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Abstract. We show a mathematical model based on “a priori” possible data and coherent subjective probabilities.

A set of possible alternatives is viewed as a set of all possible samples whose size is equal to 1 selected from a

finite population. Such a finite population coincides with those coherent previsions of a univariate random quantity

representing all possible alternatives considered “a priori”. We consider a discrete probability distribution of all

possible samples. We approximately get the standardized normal distribution from this probability distribution.

Within this context an event is not a measurable set so we do not consider random variables viewed as measurable

functions into a probability space characterized by a σ -algebra. Anyway, a parameter space is always provided

with a metric structure that we introduce after studying the range of possibility. This metric structure is useful

in order to obtain different quantitative measures that allow us of considering meaningful relationships between

random quantities. When we study multivariate random quantities we introduce antisymmetric tensors satisfying

simplification and compression reasons with respect to these random quantities into this metric structure.
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1. INTRODUCTION

Every finite partition of incompatible and exhaustive events represents a univariate random

quantity ([33]). Each event is a particular random quantity because it admits only two possible

numerical values, 0 and 1. Only one of these two possible values will be true “a posteriori”.

Every event is then a special point in the space of random quantities. Such a space is linear and

it is provided with a metric structure. It is therefore represented by vectors all having a length

equal to 1. Moreover, two different vectors of a basis of it are always orthogonal to each other.

The same symbol P consequently denotes both prevision of a random quantity and probability

of an event ([10]). An event is a statement such that, by betting on it, we can establish whether

it is true or false, that is to say, whether it has occurred or not ([16]). We distinguish the

domain of the possible from the domain of the probable ([17]). It is not possible to use the

notion of probability into the domain of the possible ([26]). What is objectively and logically

possible identifies the space of alternatives and it is different from what is subjectively probable.

A subjective probability expressed by a given decision-maker is not predetermined when it is

concerned with a possible or uncertain event at a given instant. Conversely, a subjective opinion

expressed by a given decision-maker in terms of probability of an event is always predetermined

when it is “a posteriori” certainly true or false. One always means uncertainty as a simple

ignorance. We always observe two different and extreme aspects characterizing the space of

alternatives. The first aspect deals with situations of non-knowledge or ignorance or uncertainty.

Thus, a given decision-maker determines the set of all possible alternatives of a random quantity

with respect to these situations. The second aspect deals with the definitive certainty expressed

in the form of what is true or false. The notion of probability is essentially of interest to an

intermediate aspect which is included between these two extreme aspects ([25], [28]). It is a

psychological notion ([34], [35]). Common sense expressed as conditions of coherence plays

the most essential role with respect to all theorems of probability calculus ([11]).
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2. REASONS JUSTIFYING OUR GEOMETRIC APPROACH TO INFERENCE FROM FINITE

POPULATIONS

Our mathematical model is based on “a priori” possible data concerning a given set of in-

formation at a certain instant of a given decision-maker. We accept the principles of the theory

of concordance into the domain of subjective probability. We connect vector spaces with ran-

dom quantities in this way. All logically possible alternatives for a given decision-maker with

a given set of information at a given instant identify a set of possible data ([19]). This set

coincides with its parameter space. It is not subjective but it is objective because he never ex-

presses his subjective opinion in terms of probability on what is uncertain or possible for him at

a given instant. We consider different spaces of possible alternatives geometrically represented

by different random quantities. We firstly study an one-dimensional parameter space geometri-

cally represented by a univariate random quantity. A given decision-maker assigns a subjective

probability to each possible alternative before knowing which is the true alternative to be ver-

ified “a posteriori”. We consequently study a discrete and finite probability distribution in this

way. All coherent probability distributions are admissible. We are interested in them. Only

coherence cannot be ignored with respect to a probability distribution ([18], [31]). A discrete

probability distribution is coherent when non-negative probabilities assigned to all possible (in-

compatible and exhaustive) alternatives considered “a priori” sum to 1. It is summarized by

means of the notion of prevision or mathematical expectation or expected value of a univariate

random quantity. All coherent previsions of a univariate random quantity are obtained by con-

sidering all coherent probability distributions with respect to this random quantity. All coherent

previsions can geometrically be represented by an one-dimensional convex set. Thus, when

the space of alternatives geometrically coincides with the real number line we observe that an

one-dimensional convex set is represented by a closed line segment. Therefore, every possible

alternative belonging to the set of all possible alternatives is viewed as a coherent prevision

of a univariate random quantity. This thing means that a set of possible alternatives for a given

decision-maker with a given set of information at a given instant is viewed as a set of all possible

samples selected from a finite population. Their size is equal to 1. Each sample belonging to the

set of all possible samples represents this population ([24], [27]). Such a population coincides
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with those coherent previsions of a univariate random quantity representing all possible alterna-

tives considered “a priori”. We are then able to consider a discrete probability distribution of all

possible samples belonging to the set of all possible samples. We assume that every sample of

this set has a probability greater than zero. We approximately get the standardized normal dis-

tribution from this probability distribution. Hence, a continuous probability distribution of all

coherent previsions of a univariate random quantity is approximately the standardized normal

distribution. It is then possible to consider different intervals of plausible values with respect to

a given value viewed as a center in addition to point estimates. This value viewed as a center

of the distribution of all possible samples is not necessarily a possible alternative considered “a

priori”. We underline a very important point: conditions of coherence are objective and they

are made explicit by means of mathematics. They coincide with non-negativity of probability

of an event and additivity of probabilities of different and incompatible events whose number

is finite ([13], [7], [8]). Only inadmissible evaluations must be excluded. An evaluation is in-

admissible when it is not coherent. Nevertheless, the essence of the notion of coherence is not

of a mathematical nature because it pertains to the meaning of probability of an event. Such

a meaning is not of a mathematical nature but it is of a psychological nature. An event is not

then a measurable set so we do not consider random variables viewed as measurable functions

into a probability space characterized by a σ -algebra. Anyway, an one-dimensional parameter

space is always provided with a metric structure that we introduce after studying the range of

possibility. This metric structure is useful in order to obtain different quantitative measures that

allow us of considering meaningful relationships between random quantities. Everything we

said can be extended to two-dimensional or three-dimensional parameter spaces that we con-

sider according to this geometric approach into this paper. A two-dimensional parameter space

is geometrically represented by a bivariate random quantity. A three-dimensional parameter

space is geometrically represented by a trivariate random quantity. We have to note another

very important point: all coherent previsions of a bivariate random quantity can always be di-

vided into all coherent previsions of two univariate random quantities. This principle has been

borrowed from geometry. It is known that all vectors viewed as ordered pairs of real numbers
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can always be expressed as linear combinations of other vectors representing a basis of the two-

dimensional vector space under consideration. Therefore, every vector of this linear space can

always be divided into two elements that are its components. Given an orthonormal basis, such

components can be projected onto two orthogonal axes of a Cartesian coordinate system. The

same principle goes when we consider all coherent previsions of a trivariate random quantity.

Such a quantity is divided into three bivariate random quantities in order to satisfy essential

metric reasons. This process of separating a complex object into simpler objects even holds by

considering measures of statistical dispersion. Thus, given a bivariate random quantity having

two univariate random quantities as its components, the covariance of these two univariate ran-

dom quantities is analytically expressed by using a coherent prevision of the starting bivariate

random quantity. Two coherent previsions of two univariate random quantities are also used in

order to obtain it. These two univariate random quantities are the components of the starting

bivariate random quantity.

