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Abstract. In this paper, it will be shown that finding solutions from the Helmholtz equation and the non-linear

Poisson equation under Dirichlet conditions is equivalent to solving an integral equation, which can be treated as

a generalized two-dimensional moment problem over a domain that is considered rectangular in principle. We

will see that an approximate solution of the equation in partial derivatives can be found using the techniques of

generalized inverse moments problem and bounds for the error of the estimated solution. The method consists

of two steps.In each one an integral equation is solved numerically using the two-dimensional inverse moments

problem techniques. We illustrate the different cases with examples.
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1. INTRODUCTION

You want to find w(x, t) such that

wxx +wtt = f (x, t)

about a domain E = (a1,b1)× (a2,b2) or E = (a1,b1)× (a2,∞).

using the problem generalized moments techniques.

The problem has been solved using other techniques such as the Galerkin method [1], or the

method of finite differences in regions of irregular shape [2].

The objective of this work is to show that we can solve the problem using the techniques of

inverse moments problem. We focus the study on the numerical approximation.

The generalized moments problem [3, 4]is to find a function f (x) about a domain Ω ⊂ Rd

that satisfies the sequence of equations

(1) µi =
∫

Ω

gi(x) f (x)dx iεN

where N is the set of the natural numbers,(gi(x)) is a given sequence of functions in L2(Ω)

linearly independent known and the succession of real numbers {µi}iεN are known data. The

problem of Hausdorff moments [3, 4], is to find a function f (x) en (a,b) such that

(2) µi =
∫ b

a
xi f (x)dx iεN

In this case gi(x) = xi with i belonging to the set N.

If the integration interval is (0,∞) we have the problem of Stieltjes moments; if the integration

interval is (−∞,∞) we have the problem of Hamburger moments [3, 4].

The moments problem is an ill-conditioned problem in the sense that there may be no solution

and if there is no continuous dependence on the given data [3, 4]. There are several methods to

build regularized solutions. One of them is the truncated expansion method [3]. Ṫhis method is

to approximate(1) with the finite moments problem

(3) µi =
∫

Ω

gi(x) f (x)dx i = 1,2, ...,n



SOLUTION OF AN EQUATION IN POISSON PARTIAL DERIVATIVES 241

where it is considered as approximate solution of f (x) to pn(x)=∑
n
i=0 λiφi(x) , and the functions

{φi(x)}i=1,...,n result of orthonormalize 〈g1,g2, ...,gn〉 being λi the coefficients based on the data

µi . In the subspace generated by 〈g1,g2, ...,gn〉 the solution is stable. If nεN is chosen in an

appropriate way then the solution of (3) it approaches the solution of the original problem (1).

In the case where the data µi are inaccurate the convergence theorems should be applied and

error estimates for the regularized solution (pg. 19 a 30 de [3]).

2. RESOLUTION OF THE POISSON EQUATION

You want to find w(x, t) such that

(4) wxx +wtt = f (x, t)

about a domain E = (a1,b1)× (a2,b2) E = (a1,b1)× (a2,∞).

We consider

(5) wxx− kwtt =−(k+1)wtt + f (x, t) = G(x, t)

If wx 6= wt we can take k = 1.

We consider as auxiliary function

u(m,r,x, t) = e−m(x+1)e−r(t+1)

If the region E is bounded the conditions are:

w(a1, t) = k1(t) w(b1, t) = k2(t)

w(x,a2) = h1(x) w(x,b2) = h2(x)(6)

If the region E it is not bounded the conditions are:

(7) w(a1, t) = k1(t) w(b1, t) = k2(t) w(x,a2) = h1(x)

We define the vector field

F∗ = (F1(w),F2(w)) = (wx,−kwt)
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As udiv(F∗) = uG(x, t) we have to:∫∫
E

udiv(F∗)dA =
∫∫

E
uG(x, t)dA

Moreover, as udiv(F∗) = div(uF∗)−F∗.∇u, then

(8)
∫∫

E
udiv(F∗)dA =

∫∫
E

div(uF∗)dA−
∫∫

E
F∗.∇udA

where ∇u = (ux,ut).

