
Available online at http://scik.org

J. Math. Comput. Sci. 2 (2012), No. 5, 1417-1424

ISSN: 1927-5307

LINK BETWEEN WRONSKIAN CONDITIONS AND GRAMMIAN
CONDITIONS

HONGWEI FU1,∗, JUAN XU2

1Department of Mathematics, Jinhua Vocational and Technique College, Jinhua 321004 , China

2Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
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1. Introduction

The direct method proposed by Hirota becomes a powerful tool for constructing multi-

soliton solutions to integrable NLEEs [1]. The general idea of the method is first to make

a transformation into new variables, so that in these new variables multi-soliton solutions

appear in a particularly simple form. The method turned out to be very effective and

was quickly shown to give N -soliton solutions to some nonlinear equations. Further, the

solution obtained by Hirota’s method can commonly be written in terms of a determi-

nant. Since differentiation of an Nth order determinant usually lead to the sum of N
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determinants, it is difficult to get the derivatives of the N -soliton solutions. To avoid this

difficulty, an alternative formulation is called for. Another determinant form for soliton

solutions is the Grammian [2-4] which can be expressed by means of a Pfaffian and conse-

quently the proof of the Grammian solving the bilinear equations can easily be completed

by virtue of Pfaffian properties. It is a common feature that many NLEEs admit Gram-

mian solutions. As we know, in the process of constructing Grammian solutions, the main

difficulty lies in looking for the linear differential conditions, which the functions in the

Grammian determinant should satisfy.

In this papaer, we use the link to derive Grammian conditions and solutions of NLEEs.

As an application, the construction problems of Grammian conditions to the following

equations are treated:

(2 + 1)-dimensional KP equation [5]

ut + 6uux + uxxx + 3∂−1uyy = 0, (1.1)

(2 + 1)-dimensional Korteweg-de Vries (KdV) system [6,7]

ut + uxxx − 3(uv)x = 0, (1.2a)

ux = vy, (1.2b)

Eq (1.1) is a (2 + 1) dimensions generalization of the KdV equation. Kadomtsev and

Petviashvili discovered the equation when they relaxed the restriction that the waves are

strictly one-dimensional. The KP equation is used to model shallow water waves with

weakly nonlinear restoring forces and waves in ferromagnetic media. System (1.2) was

originally derived by the idea of the weak Lax pair [7] and can be obtained from the

Kadomtsev-Petviashvili (KP) equation using inner parameter-dependent symmetry con-

straint [8]. It has been shown that in Ref. [9] such a system (1.2) admits the painlevé

property. Obviously, it can be reduced to the well-known (1 + 1)-dimensional KdV equa-

tion if y = x, which was initially used to describe competition between week nonlinearity

and weak disperson in shallow water. Based on the bilinear method and bilinear BT of

System (1.2), the main goal of our work is to obtain Wronskian conditions and solutions
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for System (1.2) by applying the balance method. Our results will show that these equa-

tions have generalized Wronskian determinant solutions under different linear differential

conditions.

The structure of this paper is as follows. In Section 2, the link between wronskian

conditions and Grammian conditions is simply introduced. In Section 3, we construct

and prove Grammian solutions for (1.1)-(1.2). Finally, we have the summary in section

4.

2. Preliminaries

We consider a general form of a partial differential equation

F (ut, ux, uy, utt, utx, uty, uxx, uxy, uyy, · · · ) = 0, (2.1)

where u = u(x, y, t), F is a polynomial about u and its derivatives. By the transformation

u = T (f(x, y, t)), (2.1) can be converted into the bilinear form

G(Dx, Dy, Dt)f · f = 0, (2.2)

where G(Dx, Dy, Dt) is the operator polynomial and Dx, Dy, Dt are defined by[9]

Dm
x D

n
yD

k
t a · b = (∂x − ∂x′)m(∂y − ∂y′)n(∂t − ∂t′)ka(x, y, t)b(x′, y′, t′)|x′=x,y′=y,t′=t. (2.3)

If (2.2) has the solution in the Wronskian form

f = W (φ1, φ2, · · · , φN) =

∣∣∣∣∣∣∣∣∣∣∣∣
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1 φ
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1 · · · φ

(N−1)
1

φ
(0)
2 φ

(1)
2 · · · φ

(N−1)
2

...
...

. . .
...

φ
(0)
N φ

(1)
N · · · φ

(N−1)
N

∣∣∣∣∣∣∣∣∣∣∣∣
, (2.4)

where φ
(m)
i is defined by φ

(m)
i = φi,mx, and φi= φi(x, y, t) (i = 1, 2, · · · , N) in t ≥ 0, −∞ <

x, y < +∞ has continuous derivative up to any order. For a convenient notation, we use
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the Freeman and Nimmos suppression∣∣∣∣∣∣∣∣∣∣∣∣
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(N−1)
1
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(0)
2 φ

(1)
2 · · · φ

(N−1)
2

...
...