3. POSSIBLE DATA OF AN ONE-DIMENSIONAL PARAMETER SPACE

An one-dimensional parameter space contains all possible parameters viewed as real num-

bers. They are “a priori” possible data. Only one of them will be true “a posteriori”. It represents

the real explanation of the phenomenon under consideration ([1], [2]). An one-dimensional pa-

rameter space Ω⊆ R can be represented by a univariate random quantity. A univariate random

quantity represents a partition of incompatible and exhaustive events. We consider different

univariate random quantities that are elements of a set of univariate random quantities denoted

by (1)S. These different univariate random quantities have at least a possible value that is the

same. This common value is the true value to be verified “a posteriori”. We denote by Ω ∈ (1)S

one of these univariate random quantities. Every random quantity belonging to the set (1)S is

represented by a vector belonging to Em, where Em is an m-dimensional vector space over the

field R of real numbers. An orthonormal basis of Em is denoted by {e j}, j = 1, . . . ,m. The dif-

ferent possible values of every random quantity of (1)S are m in number. These values can also

be considered on the real number line because they are different. It turns out to be (1)S ⊂ Em.

A univariate quantity Ω is random for a given decision-maker because he is in doubt between

two or more than two possible values of Ω belonging to the set I(Ω) = {θ 1,θ 2, . . . ,θ m}. We
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assume that it turns out to be θ 1 < θ 2 < .. . < θ m. Each possible value of Ω is then an event.

Only one of them will occur “a posteriori”. We consider a univariate random quantity as a finite

partition of incompatible and exhaustive events. Every single event of a finite partition of events

is a statement such that, by betting on it, we can establish whether the bet has been won or lost

([16]). It is essential to note a very important point: each θ i, i = 1, . . . ,m, can also represent a

cell midpoint when Ω is a bounded (from above and below) continuous parameter space. On

the other hand, it is possible to dichotomize a bounded (from above and below) continuous

random quantity by giving origin to different dichotomic random quantities whose number is

finite. Thus, a space of alternatives can indifferently be discrete or continuous. We assume that

information and knowledge of a given decision-maker allow him of limiting it from above and

below. This thing often happens so it is not a loss of generality. The different possible val-

ues of Ω belonging to the set I(Ω) coincide with the different components of a vector ω ∈ Em

and they can indifferently be denoted by a covariant or contravariant notation after choosing

an orthonormal basis of Em. We should exactly speak about components of ω having upper

or lower indices because we deal with an orthonormal basis of Em. Indeed, it is geometrically

meaningless to use the terms covariant and contravariant because the covariant components of

ω coincide with the contravariant ones. Nevertheless, it is appropriate to use this notation be-

cause a particular meaning connected with these components will be introduced. Having said

that, we will continue to use these terms. Thus, we choose a contravariant notation with respect

to the components of ω so it is possible to write ω = (θ i). We choose a covariant notation

with respect to the components of p so it is possible to write p = (pi). We note that pi repre-

sents a subjective probability assigned to θ i, i = 1, . . . ,m, by a given decision-maker according

to his psychological degree of belief. Different decision-makers whose state of knowledge is

hypothetically identical may choose different pi. Each of them may subjectively give a greater

attention to certain circumstances than to others ([29]). A given decision-maker is into the do-

main of possibility when he considers only ω ∈ Em, while he is into the domain of the logic of

the probable when he considers an ordered pair of vectors given by (ω,p). Thus, a prevision of

Ω is given by

(1) P(Ω) = Ω̄ = θ
i pi,
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where we imply the Einstein summation convention. This prevision is coherent when we have

0≤ pi ≤ 1, i = 1, . . . ,m, as well as ∑
m
i=1 pi = 1 ([4]). By considering the different components

of ω on the real number line we are able to say that a coherent prevision of Ω always satisfies

the inequality in f I(Ω) ≤ P(Ω) ≤ sup I(Ω) and it is also linear ([5], [6], [21]). These two

properties mean that all coherent previsions of Ω geometrically identify a closed line segment

belonging to the real number line. A coherent prevision of Ω can be expressed by means of the

vector ω̄ = (ω̄ i) that allows us of defining a transformed random quantity denoted by
Ω

t : it is

represented by the vector ω t = ω− ω̄ whose contravariant components are given by

(2) ωt i = θ
i− ω̄

i.

This linear transformation of Ω is a change of origin. A coherent prevision of the transformed

random quantity
Ω

t is given by

(3) P(Ωt) = (θ i− ω̄
i)pi = 0.

The α-norm of the vector ω is expressed by

(4) ‖ω‖2
α = (θ i)2 pi.

It is the square of the quadratic mean of Ω. It turns out to be ‖ω‖2
α ≥ 0. In particular, when the

possible values of Ω are all null one writes ‖ω‖2
α = 0: this is a degenerate case that we exclude.

Hence, it is possible to say that the α-norm of the vector ω is strictly positive. The α-norm of

the vector representing
Ω

t is given by

(5) ‖ω t‖2
α = (ωt i)2 pi = σ

2
Ω.

It represents the variance of Ω in a vectorial fashion ([3]). We will later explain why we use

the term α-norm. A space of alternatives containing all “a priori” possible points is denoted

by I(Ω) = {θ 1,θ 2, . . . ,θ m}. We are interested in all discrete coherent probability distributions

connected with I(Ω). We always summarize them by means of the notion of prevision of Ω.

All coherent previsions of Ω are infinite in number. They coincide with all points of a closed

line segment whose endpoints are θ 1 and θ m after representing all “a priori” possible points on

the real number line. Each θ i, i = 1, . . . ,m, is a sample whose size is equal to 1 belonging to the
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set of all possible samples selected from a finite population. Each θ i, i = 1, . . . ,m, is a coherent

prevision of Ω. We consequently consider a finite population of coherent previsions of Ω. Only

one of these coherent previsions will be the true parameter of the population to be verified “a

posteriori”. A given decision-maker does not know it yet. An estimator is evidently P. It is

linear. We consider a discrete probability distribution of all possible samples belonging to the

set of all possible alternatives. We define a sampling design in this way. We assume that every

sample of the set of all possible samples has a probability greater than zero. In particular, if all

samples belonging to the set of all possible samples have the same probabilities whose sum is

equal to 1, then a coherent prevision of them coincides with that value representing their center.

We use it in order to obtain the standardized normal distribution. This value is connected with

a linear nature of P. We obtain the standardized normal distribution by subtracting this value

denoted by µΩ from each θ i, i = 1, . . . ,m, and dividing the difference by the square root of the

squared deviations of each θ i from µΩ. We obtain z-values in this way, so we write

(6) Z =
[P(Ω) = θ i]−µΩ√

σ2
Ω

.

Hence, a continuous probability distribution of all coherent previsions of a univariate random

quantity is approximately the standardized normal distribution. It is then possible to consider

different intervals of plausible values with respect to µΩ in addition to point estimates ([9]). In

general, an interval of plausible values is given by

(7) [θ i− zα/2

√
σ2

Ω
, θ

i + zα/2

√
σ2

Ω
],

with zα that is the α-quantile of the standardized normal distribution. Such an interval derives

from

(8) P(−zα/2 ≤
[P(Ω) = θ i]−µΩ√

σ2
Ω

≤ zα/2) = 1−α.