Besides that ∫∫
E

div(uF∗)dA =
∫∫

E
(uwx)x− (ukwt)t dA =∫∫

E
udiv(F∗)dA+

∫∫
E
(uxwx−utkwt)dA(9)

Then from (8) y (9):

(10)
∫∫

E
(uxwx−utkwt)dA =

∫∫
E

F∗.∇udA

On the other hand, it can be proven, after several calculations that, integrating by parts:

(11)
∫∫

E
F∗.∇udA = A(m,r)+B(m,r)−

∫∫
E

uw(m2− kr2)dA = ϕ(m,r)

with

A(m,r) =
∫ b2

a2

(−m)u(m,r,b1, t)w(b1, t)− (−m)u(m,r,a1, t)w(a1, t)dt

B(m,r) =
∫ b1

a1

(−r)u(m,r,x,b2)(−k)w(x,b2)− (−r)u(m,r,x,a2)(−k)w(x,a2)dx

If m =
√

kr, instead of (10) y (11) :∫∫
E
(−
√

kr)uwx− (−r)kwtudA = ϕ(
√

kr,r)

∴
∫∫

E
u(−
√

kwx + kwt)dA =
ϕ(
√

kr,r)
r

with

ϕ(
√

kr,r)
r

=
∫ b2

a2

−
√

ku(
√

kr,r,b1, t)w(b1, t)+
√

ku(
√

kr,r,a1, t)w(a1, t)dt +

+
∫ b1

a1

−u(
√

kr,r,x,b2)(−k)w(x,b2)+u(
√

kr,r,x,a2)(−k)w(x,a2)dx
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We note ϕ1(r) =
ϕ(
√

kr,r)
r

, then

(12)
∫∫

E
u(−
√

kwx + kwt)dA = ϕ1(r)

To solve this integral equation we take a base ψi(r) = rie−r i = 0,1,2, ...,n of L2(E).

Then we multiply both members of (12) by ψi(r) = rie−r and we integrate with respect to r, we

obtain

(13)
∫∫

E
Hi(x, t)(−

√
kwx + kwt)dA =

∫ b2

a2

ϕ1(r)ψi(r)dr = µi i = 0,1,2, ...,n

where Hi(x, t) =
∫ b2

a2
u(−
√

kr,r,x, t)ψi(r)dr.

We can interpret (13) as a generalized two-dimensional moment problem. We solve it nu-

merically with the truncated expansion method and we found an approximation pn(x, t) for

−
√

kwx + kwt .

3. SOLUTION OF THE GENERALIZED MOMENTS PROBLEM

We can apply the detailed truncated expansion method in [4] and generalized in [1] and [5]

to find an approximation pn(x, t) of −
√

kwx + kwt for the corresponding finite problem with

i = 0,1,2, ...,n, where n is the number of moments µi. We consider the basis φi(x, t) i =

0,1,2, ...,n obtained by applying the Gram-Schmidt orthonormalization process on Hi(x, t) i=

0,1,2, ...,n.

We approximate the solution −
√

kwx + kwt with [4] and generalized in [3] y [5]:

pn(x, t) =
n

∑
i=0

λiφi(x, t) donde λi =
i

∑
j=0

Ci jµ j i = 0,1,2, ...,n

And the coefficients Ci j verify

Ci j =

(
i−1

∑
k= j

(−1)
〈Hi(x, t) | φk(x, t)〉
‖φk(x, t)‖2 Ck j

)
.‖φi(x, t)‖−1 1 < i≤ n; 1≤ j < i

The terms of the diagonal are

Cii = ‖φi(x, t)‖−1 i = 0,1, ...,n.
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The proof of the following theorem is in [6, 7]. In [7] the demonstration is made for b2 finite. If

b2 = ∞ instead of taking the Legendre polynomials we take the Laguerre polynomials. En [8]

the demonstration is made for the one-dimensional case.

This Theorem gives a measure about the accuracy of the approximation.

Theorem. Let {µi}n
i=0 be a set of real numbers and suppose that f (x, t)∈L2 ((a1,b1)× (a2,b2))

for two positive numbers ε and M verify:

n

∑
i=0

∣∣∣∣∫ b2

a2

∫ b1

a1

Hi(x, t) f (x, t)dxdt−µi

∣∣∣∣2 ≤ ε
2

∫ b2

a2

∫ b1

a1

((b1−a1)
2 f 2

x +(b2−a2)
2 f 2

t )dxdt ≤M2(14)

