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1. INTRODUCTION

An edge-coloring of a connected graph is a monochromatically connecting coloring (MC-

coloring, for short) if there is a monochromatic path joining any two vertices. The monochro-

matic connection number of a graph G, denoted by mc(G), is defined to be the maximum

number of colors used in an MC-coloring of a graph G. As proved in [3], an important property

of an extremal MC-coloring(a coloring that use mc(G) colors) is that each color forms a tree.

For a color c, let Tc be the tree whose edges colored c. The color c is nontrivial if Tc has at

least two edges. Otherwise c is trivial. A nontrivial color tree with m edges is said waste m−1

colors. For any two nontrivial colors b and c, the corresponding trees Tb and Tc intersect in at

most one vertex [3]. Such an extremal coloring is called simple. Every connected graph has
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a simple extremal MC-coloring[3]. These concepts were introduced by Caro and Yuster in [3]

and they gave some upper and lower bounds for mc(G) characterized by other graph parameters.

A straightforward lower bounds for mc(G) is m−n+2(throughout this paper, n and m denote

the number of vertices and edges respectively), which can be verified by coloring the edges of

a spanning tree with one color, and coloring the remaining edges by new distinct colors.

Now we present some definitions and notations necessary. For a graph G, we use V (G),

E(G), |E(G)|, |V (G)| to denote the vertex set, edge set, number of vertices, number of edges

of G, respectively. Given a graph G and D ⊆ V (G), let |D| be the number of vertices in D and

G[D] be the subgraph of G induced by D. If χ(G) = k, then G is k-chromatic.

2. PRELIMINARIES

Let Vi, i= 1,2,3, be the vertex parts of the graph Kn1,n2,n3 . Let Ei, j be the set of edges between

Vi and Vj, i, j ∈ {1,2,3}, i 6= j. Let E0 be a subset of E(Kn1,n2,n3).

Lemma 2.1. [3] If G is K3-free, then mc(G) = m−n+2.

Lemma 2.2. [3] Any graph G satisfies mc(G)≤ m−n+χ(G).

The join of two disjoint graphs G and H, denoted by G+H, is defined to be the graph G+H.

Lemma 2.3. [4] Let G be the join of two disconnected graphs G1 and G2. Then mc(G) =

|E(G)|− |V (G)|+2.

Moreover we have the following properties of the simple extremal MC-coloring.

Lemma 2.4. If G is a connected spanning subgraph of some graph H, then mc(G)≤ mc(H)−

(|E(H)|− |E(G)|).

Proof. It is clear that G has a simple extremal MC-coloring. Let f be an MC-coloring of G

realizing mc(G). Let the remaining |E(H)|− |E(G)| edges of H receive trivial colors. Then we

get an MC-coloring, denoted by f
′

of H. Clearly, f
′

is simple and it use mc(G)+ (|E(H)| −

|E(G)|) colors. Then mc(H)≥ mc(G)+(|E(H)|− |E(G)|), i.e., mc(G)≤ mc(H)− (|E(H)|−

|E(G)|), and we are done. The proof is completed.

Lemma 2.5. If G is a connected spanning subgraph of some graph H and let mc(G) = m(G)−

n(G)+ k1, mc(H) = m(H)−n(H)+ k2, then k1 ≤ k2.
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Proof. By Lemma 2.4, it implies that mc(G) ≤ mc(H)− (|E(H)| − |E(G)|). Since G is a

spanning subgraph of graph H, n(G) = n(H). And we have m(G)−n(G)+k1≤m(H)−n(H)+

k2− (|E(H)|− |E(G)|), i.e., m(G)−n(G)+k1 ≤m(G)−n(G)+k2. Hence we get that k1 ≤ k2,

and we are done. The proof is completed.

3. MAIN RESULTS

Lemma 3.1. Let Vi, i = 1,2,3 be the vertex parts of the graph Kn1,n2,n3 . Let G = Kn1,n2,n3 −

{uv,xy},u ∈V1,v,x ∈V2,y ∈V3. Then mc(G) = m−n+2

Proof. The lower bound mc(G) ≥ m− n+ 2 is obvious and we only need to show mc(G) ≤

m−n+2.