A point estimate is P(Ω) = θ i, i = 1, . . . ,m, as well as it is ‖ω t‖2
α = σ2

Ω
. However, a point

estimate is always a real number within this context because we consider an one-dimensional

parameter space. Two point estimates are represented by two single real numbers. Three point

estimates are represented by three single real numbers and so on. We have to note another very
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important point: a given decision-maker chooses “a priori” that possible alternative to which

he subjectively assigns a larger probability. In other words, he chooses that probability distri-

bution whose expected value denoted by P coincides with this “a priori” possible alternative.

Another probability distribution must then be considered when he knows “a posteriori” the true

parameter of the population. It is a particular but coherent probability distribution because all

false alternatives have probabilities equal to 0 while the true alternative has a probability equal

to 1. If the true alternative coincides with that one chosen “a priori” by him, then it is possible

to note that its posterior probability has increased. Otherwise, it has decreased. We have used

the Bayes’ rule within this context.

4. POSSIBLE DATA OF A TWO-DIMENSIONAL PARAMETER SPACE

A two-dimensional parameter space contains all possible parameters viewed as ordered pairs

of real numbers. They are “a priori” possible data. Only one of them will be true “a posteriori”.

A two-dimensional parameter space Ω⊆R2 can be represented by a bivariate random quantity.

A bivariate random quantity has always two univariate random quantities as its components.

Each of them represents a partition of incompatible and exhaustive events. Each of them is a

marginal univariate random quantity. We denote by (2)S
(2) a set of bivariate random quantities.

We denote by Ω12 ≡ {1Ω,2Ω} a generic bivariate random quantity belonging to (2)S
(2). A

pair of univariate random quantities (1Ω,2Ω) evidently represents an ordered pair of univariate

random quantities that are the components of Ω12. Each element of (2)S
(2) can be represented

by an affine tensor of order 2 denoted by T ∈ (2)S
(2). Moreover, it turns out to be (2)S

(2) ⊂ E(2)
m ,

where we have E(2)
m = Em⊗Em. An orthonormal basis of Em is denoted by {e j}, j = 1, . . . ,m.

Therefore, the possible values of Ω12 coincide with the numerical values of the components

of T . A vector space denoted by Em is m-dimensional. The number of the different possible

values of every univariate random quantity of Ω12 is equal to m. Thus, T is an element of

an m2-dimensional vector space. We can represent the possible values of Ω12 by means of an

orthonormal basis of Em. These values coincide with the contravariant components of T so it is

possible to write

(9) T = (1)ω ⊗ (2)ω = (1)θ
i1
(2)θ

i2ei1⊗ ei2.
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The tensor representation of Ω12 expressed by (9) depends on (1Ω,2Ω). Indeed, if one considers

a different ordered pair (2Ω,1Ω) of univariate random quantities one obtains a different tensor

representation of Ω12. It is expressed by

(10) T = (2)ω ⊗ (1)ω = (2)θ
i2
(1)θ

i1ei2⊗ ei1

because the tensor product is not commutative ([30]). Therefore, the components of T expressed

by (10) are not the same of the ones expressed by (9). Both these formulas express an affine

tensor of order 2 whose components are different. In particular, we could consider two vectors

of E3

(1)ω = (1)θ
1e1 + (1)θ

2e2 + (1)θ
3e3

and

(2)ω = (2)θ
1e1 + (2)θ

2e2 + (2)θ
3e3

in order to realize that it turns out to be (1)ω ⊗ (2)ω 6= (2)ω ⊗ (1)ω by summing over all values

of the indices. We must then consider (9) and (10) in a jointly fashion in order to release a

tensor representation of Ω12 from any ordered pair of univariate random quantities that can be

considered, (1Ω,2Ω) or (2Ω,1Ω). In fact, when m = 3 and we express T by means of (9) and

(10) we observe that three of nine summands are equal. It is consequently possible to say that

the possible values of a bivariate random quantity must be expressed by the components of an

antisymmetric tensor of order 2. It is expressed by

(11) T = ∑
i1<i2

((1)θ
i1
(2)θ

i2− (1)θ
i2
(2)θ

i1)ei1⊗ ei2.

The number of the components of an antisymmetric tensor of order 2 is evidently different from

the one of the components of an affine tensor of the same order. Thus, a tensor representation

based on an antisymmetric tensor of order 2 does not depend either on (1Ω,2Ω) or (2Ω,1Ω).

We choose it in order to represent a generic bivariate random quantity Ω12 in a geometrical

fashion. Therefore, 12 f is an antisymmetric tensor of order 2 called the tensor of the possible
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values of Ω12. The contravariant components of 12 f expressed by

(12) 12 f (i1i2) =

∣∣∣∣∣∣∣∣∣∣
(1)θ

i1
(1)θ

i2

(2)θ
i1

(2)θ
i2

∣∣∣∣∣∣∣∣∣∣
represent the possible values of Ω12 in a tensorial fashion. When these components have equal

indices it follows that they are equal to 0. It is evident that a vector space of the antisymmetric

tensors of order 2 is not m2-dimensional but it is
(m

2

)
-dimensional. Now, we must introduce

probability into this geometric representation of Ω12. This means that a given decision-maker

must distribute a mass over the possible alternatives coinciding with the possible values of

Ω12. Therefore, he leaves the domain of the possible in order to go into the domain of the

probable. We say that the tensor of the joint probabilities p = (pi1i2) is an affine tensor of order

2 whose covariant components represent those probabilities connected with ordered pairs of

components of vectors representing the marginal univariate random quantities, 1Ω and 2Ω, of

Ω12. A coherent prevision of Ω12 is then expressed by

(13) P(Ω12) = Ω̄12 = (1)θ
i1
(2)θ

i2 pi1i2,

so it is also possible to consider an affine tensor of order 2 denoted by 12ω̄ whose contravari-

ant components are expressed by 12θ̄ i1i2 . They are all equal. We must consider those vector

homographies that allow us of passing from the contravariant components of a type of vector

to the covariant ones of another type of vector by means of the tensor of the joint probabilities

under consideration. We define the covariant components of 12 f in this way. The covariant

components of 12 f represent those probabilities connected with the possible values of each

marginal univariate random quantity of Ω12. These components are obtained by summing the

probabilities connected with the ordered pairs of components of (1)ω and (2)ω : putting the joint

probabilities into a two-way table we consider the totals of each row and the totals of each col-

umn of the table as covariant components of 12 f . In analytic terms we have (1)θ
i1 pi1i2 = (1)θi2

and (2)θ
i2 pi1i2 = (2)θi1 by virtue of a particular convention that we introduce: when the covariant

indices to right-hand side vary over all their possible values we obtain two sequences of values

representing those probabilities connected with the possible values of each marginal univariate
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random quantity of Ω12. They are the covariant components of 12 f . It turns out to be

(14) 12 f(i1i2) =

∣∣∣∣∣∣∣∣∣∣
(1)θi1 (1)θi2

(2)θi1 (2)θi2

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
(1)θ

i2 pi2i1 (1)θ
i1 pi1i2

(2)θ
i2 pi2i1 (2)θ

i1 pi1i2

∣∣∣∣∣∣∣∣∣∣
.

