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Abstract. In this paper, we are concerned with a hybrid hyperbolic dynamic system formulated by partial dif-

ferential equations with initial and boundary conditions. An optimal energy control of the system is investigated.

First, the system is transformed to an abstract evolution system in an appropriate Hilbert space, and then semigroup

generation of the system operator is discussed. Finally, an optimal energy control problem is proposed and it is

shown that an optimal energy control can be obtained by a finite dimensional approximation.
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1. INTRODUCTION

In this paper, we are concerned with the following general hyperbolic system with static

boundary condition in one space variable in normal form studied in [1] and [2]:

(1)


∂

∂ t

[ u(x, t)

v(x, t)

]
+K(x)

∂

∂x

[ u(x, t)

v(x, t)

]
+C(x)

[ u(x, t)

v(x, t)

]
= 0,0 < x < 1, t > 0,

v(1, t) = Du(1, t),u(0, t) = Ev(0, t)

where
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(H1) K(x) = diag{λ1(x),λ2(x), · · · ,λm(x),µ1(x),µ2(x), · · · ,µk(x)} is a diagonal n× n,(n =

m + k), matrix with real entries λ j(x),µ j(x) ∈ C1[0,1],λ j(x) > 0,µi(x) < 0,∀ x ∈ [0,1], i =

1,2, · · · ,k, j = 1,2, · · · ,m.

(H2) C(x) = diag{c1(x),c2(x), · · · ,cn(x)} is an n×n diagonal matrix with continuous entries

in x ∈ [0,1];

(H3) u(x) = [u1(x),u2(x), · · · ,um(x)]> is a column vector in Rm (or Cm) and v(x) = [v1(x),

v2(x), · · · ,vk(x)]> is a column vector in Rk (or Ck);

(H4) D,E,F and G are real (or complex) constant matrices of appropriate size.

In this paper, our goal is to investigate an optimal energy control of the system. First, we

transfer the system to an abstract Cauchy problem in an appropriate Hilbert space, and then

discuss the semigroup generation of the system operator. Finally, we propose an optimal energy

control problem and show that the optimal energy control exists and it can be obtained by a

finite dimensional approximation.

2. SEMIGROUP GENERATION OF THE SYSTEM

Consider the system (1.1) in the underlying Hilbert space H =
(
L2(0,1)

)2. Define the

operator A : D(A )(⊂H )→H by

(1)


A

 u(x)

v(x)

= −K(x)
∂

∂x

[ u(x)

v(x)

]
−C(x)

[ u(x)

v(x)

]
,

D(A ) = {[u,v]> ∈
(
H1(0,1)

)m×
(
H1(0,1)

)k
,u(0) = Ev(0),v(1) = Du(1)}.

Then the system (2.1) can be written an an evolution equation in H :

(2)
dW (t)

dt
= A W (t), t > 0

with W (t) = [u(·, t),v(·, t)]>.

Lemma 2.1 The operator A definde by (2.2) has compact resolvent and hence σ(A ) consists

only isolated eigenvalues.

Proof. Given ( f ,g,b) ∈ X , we solve
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(λ −A )(u,v,d) = ( f ,g,b)

that is,

(3)


∂

∂ t

[ u(x, t)

v(x, t)

]
=−K−1(x)[λ +C(x)]

[ u(x, t)

v(x, t)

]
+K−1(x)

[ f (x)

g(x)

]
,0 < x < 1, t > 0,

v(1, t) = Du(1, t),u(0, t) = Ev(0, t)

Denote by M(x,y,λ ) the fundamental matrix of the system

(4)
d
dx

[ u(x)

v(x)

]
=−K−1(x)[λ +C(x)]

[ u(x)

v(x)

]
It follows from (2.3) that

(5)
[ u(x)

v(x)

]
= M(x,0,λ )

[ E

I

]
v(0)+

∫ x

0
M(x,y,λ )K−1(y)

[ f (y)

g(y)

]
dy

On the other hand, we see from the boundary condition in (2.4) that

b = (−λD−F,λ −G)
[ u(1)

v(1)