Let f be a simple extremal MC-coloring of G. Suppose that f consists of k nontrivial color

trees, denoted by T1, ...,Tk, where ti = |V (Ti)|. As Ti has ti− 1 edges, it wastes ti− 2 colors.

Hence it suffices to prove that
k
∑

i=1
(ti−2)≥ n−2.

Case 1. Every vertex appears in at least two distinct nontrivial color trees.

In this case we have
k
∑

i=1
ti ≥ 2n. So if k ≤ n/2+ 1, we have

k
∑

i=1
(ti− 2) ≥ 2n− 2k ≥ n− 2,

and we are done. So let k > n/2+1. Now we claim that we still have
k
∑

i=1
(ti−2)≥ n−2 when

k > n/2+1. Since Ti can monochromatically connect at most
(ti−1

2

)
pairs of non-neighbors in

G, we have
k
∑

i=1

(ti−1
2

)
≥ |E(G)|=

3
∑

i=1

(ni
2

)
+2.

Assume that
k
∑

i=1
(ti− 2) < n− 2. Since Ti is nontrivial, ti− 1 ≥ 2. By the straightforward

convexity, the expression
k
∑

i=1

(ti−1
2

)
, subject to ti−1≥ 2, is maximized when k−1 of the t ′is equal

3 and one of the t ′is, say tk, is as large as it can be, namely tk−1 is the largest integer smaller than

n−2+ k−2(k−1) = n− k. Hence, tk−1 = n− k−1. We have
k
∑

i=1

(ti−1
2

)
≤ k−1+

(n−k−1
2

)
.

Note that g(k) = k−1+
(n−k−1

2

)
is a decreasing function of k for n/2+1< k≤ n−3 and then

g(k)< g(n/2+1). Note that
3
∑

i=1

(ni
2

)
+2−g(n/2+1)> 0. This implies that g(k)< g(n/2+1)<

|E(G)|, i.e.,
k
∑

i=1

(ti−1
2

)
< |E(G)|=

3
∑

i=1

(ni
2

)
+2, a contradiction. Hence

k
∑

i=1
(ti−2)≥ n−2 and we

are done.

Case 2. There are vertices that appear in unique nontrivial color trees.
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Denote by S the vertices that appear in the unique nontrivial color trees. Note that u,v or x,y

are monochromatically connected by a nontrivial color tree. So let Tu,Tx monochromatically

connect u,v and x,y, respectively.

Subcase 2.1 S
⋂

V1,S
⋂

V2,S
⋂

V3 6= φ .

Notice that vertices of the same part are not adjacent in G and any two of each part are

monochromatically connected in a nontrivial color tree. So all the vertices of the same part

must lie in a nontrivial color tree. So we can assume that Vi ⊆ Ti, i = 1,2,3, and we have that

Vi∩V (Ti)∩S 6= /0.

Sub-subcase 2.1.1 T1 6= T2 6= T3 6= T1.

Suppose that Tu , Tx /∈ {T1,T2,T3}. Since Vi ⊆ V (Ti), we have that ti ≥ ni + 1, i.e., ti− 2 ≥

ni−1, i = 1,2,3. That is to say that Ti waste at least ni−1 edges, i = 1,2,3. Also, both Tu and

Tx waste at least one edge. So the total waste of the coloring f is at least n−2 and we are done.

Suppose that Tu ∈ {T1,T2,T3} or Tx ∈ {T1,T2,T3}. Without loss of generality, let Tu = T1.

Since uv /∈ E(G) and vertices of V1 are not adjacent, then T1 contains at least anther vertex

besides v and vertices of V1. It implies that t1 ≥ n1 + 2, i.e., t1 − 2 ≥ n1. Similarly, Vi ⊆

V (Ti), i = 2,3, and we have that ti ≥ ni +1, i.e., ti−2≥ ni−1 for i = 2,3. So the total waste of

T1,T2,T3 is at least n−2 and we are done.