then ∫ b2

a2

∫ b1

a1

| f (x, t)|2 dxdt ≤ min
i

{∥∥CCT∥∥ε
2 +

M2

8(i+1)2 ; i = 0,1, ...,n

}
where C it is a triangular matrix with elements Ci j (1 < i≤ n; 1≤ j < i) and

(15)
∫ b2

a2

∫ b1

a1

|pn(x, t)− f (x, t)|2 dxdt ≤
∥∥CCT∥∥ε

2 +
M2

8(n+1)2

If b2 it is not finite then (14) change by

(16)
∫ b2

a2

∫ b1

a1

(x f 2
x + t f 2

t )dxdt ≤M2

And it must be fulfilled that

t i f (x, t)−→ 0 if t −→ ∞ ∀iεN

So we have an equation in first order partial derivatives of the form

−
√

kwx(x, t)+ kwt(x, t) = pn(x, t)

that is, it can be written as

A1(x, t)wx(x, t)+A2(x, t)wt(x, t) = pn(x, t)
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where A1(x, t) =−
√

k and A2(x, t) = k.

It is resolved as in [9], that is, we can prove that solving this equation is equivalent to solving

the integral equation

(17)
∫ b1

a1

∫ b2

a2

K(m,r,x, t)w(x, t)dtdx = ϕ2(m,r)

with K(m,r,x, t) = u(m,r,x, t)(m1
√

k(m+1)−m2k(r+1))

where now it is taken as an auxiliary function

u(m,r,x, t) = e−m1(m+1)(x+1)e−m2(r+1)(t+1)

The values of m1 and m2 are chosen in a convenient way to avoid discontinuities.

and

ϕ2(m,r) =
∫ b1

a1

u(m,r,x,b2)kw(x,b2)−u(m,r,x,a2)kw(x,a2)dx−

−
∫ b2

a2

u(m,r,b1, t)
√

kw(b1, t)−u(m,r,a1, t)
√

kw(a1, t)dt−
∫ b2

a2

∫ b1

a1

pn(x, t)udxdt

Again we take a base:

ψi j(m,r) = mir je−(m+r) i = 0,1, ...,n1 j = 0,1,2, ...,n2

and we multiply both members of (17) by ψi j(m,r) and we integrate with respect to m and r

We have then the generalized moments problem

(18)
∫ b1

a1

∫ b2

a2

w(x, t)Hi j(x, t) = µi j

where

µi j =
∫ b1

a1

∫ b2

a2

ϕ2(m,r)ψi j(m,r)dmdr

Hi j(x, t) =
∫ b1

a1

∫ b2

a2

K(m,r,x, t)ψi j(m,r)dmdr

We apply the truncated expansion method and find a numerical approximation for w(x, t).

3.1. Numerical examples.
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Example 1. We consider the equation

wxx +wtt =
120

(3+ t +2x)2 in (0,1)× (0,1)

Conditions:

w(0, t) =
4

(3+ t)2 w(1, t) =
4

(5+ t)2

w(x,0) =
4

(3+2x)2 w(x,1) =
4

(4+2x)2

The solution is : w(x, t) =
4

(3+2x+ t)2 .

For the first step we take n = 5 moments and we approximate −wx(x, t)+wt(x, t) = G(x, t)

with accuracy ∫ 1

0

∫ 1

0
(p5(x, t)−G(x, t))2dtdx = 0.014211

In the Figure 1 we show p5(x, t) and G(x, t) overlapping.

0.0

0.5

1.0
x

0.0

0.5

1.0t

FIGURE 1. p5(x, t) and G(x, t).

For the second step we take m1 = 1 and m2 = 2. We also consider n1 = 3 and n2 = 2 , that is

6 moments.

We approximate w(x, t) with accuracy

∫ 1

0

∫ 1

0
(p6(x, t)−w(x, t))2dtdx = 0.0380442

In the Figure 2 we show p6(x, t) and w(x, t) overlapping.
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1.0t

FIGURE 2. p6(x, t) and w(x, t).

Ejemplo 2. We consider the equation

wxx +wtt = 2e−1−x−t in (0,2)× (0,∞)

Conditions:

w(0, t) = e−1−t w(2, t) = e−3−t w(x,0) = e−1−x

The solution is : w(x, t) = e−1−x−t .

For the first step we take n = 5 moments and we approximate −
√

2wx(x, t) + 2wt(x, t) =

G(x, t) with accuracy

∫ 2

0

∫
∞

0
(p5(x, t)−G(x, t))2dtdx = 0.0121825

In this example we take k = 2,since otherwise G(x, t) = 0.

In the Figure 3 we show p5(x, t) and G(x, t) overlapping.

For the second step we take m1 = 1 and m2 = 2. We also consider n1 = 3 y n2 = 2 , that is 6

moments.

