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1. INTRODUCTION

K. Matsumoto [8] introduced the concept of Lorentzian para- Sasakian manifolds in 1989.

Late, the same concept was independently introduced by I. Mihai and R. Rosca [10]. The

Lorentzian para-Sasakian manifolds have also been studied by K. Matsumoto and I. Mihai [9],

U. C. De and A. A. Shaikh [11] and several others such as ([12], [14], [15]). K. Matsumoto and

I. Mihai obtained some interesting results for conformally recurrent and conformally symmetric

P−Sasakian manifold in [1]. In 1924, the notion of semi-symmetric connection on a differen-

tiable manifold was firstly introduced by Friedmann and Schouten [18]. A linear connection ∇̄
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on a differentiable manifold M is said to be a semi-symmetric connection if the torsion tensor

T of the connection satisfies

T (U,V ) = η(V )U−η(U)V,

where η is a 1-form and ξ is a vector field defined by η(U) = g(U,ξ ), for all vector fields

U on Γ(T M), Γ(T M) is the set of all differentiable vector fields on M. A. Barman ([2], [3])

studied para-Sasakian manifold admitting semi-symmetric metric and non metric connection.

On the other hand, in 1975, Golab [6] intoduced and studied quarter-symmetric connection in

differentiable manifolds along with affine connections.

A liner connection ∇̄ on an n-dimensional Riemannian manifold (M,g) is called a quarter-

symmetric connection [6] if its torsion tensor T satisfies

(1.1) T (U,V ) = η(V )φU−η(U)φV,

where φ is a (1,1) tensor field.

The quarter-symmetric connection generalizes the notion of the semi-symmetric connection

because if we assume φU =U in the above equation, the quarter-symmetric connection reduces

to the semi-symmetric connection [18].

Moreover, if a quarter-symmetric connection ∇̄ satisfies the condition

(1.2) (∇̄U g)(V,W ) = 0,

for all U,V,W on Γ(T M), then ∇̄ is said to be a quarter-symmetric metric connection.

Venkatesha and C.S. Bagewadi [19] obtain some interesting results on concircular φ -recurrent

Lorentzian para-Sasakian manifolds which generalize the concept of locally concircular φ -

symmetric Lorentzian para-Sasakian manifolds. If curvature tensor R of Riemannian manifold

M satisfies ∇R = 0, then M is called locally symmetric. Later, many geometers have considered

semi-symmetric spaces as a generalization of locally symmetric spaces. A Riemannian man-

ifold M is said to be semi-symmetric if its curvature tensor R satisfies R(U,V ).R = 0, where

R(U,V ) acts on R as a derivation and also it is called Ricci-semisymmetric manifold if the rela-

tion R(U,V ).S = 0 holds, where R(U,V ) the curvature operator.
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A transformation which transforms every geodesic circle of a Riemannian manifold M into

a geodesic circle, is known as concircular transformation ([7], [16]), where geodesic circle

means a curve in M whose first curvature is constant and second curvature is identically zero.

A concircular transformation is always a conformal transformation [7]. Thus the geometry

of concircular transformations is a generalization of inversive geometry in the sense that the

change of metric is more general than that induced by a circle preserving diffeomorphism (see

also [5]). An invariant of a concircular transformation is the concircular curvature tensor C,

which is defined by ([16], [17])

(1.3) C(U,V )W = R(U,V )W − r
n(n−1)

[g(V,W )U−g(U,W )V ].

Using (1.3), we obtain

(1.4) g(C(U,V )W,Z) = g(R(U,V )W,Z)− r
n(n−1)

[g(V,W )g(U,Z)−g(U,W )g(V,Z)],

where U,V,W,Z ∈ Γ(T M) and r is the scalar curvature on Lorentzian para-Sasakian manifolds.

Riemannian manifolds with vanishing concircular curvature tensor are of constant curvature.

Thus the concircular curvature tensor is a measure of the failure of a Riemannian manifold to

be of constant curvature.