Sub-subcase 2.1.2 There are two trees in {T1, T2, T3} which are same.

Let T1 = T2 6= T3, now we have V1∪V2 ⊆V (T1). Suppose that y ∈V (T1). Then the waste of

T1 is at least n1 +n2−1. Clearly, t3 ≥ n3 +1, i.e., t3−2≥ n3−1. Hence the total waste of the

coloring f is at least n−2 and we are done. Suppose that y ∈V3−V (T1). Then the waste of T1

is at least n1 +n2−2 and Tx 6= T1. This implies that Tx = T3. Then t3 ≥ n3 +2 , i.e., t3−2≥ n3.

Hence the total waste of the coloring f is at least n− 2 and we are done. By the symmetry, if

T2 = T3 6= T1, then the total waste of the coloring f is at least n−2 and we are done.

Let T1 = T3 6= T2, now we have V1∪V3⊆V (T1). Suppose that v /∈V (T1) or x /∈V (T1). Without

loss of generality, let v /∈V (T1), then Tu = T2. It implies that t2≥ n2+2, i.e., t2−2≥ n2. Clearly,

t1 ≥ n1 +n3, i.e., t1−2 ≥ n1 +n3−2. Hence the total waste of the coloring f is at least n−2

and we are done. Suppose that v,x ∈ V (T1). Since f is simple and x,y ∈ V (T2), we have that
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v = x. Then t1 ≥ n1 +n3 +1, i.e., t1−2≥ n1 +n3−1. Clearly, t2 ≥ n2 +1, i.e., t2−2≥ n2−1.

Hence the total waste of the coloring f is at least n−2 and we are done.

Sub-subcase 2.1.3 T1 = T2 = T3.

Since S
⋂

V1
⋂

V2
⋂

V3 6= φ , the tree T1 is a spanning tree of G. So the waste of T1 is n−2 and

so we are done.

Subcase 2.2 The set S is exactly joint with two partite sets of G.

Here we only present the proof details of the case S∩V1 6= /0, S∩V2 6= /0. The other two cases

can be proved similarly. Clearly, we can assume that Vi ⊆V (Ti), i = 1,2.

Assume that T1 = T2. Then we have that V1∪V2 ⊆V (T1). Suppose that y ∈V (T1). Since T1

is not a spanning tree of G, there is a vertex v3 ∈ V3−V (T1). Clearly, v3y /∈ E(G). Let Tv3 be

the nontrivial color tree monochromatically connecting v3,y. Since V3 is an independent set in

G, we have that |V (Tv3)∩(V1∪V2)| ≥ 1. This implies that |V (Tv3)∩V (T1)| ≥ 2, a contradiction.

Suppose that y /∈ V (T1). Since xy /∈ E(G) and V3 is an independent set in G, this means that

|V (Tx)∩ (V1∪V2)| ≥ 2, i.e., |V (Tx)∩V (T1)| ≥ 2, a contradiction. So T1 6= T2. Now we claim

that
k
∑

i=1
(ti−2)≥ n−2. Since we have that S∩V3 = /0, each vertex of V3 appears in at least two

nontrivial color trees. In order to monochromatically connect the
(|V3|

2

)
distinct pairs of vertices

of V3, we need a set of nontrivial color trees, say Ts, ..,Tq, and each Ti, i = s, · · · ,q contains at

least two vertices of V3.

Suppose that |V (T1)∩V3| ≥ 2 and |V (T2)∩V3| ≥ 2, and let w1,w2 ∈ V (T1)∩V3, z1,z2 ∈

V (T2)∩V3. Notice that |V (T1)∩V (T2)| ≤ 1. Let w1 ∈ V (T1)∩V3−V (T2) and z1 ∈ V (T2)∩

V3−V (T1). Since w1z1 /∈ E(G), we have w1,z1 lie in a nontrivial color tree and let Ts be such

nontrivial color tree in f . Since V3 is an independent set, we have that |V (Ts)∩ (V1∪V2)| ≥ 1.