The covariant indices of the tensor p can be interchanged when it is necessary so we have,

for instance, (1)θ
i1 pi1i2 = (1)θ

i1 pi2i1 . Each ordered pair of vectors ((1)ω , (2)ω ) mathematically

determines an affine tensor of order 2 when a given decision-maker is into the subjective domain

of the logic of the probable. Each ordered pair of vectors ((1)ω , (2)ω ) represents two univariate

random quantities, 1Ω and 2Ω, into Em ([32]). Both these univariate random quantities belong

to the set denoted by (2)S
(1), so it turns out to be (2)S

(1)⊂ Em. On the other hand, it is possible to

write (2)S
(1)⊗ (2)S

(1) = (2)S
(2), so we reach a vector space of the antisymmetric tensors of order

2 by anti-symmetrization. It is denoted by (2)S
(2)∧. We have evidently (2)S

(2)∧ ⊂ E(2)∧
m . We will

show that a metric defined on (2)S
(2)∧ is a consequence of a metric defined on (2)S

(1). When we

observe that the number of the components of an antisymmetric tensor of order 2 decreases by

passing from an affine tensor of order 2 to an antisymmetric tensor of the same order we say

that this thing is useful in order to satisfy simplification and compression reasons. Nevertheless,

it is essential to note a very important point: this thing does not mean that the original structure

of the random quantity under consideration changes. It remains unchanged. We only consider

a smaller number of elements by means of a tensorial representation. The original elements

of the random quantity under consideration do not disappear. Indeed, we will show that they

are fully considered in order to establish quantitative relationships between multivariate random

quantities. It is therefore possible to compress elements of a random quantity without changing

conceptual terms of the problem under consideration.

5. A SEPARATION OF THE POSSIBLE DATA OF A TWO-DIMENSIONAL PARAMETER

SPACE

A set of univariate random quantities that are the components of bivariate random quantities

is denoted by (2)S
(1) ⊂ Em. It is a vector space smaller than Em because each m-tuple of real

numbers is always a sequence of m different numbers. Thus, since (2)S
(1) is closed under
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addition of two elements of it, we must obtain a sequence of m different numbers even when an

m-tuple is the result of the addition of two m-tuples. If this thing does not happen then a random

quantity unacceptably changes its structure. Univariate random quantities are represented by

two vectors, (1)ω and (2)ω , belonging to Em. A given decision-maker deals with two ordered

m-tuples when he is into the domain of the possible. An affine tensor p of order 2 must be

added to the two vectors under consideration when it is necessary to pass from the domain of

the possible to the one of the probable. Therefore, it is always necessary to consider a triple of

elements. We transform (2)ω into (2)ω
′ by means of the tensor p. Hence, it is possible to write

the following dot product

(15) (1)ω · (2)ω
′ = (1)θ

i1
(2)θ

i2 pi1i2 = (1)θ
i1
(2)θi1.

We note that

(16) (2)θi1 = (2)θ
i2 pi1i2 = (2)ω

′

is a vector homography whose expressions are obtained by applying the Einstein summation

convention. Then, the α-product of two vectors, (1)ω and (2)ω , is defined as a dot product of

two vectors, (1)ω and (2)ω
′, so we write

(17) (1)ω � (2)ω = (1)ω · (2)ω
′.

In particular, the α-norm of the vector (1)ω is given by

(18) ‖(1)ω‖
2
α = (1)θ

i1
(1)θ

i1 pi1i1 = (1)θ
i1
(1)θi1 .

Now, we can explain why we use this term: we use it because we refer to the α-criterion of

concordance introduced by Gini ([23], [22]). There actually exist different criteria of concor-

dance in addition to the α-criterion. Nevertheless, it always suffices to use the α-criterion

when one considers quadratic measures of concordance ([20]). When we pass from the notion

of α-product to the one of α-norm we say that the corresponding possible values of the two

univariate random quantities under consideration are equal. Moreover, we say that the corre-

sponding probabilities are equal. Therefore, the covariant components of the tensor p = (pi1i2)

having different numerical values as indices are null. Thus, we say that the absolute maximum
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of concordance is realized. Hence, it is evidently possible to elaborate a geometric, original and

extensive theory of multivariate random quantities by accepting the principles of the theory of

concordance into the domain of subjective probability. This acceptance is well-founded because

the definition of concordance is implicit as well as the one of prevision of a random quantity and

in particular of probability of an event. Indeed, these definitions are based on criteria which al-

low of measuring them. Given the vector ε = (1)ω +b(2)ω , with b∈R, its α-norm is expressed

by

(19) ‖ε‖2
α = ‖(1)ω‖

2
α +2b((1)ω � (2)ω )+b2‖(2)ω‖

2
α .

It is always possible to write ‖ε‖2
α ≥ 0. Moreover, the right-hand side of (19) is a quadratic

trinomial whose variable is b ∈ R, so we must consider a quadratic inequation. All real num-

bers fulfill the condition stated in the form ‖ε‖2
α ≥ 0. This means that the discriminant of the

associated quadratic equation is non-positive. We write

∆b = 4[((1)ω � (2)ω )2−‖(1)ω‖
2
α‖(2)ω‖

2
α ].

Given ∆b ≤ 0, it turns out to be

((1)ω � (2)ω )2 ≤ ‖(1)ω‖
2
α‖(2)ω‖

2
α ,

so we obtain

(20) |(1)ω � (2)ω | ≤ ‖(1)ω‖α‖(2)ω‖α .

The expression (20) is called the Schwarz’s α-generalized inequality. When b = 1 we have

ε = (1)ω + (2)ω . By replacing ((1)ω � (2)ω ) with ‖(1)ω‖α‖(2)ω‖α into (19) we have the square

of a binomial given by

‖(1)ω + (2)ω‖
2
α = ‖(1)ω‖

2
α +2‖(1)ω‖α‖(2)ω‖α +‖(2)ω‖

2
α ,

so we obtain

(21) ‖(1)ω + (2)ω‖α ≤ ‖(1)ω‖α +‖(2)ω‖α .
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The expression (21) is called the α-triangle inequality. Dividing by ‖(1)ω‖α‖(2)ω‖α both sides

of (20) we have ∣∣∣∣∣ (1)ω � (2)ω

‖
(1)ω‖α‖(2)ω‖α

∣∣∣∣∣≤ 1,

that is to say,

−1≤ (1)ω � (2)ω

‖
(1)ω‖α‖(2)ω‖α

≤ 1,

so there exists a unique angle γ such that 0≤ γ ≤ π and such that

(22) cosγ =
(1)ω � (2)ω

‖
(1)ω‖α‖(2)ω‖α

.

It is possible to define this angle to be the angle between (1)ω and (2)ω . By considering the

expression (17) it is also possible to define it to be the angle between (1)ω and (2)ω
′. The two

vectors (1)t and (2)t represent the two transformed random quantities
1Ω

t and
2Ω

t defined on

1Ω and 2Ω. The contravariant components of (1)t and (2)t are given by (1)t
i = (1)θ

i− (1)ω̄
i and

(2)t
i = (2)θ

i− (2)ω̄
i. Then, their α-product is given by

(23) (1)t� (2)t = (1)t
i1
(2)ti1 = (1)t

i1
(2)t

i2 pi2i1.

It represents the covariance of 1Ω and 2Ω in a vectorial fashion. When one considers the

expression (22) connected with (1)t and (2)t it becomes

(24) cosγ =
(1)t� (2)t

‖
(1)t‖α‖(2)t‖α

.

It expresses the Pearson α-generalized correlation coefficient. We have to note a very important

point: we aggregate possible data when we consider P(Ω12) as an α-product. We use the joint

probabilities in order to determine P(Ω12) as an α-product. We obtain the marginal probabil-

ities after establishing the joint ones. We obtain the marginal probabilities by means of vector

homographies. Now, we have to separate possible data concerning Ω12. We have consequently

I(1Ω)= {(1)θ
1, (1)θ

2, . . . , (1)θ
m} and I(2Ω)= {(2)θ

1, (2)θ
2, . . . , (2)θ

m}. Each set contains all “a

priori” possible points concerning one of two marginal univariate random quantities. They can

be viewed as two sets of all possible samples whose size is equal to 1 selected from two finite

populations, 1Ω and 2Ω. They are two finite populations of coherent previsions of 1Ω and 2Ω.