In this paper, we study a type of quarter-symmetric metric connection on Lorentzian para-

Sasakian manifolds. The paper is organized as follows: After introduction section two is

equipped with some prerequisites of a Lorentzian para-Sasakian manifold. In section three,

curvature tensor and Ricci tensor of Lorentzian para-Sasakian manifold with respect to the

quarter-symmetric metric connection are given. Section four is devoted to study ξ -concircularly

flat Lorentzian para-Sasakian manifold with respect to the quarter-symmetric metric connec-

tion. Quasi-concircularly flat and φ -concircularly flat Lorentzian para-Sasakian manifolds with

respect to the quarter-symmetric metric connection have been studied in section five and six

respectively. In next section, we investigate Ricci-semisymmetric manifolds with respect to the

quarter-symmetric metric connection of a Lorentzian para-Sasakian manifold.
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2. PRELIMINARIES

An n-dimensional differentiable manifold M is said to be a Lorentzian almost para-contact

manifold, if it admits an almost para-contact structure (φ ,ξ ,η ,g) consisting of a (1,1) tensor

field φ , vector field ξ , 1-form η and a Lorentzian metric g satisfying

(2.1) φ(ξ ) = 0, η ◦φ = 0, η(ξ ) =−1, g(U,ξ ) = η(U),

(2.2) φ
2U =U +η(U)ξ ,

(2.3) g(φU,φV ) = g(U,V )+η(U)η(V ),

(2.4) (∇U η)V = g(U,φV ) = (∇V η)U,

for any vector fields U, V on M. Such a manifold M is termed as Lorentzian para-contact

manifold and the structure (φ ,ξ ,η ,g) a Lorentzian para-contact structure [8].

If moreover (φ ,ξ ,η ,g) satisfies the conditions

(2.5) dη = 0, ∇U ξ = φU,

(2.6) (∇U φ)V = g(U,V )ξ +η (V )U +2η (U)η (V )ξ ,

for U,V tangent to M, then M is called a Lorentzian para-Sasakian manifold or briefly LP-

Sasakian manifold, where ∇ denotes the covariant differentiation with respect to Lorentzian

metric g.

Moreover, the curvature tensor R, the Ricci tensor S and the Ricci operator Q in a Lorentzian

para-Sasakian manifold M with respect to the Levi-Civita connection ∇ satisfies the following

relations [13]

(2.7) η (R(U,V )W ) = g(V,W )η (U)−g(U,W )η (V ) ,

(2.8) R(ξ ,U)V = g(U,V )ξ −η (V )U,

(2.9) R(ξ ,U)ξ =−R(U,ξ )ξ =U +η (U)ξ ,
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(2.10) R(U,V )ξ = η (V )U−η (U)V,

(2.11) S (U,ξ ) = (n−1)η (U) , Qξ = (n−1)ξ

(2.12) S (φU,φV ) = S (U,V )+(n−1)η (U)η (V ) ,

for all vector fields U,V,W ∈ Γ(T M).

Definition 2.1. A Lorentzian para-Sasakian manifold M is said to be an η−Einstein manifold

[13] if its Ricci tensor S of the Levi-Civita connection is of the form

(2.13) S (U,V ) = ag(U,V )+bη (U)η (V ) f or all U,V ∈ Γ(T M)

where a and b are smooth functions on the manifold M.

3. CURVATURE TENSOR OF LORENTZIAN PARA-SASAKIAN MANIFOLD WITH RESPECT

TO THE QUARTER-SYMMETRIC METRIC CONNECTION

A relation between the quarter-symmetric metric connection ∇̄ and the Levi-Civita connec-

tion ∇ in an n-dimensional Lorentzian para-Sasakian manifold M is given by [15]

(3.1) ∇̄UV = ∇UV +η(V )φU−g(φU,V )ξ .

The curvature tensor R̄ of a Lorentzian para-Sasakian manifold M with respect to the quarter-

symmetric metric connection ∇̄ is defined by

(3.2) R̄(U,V )W = ∇̄U ∇̄VW − ∇̄V ∇̄UW − ∇̄[U,V ]W.

From the equations (2.1)− (2.6) , (3.1) and (3.2) , we obtain

R̄(U,V )W = R(U,V )W +[g(φU,W )φV −g(φV,W )φU ](3.3)

+[g(V,W )η (U)−g(U,W )η (V )]ξ

+η(W )[η (V )U−η (U)V ].
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where U,V,W ∈ Γ(T M) and R(U,V )W = ∇U ∇VW −∇V ∇UW −∇[U,V ]W is the Riemannian

curvature tensor with respect to the Levi-Civita connection ∇.