This implies that V (Ts)∩V1 6= /0 or V (Ts)∩V2 6= /0. Along with w1 ∈ V (Ts)∩V (T1) and z1 ∈

V (Ts)∩V (T2), we have that |V (T1)∩V (Ts)| ≥ 2 or |V (T2)∩V (Ts)| ≥ 2, a contradiction.

Suppose that |V (T1)∩V3|< 2 and |V (T2)∩V3|< 2, then T1,T2 /∈ {Ts, . . . ,Tq}. It is clear that

ti ≥ ni + 1, i,e., ti− 2 ≥ ni− 1 for i = 1,2. Notice that ti ≥ 3, i.e., ti− 2 ≥ 1, for i = s, . . . ,q.

If q− s+ 1 ≥ n3, then we have
q
∑
i=s

(ti− 2) ≥ q− s+ 1 ≥ n3. Hence we get that
k
∑

i=1
(ti− 2) =

(
q
∑
i=s

(ti−2))+n1 +n2−2≥ n−2 and we are done.
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So let q− s+ 1 < n3. Since V3 ⊂ ∪q
i=sV (Ti) and each vertex of V3 appears in at least two

distinct nontrivial color trees, every vertex of V3 is covered by at least two edges of Ts, ..,Tq and

each such edge in G exactly covers one vertex of V3. So, the total number of edges of Ts, ..,Tq is

at least 2n3 and we have
q
∑
i=s

(ti−1)≥ 2n3, i.e.,
q
∑
i=s

(ti−2) =
q
∑
i=s

(ti−1)− (q− s+1)> n3. Hence

k
∑

i=1
(ti−2) = (

q
∑
i=s

(ti−2))+n1 +n2−2 > n−2 and we are done.

Suppose that |V (T1)∩V3| < 2 or |V (T2)∩V3| < 2. Without loss of generality, let |V (T1)∩

V3| ≥ 2 and |V (T2)∩V3|< 2. Then we have that T1 ∈ {Ts, ..,Tq} and T2 /∈ {Ts, ..,Tq}. It is clear

that t1 ≥ n1 + 2, i.e., t1− 2 ≥ n1 and that t2 ≥ n2 + 1, i,e., t2− 2 ≥ n2− 1. Notice that ti ≥ 3,

i.e., ti− 2 ≥ 1, for i = s, . . . ,q and t1− 2 ≥ n1. If q− s+ 1 ≥ n3, then we have
q
∑
i=s

(ti− 2) ≥

n1 +q− s≥ n1 +n3−1. Hence
k
∑

i=1
(ti−2)≥ n−2 and we are done.

So let q− s+ 1 < n3. Notice that each {Ts, ..,Tq}\{T1} contains at least a vertex out of V3.

So the sum of the orders of {Ts, ..,Tq} is at least 2n3+n1+q− s. This implies that
q
∑
i=s

(ti−1)≥

2n3 + n1− 1, i.e.,
q
∑
i=s

(ti− 2) =
q
∑
i=s

(ti− 1)− (q− s + 1) > n3 + n1− 1. Hence
k
∑

i=1
(ti− 2) =

(
q
∑
i=s

(ti−2))+n2−1 > n−2 and we are done.

Sub-case 2.3 The set S is exactly joint with one partite set of G.

Without loss of generality, let S∩V1 6= /0,S∩V2 = /0,S∩V3 = /0, then V1 ⊆ V (T1) and each

vertex of V2 ∪V3 appears in at least two distinct nontrivial color trees. Let T2, . . . ,Tk be the

nontrivial color trees which monochromatically connect all vertices of V2 ∪V3. Then each Ti

contains at least two vertices of V2∪V3 for 2≤ i≤ k.

Suppose that |V (T1)∩ (V2 ∪V3)| < 2. Then T1 /∈ {T2, ...,Tk}. It is clearly that every vertex

of V2∪V3 appears in at least two distinct nontrivial color trees. By the same way as case 1, we

we can deduce that
k
∑

i=2
(ti− 2) ≥ n2 + n3− 1. Since V1 ⊆ V (T1), we have that t1 ≥ n1 + 1, i.e.,

t1−2≥ n1−1. Hence
k
∑

i=1
(ti−2)≥ n−2 and we are done.