We separately consider two discrete probability distributions of all possible samples belonging
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to the two sets of possible alternatives I(1Ω) and I(2Ω). We assume that every sample of these

two sets has a probability greater than zero. We establish the center of each discrete probability

distribution of all possible samples belonging to I(1Ω) and I(2Ω). We use these two centers in

order to obtain the standardized normal distribution concerning 1Ω as well as that one concern-

ing 2Ω. These two values are connected with a linear nature of P when we separately consider

1Ω and 2Ω. We consequently divide all coherent previsions of Ω12 into two sets containing all

coherent previsions of two marginal univariate random quantities. All coherent previsions of

Ω12 always derive from all coherent previsions of two marginal univariate random quantities,

1Ω and 2Ω. All coherent previsions of 1Ω are independent of all coherent previsions of 2Ω.

When we separate possible data concerning Ω12 we are able to consider all possible values of

1Ω and 2Ω on two orthogonal axes of a Cartesian coordinate system. This thing can always be

made because all possible values of 1Ω are distinct as well as all possible values of 2Ω. We note

that all coherent previsions of 1Ω and 2Ω geometrically identify two closed line segments on

these two orthogonal axes. A point of each line segment can indifferently be viewed as a real

number rather than a particular ordered pair of real numbers. Conversely, all coherent previsions

of Ω12 geometrically identify a subset of a Cartesian plane. Such a subset is a two-dimensional

convex set. Each coherent prevision of Ω12 can then be projected onto the two orthogonal axes

of a Cartesian coordinate system. We are able to consider intervals of plausible values with

respect to µ
1Ω and µ

2Ω . A point estimate is

(25)


P(1Ω) = (1)θ

i

P(2Ω) = (2)θ
i

 .

It is also

(26)


‖(1)t‖

2
α = σ2

1Ω

‖(2)t‖
2
α = σ2

2Ω

 .

However, within this context a point estimate is always an ordered pair of real numbers because

we consider a two-dimensional parameter space. Two point estimates of a two-dimensional
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parameter space are expressed by two ordered pairs of real numbers. A given decision-maker

chooses “a priori” an ordered pair of possible alternatives. Every pair of possible alternatives is

viewed as an ordered pair of coherent previsions of two marginal univariate random quantities.

He chooses that pair of possible alternatives to which he subjectively assigns a larger probability.

Therefore, he chooses those coherent probability distributions whose expected values coincide

with this “a priori” possible pair of alternatives. Other two probability distributions must sep-

arately be considered when a given decision-maker knows “a posteriori” the true parameter of

the aggregate population denoted by Ω12. They are two particular but coherent probability dis-

tributions. The first distribution is concerned with a marginal univariate random quantity. The

second distribution is concerned with the other marginal univariate random quantity. All false

alternatives whose elements are contained into I(1Ω) and I(2Ω) have then posterior probabil-

ities equal to 0. The first component of every false alternative is contained into I(1Ω) while

its second component is contained into I(2Ω). The true alternative whose element is contained

into I(1Ω) and I(2Ω) has a posterior probability equal to 1. The first component of the true

alternative is contained into I(1Ω) while its second component is contained into I(2Ω). If

the true alternative verified “a posteriori” coincides with that one chosen “a priori” by a given

decision-maker as an ordered pair of alternatives, then its posterior probability has increased

with respect to the two starting probability distributions. Otherwise, it has decreased. We have

used the Bayes’ rule within this context.

6. A LARGER SPACE OF ALTERNATIVES CONNECTED WITH A TWO-DIMENSIONAL PA-

RAMETER SPACE

We deal with a set denoted by (2)S
(2)∧ whose elements are antisymmetric tensors of order 2.

Nevertheless, we must underline a very important point connected with the notion of α-product

of two antisymmetric tensors of order 2: it is not necessary to refer to the bivariate random

quantity Ω12 in order to introduce that antisymmetric tensor whose covariant components are

represented like into the expression (14). Therefore, it is also possible to consider a bivariate

random quantity denoted by Ω34 as well as an antisymmetric tensor of order 2 denoted by 34 f
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whose covariant components are expressed by

(27) 34 f(i1i2) =

∣∣∣∣∣∣∣∣∣∣
(3)θi1 (3)θi2

(4)θi1 (4)θi2

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
(3)θ

i2 pi2i1 (3)θ
i1 pi1i2

(4)θ
i2 pi2i1 (4)θ

i1 pi1i2

∣∣∣∣∣∣∣∣∣∣
.

Thus, it is possible to extend to the antisymmetric tensors 12 f and 34 f the notion of α-product.

We are evidently able to point out another very important point: the range of possibility can

change at a given instant. It is not unchangeable. A space of alternatives containing all “a priori”

possible data for a given decision-maker always depends on his information and knowledge at

a certain instant. It is anyway objective ([12]). This means that a given decision-maker never

expresses his subjective opinion in terms of probability on what is uncertain or possible for

him. He makes explicit what he knows or what he does not know at a certain instant with

a given set of information. The knowledge and the ignorance of a given decision-maker at a

certain instant determine the extent of the range of the possible. This range could also become

smaller when the knowledge increases or it could also become larger when the knowledge

decreases at a later time. With regard to the problem that we are considering, there exists a

larger number of possible alternatives with respect to the starting point. This means that current

information and knowledge of a given decision-maker do not allow him of excluding some of

them as impossible. Therefore, all alternatives that can logically be considered at present remain

possible for him in the sense that they are not either certainly true or certainly false. Moreover,

we suppose that Ω12 and Ω34 have at least a possible value that is the same. This common value

is the true value to be verified “a posteriori”. Then, we have

(28) 12 f (i1i2)� 34 f(i1i2) =
1
2

∣∣∣∣∣∣∣∣∣∣
(1)θ

i1
(1)θ

i2

(2)θ
i1

(2)θ
i2

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
(3)θi1 (3)θi2

(4)θi1 (4)θi2

∣∣∣∣∣∣∣∣∣∣
,

where it appears 1
2 because we have always two permutations into the two determinants: one

of these permutations is “good” when it turns out to be i1 < i2 with respect to (1)θ
i1
(2)θ

i2 and

(3)θi1(4)θi2 , while the other is “bad” because it turns out to be i2 > i1 with respect to (1)θ
i2
(2)θ

i1

and (3)θi2(4)θi1 . Hence, we are in need of returning to normality by means of 1
2 . Such a normality
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is evidently represented by i1 < i2. We can also say that it appears 1
2!=2 because we deal with

antisymmetric tensors of order 2. We need different affine tensors of order 2 in order to make

that calculation expressed by (28). These tensors of the joint probabilities allow us of defining

the bivariate random quantities Ω13, Ω14, Ω23 and Ω24 having at least a possible value that is

the same. This common value is the true value to be verified “a posteriori”. Thus, we have

(29) 12 f � 34 f =

∣∣∣∣∣∣∣∣∣∣
(1)θ

i1
(3)θ

i2 p(13)
i2i1 (1)θ

i2
(4)θ

i1 p(14)
i1i2

(2)θ
i1
(3)θ

i2 p(23)
i2i1 (2)θ

i2
(4)θ

i1 p(24)
i1i2

∣∣∣∣∣∣∣∣∣∣
.