The Ricci tensor S̄ and the Scalar curvature r̄ in a Lorentzian para-Sasakian manifold M with

respect to the quarter-symmetric metric connection ∇̄ are defined by

(3.4) S̄ (V,W ) =
n

∑
i=1

ε ig(R̄(ei,V )W,ei),

(3.5) r̄ =
n

∑
i=1

ε iS̄ (ei,ei)

where {e1,e2, ....,en−1,en = ξ} be a local orthonormal basis of vector fields in M and ε i =

g(ei,ei) .

Now contracting U in (3.3) , we get

(3.6) S̄ (V,W ) = S (V,W )+(n−1)η (V )η (W )− (traceφ)g(φV,W ).

Again contracting V and W in (3.6) , we get

(3.7) r̄ = r− (n−1)− (traceφ)2.

From equation (3.3) and (3.6) , we have

(3.8) R̄(U,V )ξ = R̄(ξ ,U)V = 0,

(3.9) S̄ (V,ξ ) = 0,

(3.10) S̄ (φU,φV ) = S (U,V ) .

4. ξ -CONCIRCULARLY FLAT LORENTZIAN PARA-SASAKIAN MANIFOLD WITH RE-

SPECT TO THE QUARTER-SYMMETRIC METRIC CONNECTION

Definition 4.1. Concircular curvature tensor C̄ of Lorentzian para-Sasakian manifold M with

respect to the quarter-symmetric metric connection is defined by

(4.1) C̄(U,V )W = R̄(U,V )W − r̄
n(n−1)

[g(V,W )U−g(U,W )V ]
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for all U,V,W ∈ Γ(T M) where R̄ is the curvature tensor and r̄ is the scalar curvature of M with

respect to the quarter-symmetric metric connection ∇̄

Definition 4.2. A Lorentzian para-Sasakian manifold is said to be ξ−concircularly flat [4] with

respect to the quarter-symmetric metric connection ∇̄ if

(4.2) C̄ (U,V )ξ = 0

for all U , V ∈ Γ(T M).

Putting W = ξ in (4.1) and using (3.8) and (4.2) , we have

(4.3) r̄[η(V )U−η(U)V ] = 0.

Putting U = ξ in (4.3) and using (2.1) , we have

(4.4) r̄[V +η(V )ξ ] = 0.

Taking inner product of (4.4) with W and replacing V by QV , we have

(4.5) r̄[g(QV,W )+η(QV )η(W )] = 0.

Using S (V,W ) = g(QV,W ) and equations (2.11) and (3.7) in (4.5) , we have

(4.6) [r− (n−1)− (traceφ)2][S(V,W )+(n−1)η(V )η(W )] = 0

Equation (4.6) implies that either r = (n−1)+(traceφ)2 or S(V,W ) =−(n−1)η(V )η(W ).

Thus we can state the following:

Theorem 4.3. If a Lorentzian para-Sasakian manifold M admitting a quarter-symmetric metric

connection is ξ−concircularly flat with respect to the quarter-symmetric metric connection,

then either scalar curvature of M is (n−1)+ (traceφ)2 or the manifold M is a special type of

η−Einstein manifold with respect to the Levi-Civita connection.

.
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5. QUASI-CONCIRCULARLY FLAT LORENTZIAN PARA-SASAKIAN MANIFOLD WITH

RESPECT TO THE QUARTER-SYMMETRIC METRIC CONNECTION

Definition 5.1. A Lorentzian para-Sasakian manifold M is said to be quasi−concircularly flat

with respect to the quarter-symmetric metric connection if

(5.1) g(C̄(φU,V )W,φZ) = 0

where U, V, W, Z ∈ Γ(T M).

From equation (4.1) , we have

g(C̄(φU,V )W,φZ) = g(R̄(φU,V )W,φZ)− r̄
n(n−1)

[g(V,W )g(φU,φZ)

−g(φU,W )g(V,φZ)].(5.2)

Using (5.1) in (5.2) , we have

(5.3) g(R̄(φU,V )W,φZ) =
r̄

n(n−1)
[g(V,W )g(φU,φZ)−g(φU,W )g(V,φZ)].