]
= (λD−F,λ −G)M(1,0,λ )

[ E

I

]
v(0)

+(λD−F,λ −G)
∫ 1

0
M(1,y,λ )K−1(y)

[ f (y)

g(y)

]
dy

Consequently,

(6) H(λ )v(0) = b+
∫ 1

0
(λD+F,G−λ )M(1,y,λ )K−1(y)

[ f (y)

g(y)

]
dy

where

H(λ ) =−(λD+F,G−λ )M(1,0,λ )
[ E

I

]
Defining h(λ ) = detH(λ ), we see that λ ∈ σ(A ) if and only if λ is a zero of the entire

function h(λ ). When h(λ ) 6= 0, λ ∈ ρ(A ) and R(λ ,A )( f ,g,b)=(u,v,d) where (u,v) is given

by (2.5) with v(0) determined by (2.6) and d = v(1)−Du(1). It can be seen from (2.5) that

R(λ ,A ) is compact for any λ ∈ ρ(A ).
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Theorem 2.2. The operator A defined by (2.1) generates a C0-semigroup T (t) on H .

Proof. We need only to prove the assertion for the case C ≡ 0 because is a bounded operator

by assumption (H2), and bounded perturbations do not affect C0-semigroup generations. For

the sake of simplicity, we assume that H is real. The idea is to define an equivalent norm on H

by properly choosing some positive weighting functions fi(x),1≤ i≤N and gi(x),N+1≤ i≤ n,

namely, define the norm on H as

‖(u,v,d)‖p =
N

∑
i=1

∫ 1

0
fi(x)|ui(x)|pdx+

n

∑
j=N+1

∫ 1

0
gj(x)|vj(x)|pdx+

n

∑
j=N+1

|dj|p (2.3)

It is easily verified that H ∗, the dual space of H , consisting of all elements (u∗,v∗,d∗) with

u∗i (x) = ‖((u,v,d)‖2−p|ui(x)|
p
q sign(ui(x)), 1≤ i≤ N,

v∗j(x) = ‖((u,v,d)‖2−p|v j(x)|
p
q sign(vj(x)), N+1≤ j≤ n,

d∗j (x) = ‖((u,v,d)‖2−p|d j|
p
q sign(dj), N+1≤ j≤ n.

where q denotes the conjugate number of p, which satisfies 1
p +

1
q = 1.

For any (u,v,d) ∈ D(A), (u,v,d) 6= 0 and any (u∗,v∗,d∗) ∈ F((u,v,d)) ⊂ H , where F

denotes the duality set. A direct calculation shows that

‖(u,v,d)‖p−2〈(u∗,v∗,d∗),A(u,v,d)〉

=
N

∑
i=1

∫ 1

0
−λi(x) fi(x)

d
dx|ui(x)|pdx+

n

∑
j=N+1

∫ 1

0
−µj(x)gj(x)

d
dx
|vj(x)|pdx

+〈Fu(1)+Gv(1), [v(1)−Du(1)]′′〉

= −
N

∑
i=1

λi(1) fi(1)|ui(1)|p−
n

∑
j=N+1

µ j(1)g j(1)|v j(1)|p

+
N

∑
i=1

λi(0) fi(0)|ui(0)|p +
n

∑
j=N+1

µ j(0)g j(0)|v j(0)|p

+
N

∑
i=1

∫ 1

0
|ui(x)|p

d
dx

[λi(x) fi(x)]dx+
n

∑
j=N+1

∫ 1

0
|vj(x)|p

d
dx

[µj(x)gj(x)]dx

+〈Fu(1)+Gv(1), [v(1)−Du(1)]′′〉= I1 + I2 + I3 + I4.

We estimate Ii separately. It is clear from the expression of I3 that

I3 ≤C0‖(u,v,d)‖p (2.4)
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where C0 = max i, j maxx∈[0,1]{ d
dx [λi(x) fi(x)], d

dx [µ j(x)g j(x)]dx]}.