In particular, the α-norm of the tensor 12 f is given by

(30) ‖12 f ‖2
α = 12 f � 12 f = 12 f (i1i2)

12 f(i1i2),

so it turns out to be

(31) ‖12 f ‖2
α =

1
2

∣∣∣∣∣∣∣∣∣∣
(1)θ

i1
(1)θ

i2

(2)θ
i1

(2)θ
i2

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
(1)θi1 (1)θi2

(2)θi1 (2)θi2

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
(1)θ

i1
(1)θ

i1 p(11)
i1i1 (1)θ

i2
(2)θ

i1 p(12)
i1i2

(2)θ
i1
(1)θ

i2 p(21)
i2i1 (2)θ

i2
(2)θ

i2 p(22)
i2i2

∣∣∣∣∣∣∣∣∣∣
.

Anyway, it is always possible to write

(32) 12 f � 34 f =

∣∣∣∣∣∣∣∣∣∣
(1)ω � (3)ω (1)ω � (4)ω

(2)ω � (3)ω (2)ω � (4)ω

∣∣∣∣∣∣∣∣∣∣
as well as

(33) ‖12 f ‖2
α =

∣∣∣∣∣∣∣∣∣∣
‖(1)ω‖

2
α (1)ω � (2)ω

(2)ω � (1)ω ‖(2)ω‖
2
α

∣∣∣∣∣∣∣∣∣∣
.

The α-norm of the tensor 12 f is strictly positive. It is equal to 0 when the components of 12 f

are null. Nevertheless, this does not mean that the components of the two vectors founding the
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tensor are null. Indeed, it suffices that one writes (1)ω = b(2)ω , with b ∈ R, in order to obtain

(34) ‖12 fb‖2
α =

1
2

∣∣∣∣∣∣∣∣∣∣
b(2)θ

i1 b(2)θ
i2

(2)θ
i1

(2)θ
i2

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
b(2)θi1 b(2)θi2

(2)θi1 (2)θi2

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
b2‖(2)ω‖

2
α b‖(2)ω‖

2
α

b‖(2)ω‖
2
α ‖(2)ω‖

2
α

∣∣∣∣∣∣∣∣∣∣
= 0.

The α-norm of the tensor 12 f evidently implies that Ω12 and Ω12 have all “a priori” possible

values that are the same. One and only one of these possible values will be the true value to be

verified “a posteriori”. We define a tensor f as a linear combination of 12 f and 34 f such that we

can write f = 12 f +b34 f , with b ∈ R. Then, the Schwarz’s α-generalized inequality becomes

(35) |12 f � 34 f | ≤ ‖12 f ‖α‖34 f ‖α ,

the α-triangle inequality becomes

(36) ‖12 f + 34 f ‖α ≤ ‖12 f ‖α +‖34 f ‖α ,

while the cosine of the angle γ becomes

(37) cosγ = 12 f � 34 f
‖12 f ‖α‖34 f ‖α

.

It is possible to consider two univariate transformed random quantities that are respectively
1Ω

t

and
2Ω

t . They are represented by (1)t and (2)t whose contravariant components are given by

(1)t
i = (1)θ

i− (1)ω̄
i and (2)t

i = (2)θ
i− (2)ω̄

i. Therefore, it is possible to introduce an antisym-

metric tensor of order 2 denoted by 12t characterizing a bivariate transformed random quantity

denoted by
Ω12

t . Then, the contravariant components of this tensor are given by

(38) 12t(i1i2) =

∣∣∣∣∣∣∣∣∣∣
(1)t

i1
(1)t

i2

(2)t
i1

(2)t
i2

∣∣∣∣∣∣∣∣∣∣
.

Its covariant components are given by

(39) 12t(i1i2) =

∣∣∣∣∣∣∣∣∣∣
(1)ti1 (1)ti2

(2)ti1 (2)ti2

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
(1)t

i2 pi2i1 (1)t
i1 pi1i2

(2)t
i2 pi2i1 (2)t

i1 pi1i2

∣∣∣∣∣∣∣∣∣∣
.
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The α-product of the two tensors 12t and 34t is given by

(40) 12t � 34t =

∣∣∣∣∣∣∣∣∣∣
(1)t� (3)t (1)t� (4)t

(2)t� (3)t (2)t� (4)t

∣∣∣∣∣∣∣∣∣∣
.

The α-norm of the tensor 12t is given by

(41) ‖12t‖2
α =

∣∣∣∣∣∣∣∣∣∣
‖(1)t‖

2
α (1)t� (2)t

(2)t� (1)t ‖(2)t‖
2
α

∣∣∣∣∣∣∣∣∣∣
.

The cosine of the angle γ is given by

(42) cosγ = 12t � 34t
‖12t‖α‖34t‖α

.

All these metric expressions are based on different affine tensors of order 2 characterizing Ω13,

Ω14, Ω23 and Ω24. Such expressions are useful in order to characterize meaningful quantita-

tive relationships between multivariate random quantities. We need them when we consider

different joint probability distributions of different bivariate random quantities generated by a

larger space of alternatives connected with a two-dimensional parameter space. Our mathemat-

ical model allows us of separating into parts every quantitative and metric relationship between

multivariate random quantities. We are then able to consider all coherent previsions of 1Ω and

3Ω when 1Ω and 3Ω are the univariate components of Ω13. We consider all coherent previ-

sions of 1Ω and 4Ω when 1Ω and 4Ω are the univariate components of Ω14. We consider all

coherent previsions of 2Ω and 3Ω when 2Ω and 3Ω are the univariate components of Ω23. We

study all coherent previsions of 2Ω and 4Ω when 2Ω and 4Ω are the univariate components of

Ω24. We consider the variance of all the univariate random quantities under consideration. We

also consider the covariance of 1Ω and 2Ω as well as the covariance of 3Ω and 4Ω. We obtain

different point estimates of a two-dimensional parameter space in this way. They are expressed

by different ordered pairs of real numbers. Anyway, we always separate all “a priori” possible

data relative to each bivariate random quantity under consideration in order to study single fi-

nite populations. We obtain sets containing all “a priori” possible alternatives of every marginal
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univariate random quantity of a given bivariate random quantity. Every possible alternative of a

given set of possible alternatives is viewed as a possible sample whose size is equal to 1 selected

from a finite population. Such a finite population coincides with those coherent previsions of

a univariate random quantity representing all possible alternatives considered “a priori”. We

consider different discrete probability distributions of all possible samples. We assume that

every sample belonging to a given set of possible samples has a probability greater than zero.

We establish the center of each discrete probability distribution of all possible samples. We use

these centers in order to obtain standardized normal distributions. We are then able to consider

different interval estimates.

7. METRIC PROPERTIES OF A ESTIMATOR CONNECTED WITH A TWO-DIMENSIONAL

PARAMETER SPACE

We study metric properties of P into a two-dimensional parameter space. The notion of α-

product depends on three elements that are two vectors of Em, (1)ω and (2)ω , and one affine

tensor p = (pi1i2) of order 2 belonging to E(2)
m = Em⊗Em. Given any ordered pair of vectors,

p is uniquely determined as a geometric object. This implies that each covariant component

of p is always a coherent subjective probability ([15]). It is possible that all reasonable peo-

ple share each covariant component of p with regard to some problem that may be considered.