Let {e1,e2, ....,en−1,ξ} be a local orthonormal basis of vector fields in M, then

{φe1,φe2, ....,φen−1,ξ} is also a local orthonormal basis. Putting U = Z = ei in (5.3) and

summing over i = 1 to n−1, we obtain

(5.4)
n−1

∑
i=1

g(R̄(φei,V )W,φei) =
r̄

n(n−1)

n−1

∑
i=1

[g(V,W )g(φei,φei)−g(φei,W )g(V,φei)],

On LP-Sasakian manifold it can be verify that

(5.5)
n−1

∑
i=1

g(R̄(φei,V )W,φei) = S̄ (V,W ) ,

(5.6)
n−1

∑
i=1

g(φei,φei) = n−1,

(5.7)
n−1

∑
i=1

g(φei,W )g(V,φei) = g(V,W )+η(V )η(W ).

So by virtue of (5.5) , (5.6) and (5.7) , the equation (5.4) takes the form

S̄ (V,W ) =

[
r̄ (n−2)
n(n−1)

]
g(V,W )−

[
r̄

n(n−1)

]
η (V )η (W ) .
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or

S̄ (V,W ) = ag(V,W )+bη (V )η (W ) ,

where a =
[

r̄(n−2)
n(n−1)

]
and b =−

[
r̄

n(n−1)

]
.

From which it follows that the manifold is an η−Einstein manifold with respect to the

quarter-symmetric metric connection.

Hence we can state the following theorem:

Theorem 5.2. If a Lorentzian para-Sasakian manifold admitting a quarter-symmetric metric

connection is quasi-concircularly flat, then the manifold with respect to the quarter-symmetric

metric connection is an η−Einstein manifold.

6. φ -CONCIRCULARLY FLAT LORENTZIAN PARA-SASAKIAN MANIFOLD WITH RE-

SPECT TO THE QUARTER-SYMMETRIC METRIC CONNECTION

Definition 6.1. A Lorentzian para-Sasakian manifold is said to be φ−concircularly flat with

respect to the quarter-symmetric metric connection if

(6.1) g(C̄(φU,φV )φW,φZ) = 0,

where U, V, W, Z ∈ Γ(T M).

From equation (4.1) , we have

g(C̄(φU,φV )φW,φZ) = g(R̄(φU,φV )φW,φZ)− r̄
n(n−1)

[g(φV,φW )g(φU,φZ)

−g(φU,φW )g(φV,φZ)].(6.2)

Using (6.1) in (6.2) , we have

(6.3) g(R̄(φU,φV )φW,φZ) =
r̄

n(n−1)
[g(φV,φW )g(φU,φZ)−g(φU,φW )g(φV,φZ)].

Let {e1,e2, ....,en−1,ξ} be a local orthonormal basis of vector fields in M, then

{φe1,φe2, ....,φen−1,ξ} is also a local orthonormal basis. Putting U = Z = ei in (6.3) and
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summing over i = 1 to n−1, we obtain

(6.4)
n−1

∑
i=1

g(R̄(φei,φV )φW,φei) =
r̄

n(n−1)

n−1

∑
i=1

[g(φV,φW )g(φei,φei)−g(φei,φW )g(φV,φei)],

So by virtue of (3.10) , (5.5) , (5.6) and (5.7) , the equation (6.4) takes the form

S̄ (V,W ) =

[
r̄ (n−2)
n(n−1)

]
g(V,W )−

[
r̄ (n−2)
n(n−1)

]
η (V )η (W ) .

or

S̄ (V,W ) = ag(V,W )+bη (V )η (W ) ,

where a =
[

r̄(n−2)
n(n−1)

]
and b =−

[
r̄(n−2)
n(n−1)

]
.

From which it follows that the manifold is an η−Einstein manifold with respect to the

quarter-symmetric metric connection.

Hence we can state following theorem:

Theorem 6.2. A φ -concircularly flat Lorentzian para-Sasakian manifold with respect to the

quarter-symmetric metric connection is an η−Einstein manifold with respect to the quarter-

symmetric metric connection.