Nothing that ui(0) =
n

∑
j=N+1

ei jv j(0), we see that

I2 =
N

∑
i=1

λi(0) fi(0)|ui(0)|p +
n

∑
j=N+1

µ j(0)g j(0)|v j(0)|p

≤
n

∑
j=N+1

[µ j(0)g j(0)+
N

∑
i=1

λi(0) fi(0)(
n

∑
k=N+1

|eik|q)
p
q ]|v j(0)|p.

(2.5)

Because λi(0)> 0 and µ j(0)< 0 from (H1) , we can always find g j(0)> 0 and fi(0)> 0 such

that

µ j(0)g j(0)+
N

∑
i=1

λi(0) fi(0)(
n

∑
k=N+1

|eik|q)
p
q ]≤ 0, N +1≤ j ≤ n (2.6)

holds, which implies that I2 ≤ 0.

We now estimate I4 by means of the inequalities (|a|+ |b|)p ≤ 2p(|a|p+ |b|p) and |a|
1
p |b|

1
q ≤

|a|
p + |b|q which hold for any real a and b, we have

I4 ≤
n

∑
j=N+1

|
N

∑
i=1

f jiui(1)+
n

∑
i=N+1

g jivi(1)||v j(1)−
N

∑
i=1

d jiui(1)|
p
q

≤ 1
p

n

∑
j=N+1

|
N

∑
i=1

f jiui +
n

∑
i=N+1

g jivi(1)|p +
1
q

n

∑
j=N+1

|v j(1)−
N

∑
i=1

d jiui(1)|p

≤ 2p

p

n

∑
j=N+1

[
|

N

∑
i=1

f jiui(1)|p + |
n

∑
i=N+1

g jivi(1)|p
]
+

1
q
‖(u,v,d)‖p

≤ 2p

p

n

∑
j=N+1

(
N

∑
i=1
| f ji|p

) p
q N

∑
i=1
|ui(1)|p +

2p

p

n

∑
j=N+1

(
N

∑
i=1
|g ji|p

) p
q n

∑
i=N+1

|vi(1)|p +
1
q
‖(u,v,d)‖p

=
N

∑
i=1

αi|ui(1)|p +
n

∑
j=N+1

β j|v j(1)|p +
1
q
‖(u,v,d)‖p

with αi and β j denoting the obvious constants. Finally, it can be seen that
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I1 + I4− 1
q‖(u,v,d)‖

p

≤
N

∑
i=1

[−λi(1) fi(1)+αi]|ui(1)|p +
n

∑
j=N+1

[β j−µ j(1)g j(1)]|v j(1)|p

≤
N

∑
i=1

[−λi(1) fi(1)+αi]|ui(1)|p +2p
n

∑
j=N+1

|β j−µ j(1)g j(1)||v j(1)−
N

∑
i=1

d jiui(1)|p

+2p
n

∑
j=N+1

|β j−µ j(1)g j(1)||
N

∑
i=1

d jiui(1)|p

≤
N

∑
i=1

[−λi(1) fi(1)+αi]|ui(1)|p +
n

∑
j=N+1

2p|β j−µ j(1)g j(1)||v j(1)−
N

∑
i=1

d jiui(1)|p

+2p
n

∑
j=N+1

|β j−µ j(1)g j(1)|

(
N

∑
i=1
|d ji|q

) p
q N

∑
i=1
|ui(1)|p

=
N

∑
i=1

−λi(1) fi(1)+αi +2p
n

∑
j=N+1

|β j−µ j(1)g j(1)|

(
N

∑
i=1
|d ji|q

) p
q
 |ui(1)|p

+
n

∑
j=N+1

2p|β j−µ j(1)g j(1)||v j(1)−
N

∑
i=1

d jiui(1)|p.

If we choose fi(1)> 0, g j(1)> 0 such that
−λi(1) fi(1)+αi +2p

n

∑
j=N+1

|β j−µ j(1)g j(1)|

(
N

∑
i=1
|d ji|q

) p
q

≤ 0

2p|β j−µ j(1)g j(1)| ≤C

(2.7)

for any 1≤ i≤ N and N +1≤ j ≤ n, then

I1 + I4 ≤ (C+
1
q
)‖(u,v,d)‖p.