Nevertheless, an opinion in terms of probability shared by many people always remains a sub-

jective opinion. It is meaningless to say that it is objectively exact. Indeed, a sum of many

subjective opinions in terms of probability can never lead to an objectively correct conclusion

([14]). Thus, given a bivariate random quantity Ω12 ≡ {1Ω,2Ω}, its coherent prevision P(Ω12)

is an α-product (1)ω � (2)ω whose metric properties remain unchanged by extending them to

P. Therefore, P is an α-commutative prevision because it is possible to write

(43) P(1Ω 2Ω) = P(2Ω 1Ω),

P is an α-associative prevision because it is possible to write

(44) P[(b 1Ω)2Ω] = P[1Ω(b 2Ω)] = bP(1Ω 2Ω), ∀b ∈ R,
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P is an α-distributive prevision because it is possible to write

(45) P[(1Ω+2Ω)3Ω] = P(1Ω 3Ω)+P(2Ω 3Ω).

Moreover, when one writes

(46) P(1Ω 2Ω) = P(2Ω 1Ω) = 0,

one says that 1Ω and 2Ω are α-orthogonal univariate random quantities. We exclude that all

possible values of 1Ω and 2Ω are null. In particular, one observes that the α-distributive prop-

erty of prevision implies that the covariant components of the affine tensor p(13) are equal to

the ones of the affine tensor p(23). Moreover, the covariant components of the affine tensor con-

nected with the two univariate random quantities 1Ω+2Ω and 3Ω are the same of the ones of

p(13) and p(23). By considering the joint probabilities of a bivariate random quantity one finally

says that its coherent prevision denoted by P is bilinear. It is separately linear with respect to

each marginal univariate random quantity of the bivariate random quantity under consideration.

It is then possible to rewrite (32) and (33) in order to obtain

(47) 12 f � 34 f =

∣∣∣∣∣∣∣∣∣∣
P(1Ω 3Ω) P(1Ω 4Ω)

P(2Ω 3Ω) P(2Ω 4Ω)

∣∣∣∣∣∣∣∣∣∣
as well as

(48) ‖12 f ‖2
α =

∣∣∣∣∣∣∣∣∣∣
P(1Ω 1Ω) P(1Ω 2Ω)

P(2Ω 1Ω) P(2Ω 2Ω)

∣∣∣∣∣∣∣∣∣∣
.

If the possible values of the two univariate random quantities of Ω12 ≡ {1Ω,2Ω} are corre-

spondingly equal and the covariant components of the tensor p = (pi1i2) having different nu-

merical values as indices are null, then P(Ω12) = P(1Ω 2Ω) = P(2Ω 1Ω) coincides with the

α-norm of (1)ω = (2)ω . Given a bivariate transformed random quantity
Ω12

t ≡ {
1Ω

t ,
2Ω

t}, its

coherent prevision P(
Ω12

t) is an α-product (1)t� (2)t whose metric properties remain unchanged
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by extending them to P. By rewriting (40) and (41) we have then

(49) 12t � 34t =

∣∣∣∣∣∣∣∣∣∣
P(

Ω13
t) P(

Ω14
t)

P(
Ω23

t) P(
Ω24

t)

∣∣∣∣∣∣∣∣∣∣
as well as

(50) ‖12t‖2
α =

∣∣∣∣∣∣∣∣∣∣
P(

Ω11
t) P(

Ω12
t)

P(
Ω21

t) P(
Ω22

t)

∣∣∣∣∣∣∣∣∣∣
.

In particular, when it turns out to be pi1i2 = pi1 pi2 , ∀i1, i2 ∈ Im, with Im ≡ {1,2, . . . ,m}, one

observes that a stochastic independence exists. Hence, one obtains P(
Ω12

t) = 0, that is to say,

(1)t and (2)t are α-orthogonal. One equivalently says that the covariance of 1Ω and 2Ω is equal

to 0.

8. POSSIBLE DATA OF A THREE-DIMENSIONAL PARAMETER SPACE

A three-dimensional parameter space contains all possible parameters viewed as ordered

triples of real numbers. They are “a priori” possible data. Only one of them will be true “a

posteriori”. A three-dimensional parameter space Ω ⊆ R3 can be represented by a trivariate

random quantity denoted by Ω123 ≡ {1Ω,2Ω,3Ω}. It belongs to the set (3)S
(3) of trivariate ran-

dom quantities ([3]). A trivariate random quantity has always three marginal univariate random

quantities as its components. Each of them represents a partition of incompatible and exhaus-

tive events. We consider three univariate random quantities, 1Ω, 2Ω and 3Ω, in a joint fashion

when we study a trivariate random quantity denoted by Ω123. We denote by (1Ω,2Ω,3Ω) an

ordered triple of univariate random quantities that are the components of Ω123. Each trivariate

random quantity is represented by an affine tensor of order 3 denoted by T ∈ (3)S
(3). It turns

out to be (3)S
(3) ⊂ E(3)

m = Em⊗Em⊗Em, where m represents the number of the distinct possible

values of every univariate random quantity of Ω123. Given an orthonormal basis of E(3)
m , {e j},

j = 1, . . . ,m, every trivariate random quantity belonging to the set (3)S
(3) is expressed by

(51) T = (1)ω ⊗ (2)ω ⊗ (3)ω = (1)θ
i1
(2)θ

i2
(3)θ

i3ei1⊗ ei2⊗ ei3.
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We have obtained (51) by considering (1Ω,2Ω,3Ω) as a possible ordered triple of univariate

random quantities. All possible ordered triples of univariate random quantities are six. It turns

out to be 3! = 6. Thus, if one wants to leave out of consideration the six possible permutations

of (1Ω,2Ω,3Ω) then one has to consider an antisymmetric tensor of order 3 denoted by 123 f .

Its contravariant components are given by

(52) 123 f (i1i2i3) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1)θ
i1

(1)θ
i2

(1)θ
i3

(2)θ
i1

(2)θ
i2

(2)θ
i3

(3)θ
i1

(3)θ
i2

(3)θ
i3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We denote by (3)S
(3)∧ ⊂ E(3)∧

m the vector space of the antisymmetric tensors of order 3 repre-

senting trivariate random quantities. Given the tensor of the joint probabilities p(123) = (p(123)
i1i2i3 ),

we should use a trilinear form when we want to know how far the possible values of Ω123 are

spread out from its coherent prevision P(Ω123) = (1)θ
i1
(2)θ

i2
(3)θ

i3 pi1i2i3 . Nevertheless, we in-

troduce the notion of a trivariate random quantity divided into three bivariate random quantities,

Ω12, Ω13 and Ω23, in order to avoid this thing. Therefore, a generic trivariate random quantity

divided into three bivariate random quantities is exclusively characterized by three affine tensors

of the joint probabilities that are respectively p(12) = (p(12)
i1i2 ), p(13) = (p(13)

i1i3 ) and p(23) = (p(23)
i2i3 ).

The covariant components of 123 f are expressed by

(53) 123 f(i1i2i3) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1)θi1 (1)θi2 (1)θi3

(2)θi1 (2)θi2 (2)θi3

(3)θi1 (3)θi2 (3)θi3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

When the covariant indices to right-hand side of (53) vary over all their possible values one

finally obtains three sequences of values representing those marginal probabilities connected

with the possible values of each marginal univariate random quantity of Ω123. Hence, the

vector space of the random quantities that are the components of Ω123 is denoted by (2)S
(1).
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We consequently denote by (2)S
(3)∧ ⊂ E(3)∧

m the vector space of the antisymmetric tensors of

order 3 representing trivariate random quantities divided into three bivariate random quantities.