7. LORENTZIAN PARA-SASAKIAN MANIFOLD SATISFYING C̄ · S̄ = 0 WITH RESPECT

TO THE QUARTER-SYMMETRIC METRIC CONNECTION

We consider Lorentzian para-Sasakian manifolds with respect to a quarter-symmetric metric

connection ∇̄ satisfying the curvature condition C̄ · S̄ = 0. Then

(
C̄ (U,V ) · S̄

)
(W,Z) = 0.

So,

(7.1) S̄(C̄ (U,V )W,Z)+ S̄
(
W,C̄ (U,V )Z

)
= 0.
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Putting U = ξ in (7.1), we get

(7.2) S̄(C̄ (ξ ,V )W,Z)+ S̄
(
W,C̄ (ξ ,V )Z

)
= 0.

Now from (3.8) and (4.1) , we have

(7.3) C̄(ξ ,V )W =− r̄
n(n−1)

[g(V,W )ξ −η(W )V ].

Using (7.3) in (7.2) and putting W = ξ and using (3.9) , we obtain

r̄S̄(V,Z) = 0.

This implies that r̄ = 0.

Hence we can state following:

Theorem 7.1. If Lorentzian para-Sasakian manifolds satisfying C̄ · S̄ = 0 with respect to the

quarter-symmetric metric connection, then the manifold is scalar flat with respect to the quarter-

symmetric metric connection.

Example 1. Example of a LP-Sasakian manifold with respect to Quarter-symmetric metric con-

nection.

Taking a 3−dimensional manifold M = {(x,y,v) ∈ R3}, where (x,y,v) are standard coordi-

nates of R3. Let e1,e2,e3 are vector fields on M, given by

e1 =−ev ∂

∂x
, e2 =−ev−x ∂

∂y
, e3 =−

∂

∂v
= ξ ,

Clearly, {e1,e2,e3} is linearly independent set of vectors on M. So it forms a basis of Γ(T M).

The Lorentzian metric g is defined by

g(ei,e j) = 0, f or i 6= j and 1≤ i, j ≤ 3

and g(e1,e1) = g(e2,e2) = 1, g(e3,e3) =−1.

Let η be a 1−form on M defined as η(U) = g(U,e3) = g(U,ξ ), for all U ∈ Γ(T M), and let

φ be a (1,1) tensor field on M defined as
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φ(e1) =−e1, φ(e2) =−e2, φ(e3) = 0.

By applying linearity of φ and g, we have

η(e3) =−1, φ
2(U) =U +η(U)ξ ,

and

g(φU,φV ) = g(U,V )+η(U)η(V ) for all U,V ∈ Γ(T M).

Let ∇ be a Levi-Civita connection with respect to the Riemannian metric g, we have

[e1,e2] =−eve2, [e2,e3] =−e2, [e1,e3] =−e1,

The Riemannian connection ∇ of the metric g is given by

2g(∇UV,W ) = Ug(V,W )+V g(W,U)−Wg(U,V )

−g(U, [V,W ])−g(V, [U,W ])+g(W, [U,V ]),

which is known as Koszul’s formula, we can easily calculate

∇e1e1 = e3, ∇e1e2 = 0, ∇e1e3 =−e2,

∇e2e1 = −eve2, ∇e2e2 =−e3− eve1, ∇e2e3 =−e2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0,

From the above it follows that the manifold satisfies ∇U ξ = φU, for ξ = e3 and (∇U φ)V =

g(U,V )ξ +η(V )U +2η(U)η(V )ξ . Hence the manifold is LP−Sasakian manifold.

Using (3.1), we have
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∇e1e1 = 0, ∇e1e2 = 0, ∇e1e3 = 0,

∇e2e1 = −eve2, ∇e2e2 =−eve1, ∇e2e3 = 0,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0,

Using (1.1), the torsion tensor T , with respect to quarter symmetric metric connection ∇ as

follows :

T (ei,ei) = 0, ∀i = 1,2,3,

T (e1,e2) = 0, T (e1,e3) = e3, T (e2,e3) = e2,

Also,

(∇e1g)(e2,e3) = 0, (∇e2g)(e3,e1) = 0, (∇e3g)(e1,e2) = 0,

Thus M is a Lorentzian para-Sasakian manifold admitting quarter-symmetric metric connec-

tion ∇.
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