The estimations of Ii above show that there exists a constant M such that

〈(u∗,v∗,d∗),A(u,v,d)〉 ≤M‖(u,v,d)‖2 (2.8)

Now we choose a weighting functions fi(x) and gi(x) such that they satisfy (2.6) and (2.7) and

then define a norm in H according to (2.3).

Because A −M is dissipative and A has the properties stated in the Lemma 2.1, we can

conclude from the standard argument in [6] that A generates a C0-semigroup on H �
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3. AN OPTIMAL ENERGY CONTROL

In this section, we will discuss an optimal control problem of the hyperbolic system (2.2):

dW
dt = AW (t)+Bu(W (t),t)

W (0) =W0

(3.1)

where both state space H and control space U are Hilbert spaces, the state function W (t) on

[0,T ] is valued in H , A is the infinitesimal generator of a C0-semigroup S(t), t ≥ 0. B is a

bounded linear operator from L2([0,T ];U ) to L2([0,T ];U ), u(W (t), t) is a control of the

system.

In this section, we shall discuss a specific optimal control, that is, the minimum energy control

of the system (3.1). We know that the minimum energy control in an abstract space is, in general,

the minimum norm control. So, from mathematics point of view, the existence and uniqueness

of the optimal control are essential. If these are true, then how to obtain the optimal control is

a significant problem. The main content of this paper is to solve these essential and significant

issue.

From the theory of operator semigroup, we see that for every control element u(W (·), ·)∈

L2([0,T ],U ), the system (3.1) has an unique mild solution

W (t) = S(t)W0 +
∫ t

0 S(t− s)B(u(W (s),s))ds (3.2)

let ϕ(·) be an arbitrary element in C([0,T ];H ), and

ρ = in fu∈L2([0,T ];U )‖ϕ(t)−S(t)W0−
∫ t

0
S(t− s)Bu(W (s),s)ds‖ ,

define the admissible control set of the system (3.1) as follows

Uad = {u ∈ L2([0,T ];U ) : ‖ϕ(t)−S(t)W0−
∫ t

0 S(t− s)Bu(W (s),s)‖ ≤ ρ + ε} (3.3)

where ε is any positive number.

It can be seen from (3.3) that Uad is not empty and contains infinitely many elements related

to ϕ and ε . The minimum energy control problem is actually to find the element u, satisfying

‖u0‖= min{‖u‖ : u ∈Uad} (3.4)
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where u0 is said to be a minimum energy control element.

Lemma 3.1 The admissible control set Uad defined by (3.3) is a closed convex set in Hilbert

space L2([0,T ];U ).

Proof. Convexity. For any u1, u2 ∈Uad and a real number λ , 0 < λ < 1, it is easy to see from

(3.3) that

‖ϕ(t)−S(t)W0−
∫ t

0 S(t− s)Bui(W (s),s))‖ ≤ ρ + ε, i = 1,2 (3.5)

and hence

‖ϕ(t)−S(t)W0−
∫ t

0 S(t− s)B(λu1(W (s),s)+(1−λ )u2(W (s),s))ds‖

≤ λ‖ϕ(t)−S(t)W0−
∫ t

0 S(t− s)Bu1(W (s),s))ds‖

+(1−λ )‖ϕ(t)−S(t)W0−
∫ t

0 S(t− s)Bu2(W (s),s)ds‖.

(3.6)

Since λu1 +(1−λ )u2 ∈ L2([0,T ];U ), it follows that λu1 +(1−λ )u2 ∈ Uad , this implies

that Uad is a convex subset of L2([0,T ];U ).

Closedness. Suppose {un} ⊂Uad , and limn→∞ ‖un−u∗‖= 0. It can be shown that u∗ ∈ Uad .

