊
(n− r+1)2

4

⌋
+(r−1)(n− r+1), for n> 3r−3.

Assume that G has r−1 vertex-disjoint cycles each of length 2k+1 and has no r vertex-disjoint

cycles of length 2k+ 1. Let C1, C2, . . . , Cr−1 be such cycles in G. Let H = G−∪r−1
i=1 G(Ci),

so that H has no cycle of length 2k+1 since, otherwise, G will have r vertex-disjoint cycles of

length 2k+1. Since |V (H)|= n′ = n− (r−1)(2k+1) then, using Lemma 2.5, we have

E (H)6 bn
′2

4
c= b((n− r+1)−2k(r−1))2

4
c

6 b(n− r+1)2

4
c− k(r−1)(n− r+1)+ k2(r−1)2.

From Theorem 3.4 we have:

E (∪r−1
i−1 G(Ci),H)6 2(n− r+1)(r−1)−4k(r−1)2
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and

E (
r−1⋃
i=1

G(Ci))6 (2k+1)(k+1)(r−1)2.

It follows that:

E (G) = E (H)+E (∪r−1
i=1 G(Ci),H)+E (∪r−1

i=1 G(Ci))

6

⌊
(n− r+1)2

4

⌋
− k(r−1)(n− r+1)+ k2(r−1)2

+2(n− r+1)(r−1)−4k(r−1)2 +(2k+1)(k+1)(r−1)2

=

⌊
(n− r+1)2

4

⌋
+(2− k)(r−1)(n− r+1)+(k2−4k+2k2 +3k+1)(r−1)2

=

⌊
(n− r+1)2

4

⌋
+(2− k)(r−1)(n− r+1)+(3k2− k+1)(r−1)2

6

⌊
(n− r+1)2

4

⌋
+(r−1)(n− r+1) (using Lemma 3.5)

Furthermore, equality holds for Ω(n,r) = Kr−1,b n−r+1
2 c,d n−r+1

2 e since

E (Ω(n,r)) = (r−1)
⌊

n− r+1
2

⌋
+(r−1)

⌈
n− r+1

2

⌉
+

⌈
n− r+1

2

⌉⌊
n− r+1

2

⌋
= (r−1)bn− r+1c+

⌊
(n− r+1)2

4

⌋
=

⌊
(n− r+1)2

4

⌋
+(r−1)(n− r+1).

�
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