. . .
...

φ
(0)
N φ

(1)
N · · · φ

(N−1)
N

∣∣∣∣∣∣∣∣∣∣∣∣
= |φ, φ(1), · · · , φ(N−1)| = |N̂ − 1|. (2.5)

φi needs satisfy the Wronskian conditions

φi,t = α1φi,n1x + α2φi,n2x, φi,y = βφj,mx, (2.6)

where α1, α2, β are undetermined constants. Then, we can suppose bilinear equation (2.2)

has the following Grammian solutions:

fN = det|aij|1≤i≤j≤N , aij = δij +

∫ x

φiψjdx, (2.7)

where δij are arbitrary constants. The functions φi = φi(x, y, t), ψj = ψj(x, y, t) satisfy

the two sets of conditions

φi,t = α1φi,n1x + α2φi,n2x, φi,y = β(t)φi,mx, (2.8a)

ψj,t = (−1)n1+1α1ψj,n1x + (−1)n2+1α2ψj,n2x, ψj,y = (−1)m+1βψj,mx. (2.8b)

3. Main results

Theorem 3.1. The equation (1.1) has the following Grammian solutions:

fN = det|aij|1≤i≤j≤N , aij = δij +

∫ x

φiψjdx, (3.1)

where δij are arbitrary constants. The functions φi = φi(x, y, t), ψj = ψj(x, y, t) satisfy

the two sets of conditions

φi,t = −4φi,xxx − 3β2φi,x, φi,y = βφi,x, (3.2a)

ψj,t = −4ψj,xxx − 3β2ψj,x, ψj,y = βψj,x. (3.2b)
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Proof. By the dependent variable transformation

u(x, y, t) = 2(ln f)xx, (3.3)

(1.1) can be represented through the bilinear form

[DxDt +D4
x + 3D2

y]f · f = 0, (3.4)

and the nonlinear partial differential equation

ftxf + ffxxxx + 3fyyf − ftfx − 4fxfxxx + 3f 2
xx − 3f 2

y = 0. (3.5)

We have known that (1.1) has the generalized Wronskian conditions

φi,t = −4φi,xxx − 3β2φi,x, φi,y = βφi,x. (3.6)

We first consider a differential of the determinant fN . It is expressed by means of a

Pfaffian as

fN = (1, 2, · · · , N,N∗, · · · , 2∗, 1∗), (3.7)

aij = (i, j∗) = δij +

∫ x

φiψjdx, (3.8)

(i, j) = (i∗, j∗) = 0. (3.9)

Next let us introduce Pfaffians (m,n = 0, 1, 2, · · · , N) defined by

(dn, j
∗) =

∂n

∂xn
ψj, (dm, d

∗
n) = 0, (3.10)

(d∗n, i) =
∂n

∂xn
φi, (dn, i) = (d∗m, j

∗) = 0. (3.11)

By virtue of the above Pfaffians, differentials of the elements aij (i = 1, 2, · · · , n; j =

1, 2, · · · , n) are expressed as follows:

∂

∂x
aij = φiψj = (d0, d

∗
0, i, j

∗), (3.12a)

∂

∂y
aij =

∫ x

(φi,yψj + φiψj,y)dx =

∫ x

(βφi,xψj + βφiψj,x)dx = βφiψj = β(d0, d
∗
0, i, j

∗),

(3.12b)

∂

∂t
aij =

∫ x

(φi,tψj+φiψj,t)dx = 4[(d1, d
∗
1, i, j

∗)−(d0, d
∗
2, i, j

∗)−(d2, d
∗
0, i, j

∗)]−3β2(d0, d
∗
0, i, j

∗).

(3.12c)
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If we denote fN= (1, 2, · · · , N,N∗, · · · , 2∗, 1∗)= (•), then we have the following differential

formulaes for fN :

fN,x = (d0, d
∗
0, •), (3.13a)

fN,xx = (d1, d
∗
0, •) + (d0, d

∗
1, •), (3.13b)

fN,y = βfN,x, fN,yy = β2fN,xx, (3.13c)

fN,xxx = (d2, d
∗
0, •) + 2(d1, d

∗
1, •) + (d0, d

∗
2, •), (3.13d)

fN,xxxx = (d3, d
∗
0, •) + 3(d2, d

∗
1, •) + 3(d1, d

∗
2, •) + 2(d0, d

∗
0, d1, d

∗
1, •) + (d0, d

∗
3, •), (3.13e)

fN,t = 4[(d1, d
∗
1, •)− (d0, d

∗
2, •)− (d2, d

∗
0, •)]− 3β2(d0, d

∗
0, •), (3.13f)

fN,xt = 4[(d0, d
∗
0, d1, d

∗
1, •)− (d0, d

∗
3, •)− (d3, d

∗
0, •)]− 3β2[(d1, d

∗
0, •) + (d0, d

∗
1, •)]. (3.13g)