We approximate w(x, t) with accuracy

∫ 2

0

∫
∞

0
(p6(x, t)−w(x, t))2dtdx = 0.0427058

In the Figure 4 we show p6(x, t) and w(x, t) overlapping.
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FIGURE 3. p5(x, t) and G(x, t).
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FIGURE 4. p6(x, t) and w(x, t).

Ejemplo 3. In general, the method could be applied to any region that can be written simulta-

neously as

E = {(x, t); a1 < x < b1; g1(x)< t < g2(x)}

and

E = {(x, t); h1(t)< x < h2(t); a2 < t < b2}

We can apply the above to a circular region:

We consider the equation

wxx +wtt = 5e−1−x−2t en E = {(x, t);−1 < x < 1;−
√

1− x2 < t <
√

1− x2}

Conditions:we must know w(x, t) on the edge of E

w(−
√

1− t2, t) w(
√

1− t2, t) w(x,−
√

1− x2) w(x,
√

1− x2)
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The solution is : w(x, t) = e−1−x−2t .

The integrals are solved in numerical form without making change to polar coordinates using

the Mathematica software.

For the first step we take n = 5 moments and we approximate −wx(x, t)+wt(x, t) = G(x, t)

with accuracy ∫∫
E
(p5(x, t)−G(x, t))2dtdx = 0.459748

In this example we take k = 1.

In the Figure 5 we show p5(x, t) and G(x, t) overlapping.
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0.0

0.5

1.0

x

-1.0

-0.5

0.0

0.5

1.0

t

-3

-2

-1

0

Z

FIGURE 5. p5(x, t) and G(x, t).

For the second step we take m1 = 1 and m2 = 2. We also consider n1 = 3 y n2 = 2 , that is 6

moments.

We approximate w(x, t) with accuracy

∫∫
E
(p6(x, t)−w(x, t))2dtdx = 0.176225

In the Figure 6 we show p6(x, t) and w(x, t) overlapping.

Ejemplo 4. We consider the equation

wxx +wtt = 5e−1−x−2t on E = {(x, t); 0 < x < 2 ; 2x < t < x2}
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FIGURE 6. p6(x, t) and w(x, t).

or

wxx +wtt = 5e−1−x−2t on E = {(x, t); t
2
< x <

√
t ; 0 < t < 4}

Conditions:we must know w(x, t) on the edge of E

w(2x, t) w(x2, t) w(x,
t
2
) w(x,

√
t)

The solution is : w(x, t) = e−1−x−2t .

For the first step we take n = 5 moments and we approximate −wx(x, t)+wt(x, t) = G(x, t)

with accuracy ∫∫
E
(p5(x, t)−G(x, t))2dtdx = 0.00435357

In this example we take k = 1.

In the Figure 7 we show p5(x, t) and G(x, t) overlapping.

For the second step we take m1 = 1 and m2 = 2. We also consider n1 = 3 y n2 = 2 , that is 6

moments.

We approximate w(x, t) with accuracy

∫∫
E
(p6(x, t)−w(x, t))2dtdx = 0.00137451

In the Figure 8 we show p6(x, t) and w(x, t) overlapping.
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FIGURE 7. p5(x, t) and G(x, t).
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FIGURE 8. p6(x, t) and w(x, t).

4. CONCLUSIONS

An equation in partial Poisson derivatives of the form wxx +wtt = f (x, t) where the unknown

function w(x, t) is defined in E = (a1,b1)× (a2,b2) or E = (a1,b1)× (a2,∞) or E a region that

can be written simultaneously as

E = {(x, t); a1 < x < b1; g1(x)< t < g2(x)}

and

E = {(x, t); h1(t)< x < h2(t); a2 < t < b2}
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under the conditions of Dirichlet can be solved numerically by applying inverse problem tech-

niques of moments in two steps:

(1) first we consider the integral equation∫∫
E

u(−
√

kwx + kwt)dA = ϕ1(r)

we can solve it numerically as a inverse moments problem, and we get an approximate

solution for −
√

kwx(x, t)+ kwt(x, t).

(2) as a second step we consider the integral equation∫∫
E

K(m,r,x, t)w(x, t)dtdx = ϕ2(m,r)

and again it can be solved numerically by applying inverse moments problem tech-

niques, and we get an approximate solution for w(x, t).

The function f (x, t) it is not used in calculations, but it is implicitly considered in the boundary

conditions.
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