In fact, from the definition of Uad we see that

‖ϕ(t)−S(t)W0−
∫ t

0
S(t− s)Bun(W (s),s)ds‖ ≤ ρ + ε, n = 1,2, · · ·

Since S(t), t ≥ 0 is a C0-semigroup in Hilbert space H , there is a constant M > 0 such that

sup
0≤t≤T

‖S(t)‖ ≤M. On the other hand, since W (s) is differentiable on [0,T ], it is continuous on

[0,T ], and hence {W (s) : s ∈ [0,T ]} is a bounded set in L2([0,T ];U ). Thus there is a constant

N > 0 such that ‖Bu(W (s),s)‖ ≤ N (0≤ s≤ T ) and

‖ϕ(t)−S(t)W0−
∫ t

0 S(t− s)Bu∗(W (s),s)ds‖

≤ ‖ϕ(t)−S(t)y0−
∫ t

0 un(W (s),s)Bu(W (s),s)ds‖

+‖
∫ t

0 S(t− s)B[un(W (s),s)−u∗(W (s),s)]‖

≤ ρ + ε +M‖un−u∗‖ ·NT

(3.7)

Letting n→ ∞ leads to

‖ϕ(t)−S(t)W0−
∫ t

0
S(t− s)Bu∗(W (s),s)ds‖ ≤ ρ + ε .

Thus, u∗ ∈ Uad , and Uad is a closed set. The proof is complete.
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Theorem 3.2 There exists an unique minimum energy control element in the admissible control

set Uad for the system (3.1)

Proof. Since L2([0,T ],U ) is a Hilbert space, it is naturally a strict convex Banach Space.

From the preceding Lemma, we have seen that Uad is a closed convex set in L2([0,T ],U ), it

follows from [2] that there is an unique element u0 ∈ Uad such that

‖u0‖= min {‖u‖ : u ∈ Uad}

According to the definition (3.4), u0 is just the desired minimum energy control element of

the system (3.1). The proof is complete.

Finally, we shall show that the minimum energy control element can be approached.

Theorem 3.3 Suppose that u0 is the minimum energy control element of the system (1.1), then

there exists a sequence {un} of Uad such that {un} converges strongly to u0 in L2([0,T ];U ),

namely,

lim
n→∞
‖un−u0‖= 0

Proof. Let {un} be a minimized sequence in the admissible control set Uad , then it follows

that

‖un+1‖ ≤ ‖un‖, n = 1,2, · · · (3.8)

and

limn→∞ ‖un‖= in f{‖u‖ : u ∈Uad} (3.9)

It is obvious that {un} is a bounded sequence in L2([0,T ];U ), and so there is a subsequence

{unk} of {un} such that {unk} weakly converges to an element ũ in L2([0,T ];U ) (see [3]).

Since Uad is a closed convex set in L2([0,T ];U ) (see Lemma 3.1), we see from Mazur’s

Theorem that Uad is a weakly closed set in L2([0,T ];U ), thus ũ ∈ Uad . Combining (3.2) and

employing the properties of limits of weakly convergent sequence on norm yield

in f{‖u‖ : u ∈Uad} ≤ ‖ũ‖ ≤ limk→∞ ‖unk‖

= lim
nk→∞

‖unk‖= lim
n→∞
‖un‖= inf{‖u‖;u ∈Uad}.

(3.10)
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Thus, we have

limn→∞ ‖un‖= ‖ũ‖ (3.11)

and

‖ũ‖= in f{‖u‖ : u ∈Uad}. (3.12)

Since {unk} is weakly convergent to ũ, it follows from (3.3) that {unk} converges to ũ. There-

fore, we see in terms of Theorem 3.2 and (3.4) that ũ = u0, namely, ũ is the minimum energy

control element. Thus, {unk} strongly converges to the minimum energy control element in

L2([0,T ];U ). Without loss of generality, we can rewrite {unk} by {un}, then the conclusion of

theorem is now obtained.

The Theorem 3.2 points out that the minimum energy control element can be approached

by a weakly convergent sequence in the control space, which provides the theoretical basis of

approximate computation for finding the minimum energy control element.
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