Using the identities of determinant, we can easily get

[(d0, d
∗
1, •)− (d1, d

∗
0, •)]2

= [(d3, d
∗
0, •) + (d0, d

∗
3, •) + 2(d0, d

∗
0, d1, d

∗
1, •)− (d1, d

∗
2, •)− (d2, d

∗
1, •)](•). (3.14)

Substituting the above Pfaffians into (3.4), after some calculations, we obtain

[DxDt +D4
x + 3D2

y]f · f

= ftxf + ffxxxx + 3fyyf − ftfx − 4fxfxxx + 3f 2
xx − 3f 2

y

= 12[(d0, d
∗
0, d1, d

∗
1, •)(•)− (d0, d

∗
0, •)(d1, d∗1, •) + (d1, d

∗
0, •)(d0, d∗1, •)]. (3.15)

We can find that (3.15) is the Jacobi identity for the determinant, so it equals to zero.

This shows that the Grammian determinant fN solves (1.1). This completes the proof.

Theorem 3.2. The equation (1.2) has the following Grammian solutions:

fN = det|aij|1≤i≤j≤N , aij = δij +

∫ x

φiψjdx, (3.16)

where δij are arbitrary constants. The functions φi = φi(x, y, t), ψj = ψj(x, y, t) satisfy

the two sets of conditions

φi,y = βφi,x, φi,t = −4φi,xxx, (3.17)

ψj,y = βψj,x, ψj,t = −4ψj,xxx. (3.18)
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Proof. By the dependent variable transformation

u(x, y, t) = −2(ln f)xy, v(x, y, t) = −2(ln f)xx, (3.19)

(1.2) can be represented through the bilinear form

[DyDt +D3
xD

2
y]f · f = 0. (3.20)

It is equal to

fxxxyf + fytf − ftfy − fxxxfy + 3fxxfxy − 3fxxyfx = 0. (3.21)

We have known that (1.2) has the generalized Wronskian conditions

φi,y = βφi,x, φi,t = −4φi,xxx. (3.22)

By virtue of (3.7-3.11), differentials of the elements aij (i = 1, 2, · · · , n; j = 1, 2, · · · , n)

are expressed as follows
∂

∂x
aij = φiψj = (d0, d

∗
0, i, j

∗), (3.23a)

∂

∂y
aij =

∫ x

(φi,yψj + φiψj,y)dx =

∫ x

(βφi,xψj + βφiψj,x)dx = βφiψj = β(d0, d
∗
0, i, j

∗),

(3.23b)
∂

∂t
aij =

∫ x

(φi,tψj + φiψj,t)dx = 4[(d1, d
∗
1, i, j

∗)− (d0, d
∗
2, i, j

∗)− (d2, d
∗
0, i, j

∗)]. (3.23c)

If we denote fN= (1, 2, · · · , N,N∗, · · · , 2∗, 1∗)= (•), then we have the following differential

formulaes for fN :

fN,x = (d0, d
∗
0, •), fN,xx = (d1, d

∗
0, •) + (d0, d

∗
1, •), (3.24a)

fN,xxx = (d2, d
∗
0, •) + 2(d1, d

∗
1, •) + (d0, d

∗
2, •), (3.24b)

fN,y = βfN,x, fN,xy = βfN,xx, fN,xxy = βfN,xxx, (3.24c)

fN,xxxy = β[(d3, d
∗
0, •) + 3(d2, d

∗
1, •) + 3(d1, d

∗
2, •) + 2(d0, d

∗
0, d1, d

∗
1, •) + (d0, d

∗
3, •)], (3.24d)

fN,t = 4[(d1, d
∗
1, •)− (d0, d

∗
2, •)− (d2, d

∗
0, •)], (3.24e)

fN,yt = 4β[(d0, d
∗
0, d1, d

∗
1, •)− (d0, d

∗
3, •)− (d3, d

∗
0, •)]. (3.24f)

Substituting the above Pfaffians into (3.20), after some calculations, we obtain

[DyDt +D3
xD

2
y]f · f
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= fxxxyf + fytf − ftfy − fxxxfy + 3fxxfxy − 3fxxyfx

= 12β[(d0, d
∗
0, d1, d

∗
1, •)(•)− (d0, d

∗
0, •)(d1, d∗1, •) + (d1, d

∗
0, •)(d0, d∗1, •)]. (3.25)

We can find that (3.25) is the Jacobi identity for the determinant, so it equals to zero.

This shows that the Grammian determinant fN solves (1.2).This completes the proof.

Corollary 3.3. In summary, by using of the link between Wronskian conditions and

Grammian conditions, we have found the (2+1)-dimensional KP equation and the (2+1)-

dimensional KdV system admit Grammian solutions. The method can also be easily

applied to other NLEEs for diverse Grammian conditions and solutions. Of course, there

should exist other more general conditions involving combined equations for Grammian

solutions of high-dimensional NLEEs. The work in this direction is in progress.
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