Suppose that |V (T1)∩ (V2∪V3)| ≥ 2. Then T1 ∈ {T2, ...,Tk}. Now we still claim that
k
∑

i=1
(ti−

2) ≥ n− 2. Recall that we have
k
∑

i=2
(ti− 2) ≥ n2 + n3− 1 for T1 /∈ {T2, ...,Tk}. But now T1 ∈

{T2, ...,Tk} and V1 ⊂V (T1), then T1 will have other n1−1 edges of E(G) such that all vertices
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of V1 are monochromatically connected. That is to say that
k
∑

i=1
(ti− 2) ≥ n− 2 =

k
∑

i=2
(ti− 2) ≥

n2 +n3−1+n1−1 = n−2 for this case, and we are done.

The proof is completed.

Theorem 3.2. Let G be a connected 3-chromatic spanning subgraph of Kn1,n2,n3 with partite

sets Vi, |Vi|= ni, i = 1,2,3. If G = Kn1,n2,n3−E0 with E0∩Ei, j 6= /0 and E0∩E j,k 6= /0, {i, j,k}=

{1,2,3}, then mc(G) = m−n+2.

Proof. The lower bound mc(G) ≥ m− n+ 2 is obvious and we only need to show mc(G) ≤

m−n+2. It is clearly that G is a connected spanning subgraph of Kn1,n2,n3−{uv,xy} for some

uv ∈ Ei, j and xy ∈ E j,k. By Lemmas 2.5-3.1, we have that mc(G)≤ m−n+2 and we are done.

The proof is completed.

Theorem 3.3. Let G be a connected 3-chromatic spanning subgraph of Kn1,n2,n3 with partite

sets Vi, |Vi| = ni, i = 1,2,3. If G = Kn1,n2,n3−E0,E0 ⊂ Ei, j,{i, j} ⊂ {1,2,3} such that G[Vi,Vj]

is disconnected, then mc(G) = m−n+2.

Proof. Without loss of generality, we assume that i = 1, j = 2. Then E0 ⊂ E1,2 and G[V1,V2] is

disconnected. Let G1 = G[V1,V2] and G2 = G[V3]. So G = G1 +G2. Notice that both G1 and

G2 are disconnected. Hence, from Lemma 2.3 we have that mc(G) = m(G)−n(G)+2, and we

are done.

The proof is completed.

Theorem 3.4. Let G be a connected 3-chromatic spanning subgraph of Kn1,n2,n3 with partite sets

Vi, |Vi|= ni, i = 1,2,3. Let G = Kn1,n2,n3−E0. Then mc(G) = m−n+3 if and only if E0 ⊆ Ei, j

and G[Vi,Vj] is still connected for some i, j ∈ [3].

Proof. Now we show the necessity of this proof. Let mc(G) =m−n+3. We show that E0⊆Ei, j

and G[Vi,Vj] is still connected for some i, j ∈ [3]. Suppose that E0 is not a subset of Ei, j for any

i, j ∈ [3]. This implies that E0∩Ei, j 6= /0,E0∩E j,k 6= /0,{i, j,k}= {1,2,3}. Then it follows from

Theorem 3.2 that mc(G) = m−n+2, a contradiction. So E0 ⊆ Ei, jfor some i, j ∈ [3]. Suppose

that G[Vi,Vj] is disconnected. Then it follows from Theorem 3.3 that mc(G) = m− n+ 2, a

contradiction and we are done.



THE MONOCHROMATIC CONNECTIVITY OF 3-CHROMATIC GRAPHS 589

The sufficiency of this proof can be proved by coloring the spanning tree of G[Vi,Vj] with a

color c1 and One vertex from Vi∪Vj is adjacent to all vertices of Vk by a color c2, where k 6= i, j

and k ∈ [3]. The remaining edges of G receive trivial colors. Then we get an simple extremal

MC-coloring, say f of G. Clearly, f contains m(G)−n(G)+3 colors and we are done.

The proof is completed.
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