9. A LARGER SPACE OF ALTERNATIVES CONNECTED WITH A THREE-DIMENSIONAL

PARAMETER SPACE

It is possible to extend to the antisymmetric tensors 123 f and 456 f the notion of α-product

into (2)S
(3)∧. This means that information and knowledge at a certain instant of a given decision-

maker make the range of possibility more extensive. We suppose that Ω123 and Ω456 have at

least a possible value that is the same. This common value is the true value to be verified “a

posteriori”. Thus, one has

(54) 123 f (i1i2i3)� 456 f(i1i2i3) =
1
3!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1)θ
i1

(1)θ
i2

(1)θ
i3

(2)θ
i1

(2)θ
i2

(2)θ
i3

(3)θ
i1

(3)θ
i2

(3)θ
i3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(4)θi1 (4)θi2 (4)θi3

(5)θi1 (5)θi2 (5)θi3

(6)θi1 (6)θi2 (6)θi3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

It is always possible to write

(55) 123 f � 456 f =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1)ω � (4)ω (1)ω � (5)ω (1)ω � (6)ω

(2)ω � (4)ω (2)ω � (5)ω (2)ω � (6)ω

(3)ω � (4)ω (3)ω � (5)ω (3)ω � (6)ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

that is to say, one obtains

(56) 123 f � 456 f =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P(1Ω4Ω) P(1Ω5Ω) P(1Ω6Ω)

P(2Ω4Ω) P(2Ω5Ω) P(2Ω6Ω)

P(3Ω4Ω) P(3Ω5Ω) P(3Ω6Ω)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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In particular, when the two tensors of (54) are the same one has

(57) ‖123 f ‖2
α =

1
3!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1)θ
i1

(1)θ
i2

(1)θ
i3

(2)θ
i1

(2)θ
i2

(2)θ
i3

(3)θ
i1

(3)θ
i2

(3)θ
i3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1)θi1 (1)θi2 (1)θi3

(2)θi1 (2)θi2 (2)θi3

(3)θi1 (3)θi2 (3)θi3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

One has operationally

(58) ‖123 f ‖2
α =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

‖(1)ω‖
2
α (1)ω � (2)ω (1)ω � (3)ω

(2)ω � (1)ω ‖(2)ω‖
2
α (2)ω � (3)ω

(3)ω � (1)ω (3)ω � (2)ω ‖(3)ω‖
2
α

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

that is to say, it is always possible to write

(59) ‖123 f ‖2
α =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P(1Ω1Ω) P(1Ω2Ω) P(1Ω3Ω)

P(2Ω1Ω) P(2Ω2Ω) P(2Ω3Ω)

P(3Ω1Ω) P(3Ω2Ω) P(3Ω3Ω)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

It is evident that the notion of a coherent prevision of different bivariate random quantities char-

acterizes a metric structure of trivariate random quantities divided into three bivariate random

quantities. Hence, it is made clear which is the role of the notion of coherence into funda-

mental metric expressions characterizing trivariate random quantities. Such a notion is always

connected with the joint probabilities of the bivariate random quantities under consideration.

When one has (1)ω = b(2)ω , with b ∈ R, it follows that (58) is equal to 0. It is possible to

define the tensor f as a linear combination of 123 f and 456 f into (2)S
(3)∧ such that one can write

f = 123 f +b456 f , with b ∈ R. Then, the Schwarz’s α-generalized inequality becomes

(60) |123 f � 456 f | ≤ ‖123 f ‖α‖456 f ‖α ,
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the α-triangle inequality becomes

(61) ‖123 f + 456 f ‖α ≤ ‖123 f ‖α +‖456 f ‖α ,

while the cosine of the angle γ becomes

(62) cosγ = 123 f � 456 f
‖123 f ‖α‖456 f ‖α

.

Now, we consider three transformed univariate random quantities that are respectively
1Ω

t ,
2Ω

t

and
3Ω

t . They are represented by the vectors (1)t, (2)t and (3)t whose contravariant components

are given by (1)t
i = (1)θ

i− (1)ω̄
i, (2)t

i = (2)θ
i− (2)ω̄

i and (3)t
i = (3)θ

i− (3)ω̄
i. We are therefore

able to consider an antisymmetric tensor of order 3 denoted by 123t characterizing the trans-

formed trivariate random quantity expressed by
Ω123

t . Then, the contravariant components of

this tensor are given by

(63) 123t(i1i2i3) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1)t
i1

(1)t
i2

(1)t
i3

(2)t
i1

(2)t
i2

(2)t
i3

(3)t
i1

(3)t
i2

(3)t
i3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Its covariant components are given by

(64) 123t(i1i2i3) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1)ti1 (1)ti2 (1)ti3

(2)ti1 (2)ti2 (2)ti3

(3)ti1 (3)ti2 (3)ti3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The α-product of the two tensors 123t and 456t is given by

(65) 123t � 456t =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1)t� (4)t (1)t� (5)t (1)t� (6)t

(2)t� (4)t (2)t� (5)t (2)t� (6)t

(3)t� (4)t (3)t� (5)t (3)t� (6)t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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The α-norm of the tensor 123t is given by

(66) ‖123t‖2
α =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

‖(1)t‖
2
α (1)t� (2)t (1)t� (3)t

(2)t� (1)t ‖(2)t‖
2
α (2)t� (3)t

(3)t� (1)t (3)t� (2)t ‖(3)t‖
2
α

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Different point estimates of a three-dimensional parameter space are evidently expressed by

different ordered triples of real numbers. We have then

(67)



P(1Ω) = (1)θ
i

P(2Ω) = (2)θ
i

P(3Ω) = (3)θ
i


as well as

(68)



‖(1)t‖
2
α = σ2

1Ω

‖(2)t‖
2
α = σ2

2Ω

‖(3)t‖
2
α = σ2

3Ω


.

We have to separate all “a priori” possible data relative to each bivariate random quantity under

consideration in order to study single finite populations.

10. CONCLUSIONS

We have studied different parameter spaces geometrically represented by different random

quantities. We have accepted the principles of the theory of concordance into the domain of

subjective probability. We did not consider random variables viewed as measurable functions

into a probability space characterized by a σ -algebra. Nevertheless, we have considered pa-

rameter spaces always provided with a metric structure. This metric structure is useful in order
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to obtain different quantitative measures that allow us of considering meaningful relationships

between multivariate random quantities. We have introduced antisymmetric tensors satisfying

simplification and compression reasons with respect to these random quantities into this metric

structure. A set of possible alternatives has always been viewed as a set of all possible samples

whose size is equal to 1 selected from a finite population. Such a finite population coincides

with those coherent previsions of a univariate random quantity representing all possible alterna-

tives considered “a priori”. Thus, all coherent previsions of a given bivariate random quantity

have been divided into all coherent previsions of its two marginal univariate random quanti-

ties. A given decision-maker chooses “a priori” an ordered pair of possible alternatives. Every

pair of possible alternatives is viewed as an ordered pair of coherent previsions of two mar-

ginal univariate random quantities. He chooses that pair of possible alternatives to which he

subjectively assigns a larger probability. In other words, he chooses those coherent probability

distributions whose expected values coincide with this “a priori” possible pair of alternatives.

Other two probability distributions must separately be considered when he knows “a posteriori”

the true parameter of the aggregate population. They are two particular but coherent proba-

bility distributions. An analogous reasoning holds when we consider an one-dimensional or a

three-dimensional parameter space.
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