

Available online at http://scik.org
J. Math. Comput. Sci. 2 (2012), No. 1, 37-53

ISSN: 1927-5307

DUAL GOPPA CODES OF CURVES CONTAINED IN A QUADRIC SURFACE

E. BALLICO*
${ }^{1}$ Department of Mathematics, University of Trento, 38123 Trento (TN), Italy

Abstract

Here we study the minimum distance of (duals of) Goppa codes on smooth curves $C \subset T$, where $T \subset \mathbb{P}^{3}$ is a geometrically irreducible quadric surface defined over a finite field.

Keywords: Goppa code; quadric surface; quadric cone; elliptic quadric surface.
2010 AMS Subject Classification: 94B27; 14G15; 14H99.

1. Introduction

We work over a finite field K. Let C be a smooth and geometrically connected curve defined over K. For any line bundle \mathcal{A} on C defined over K and any $B \subseteq C(K)$ let $\mathcal{C}(B, \mathcal{A})$ denote the code obtained evaluating $H^{0}(C, \mathcal{A})$ at the points of B; if $\mathcal{A} \cong \mathcal{O}_{C}(D)$ with D an effective divisor of C defined over K and whose support contains no point of B, then $\mathcal{C}(B, \mathcal{A}) \backslash\{0\}$ is the set of all rational functions $f \in K(C)$ defined over K and with $(f)+D \geq 0,\left([8]\right.$, Ch. 2, [10]) (it is the geometric Goppa code $C_{\mathcal{L}}(B, D)$ defined in [8], II.2.1). The dual code $\mathcal{C}\left(B, \mathcal{O}_{C}(D)\right)^{\perp}$ may be described in the same way ([8], Theorem II.2.8).

[^0]We first prove the following results concerning Goppa codes constructed using curves contained in a hyperbolic quadric surface Q.

Theorem 1.1. Fix positive integers a, b, x, y such that $x \geq y, x \leq a-2$ and $y \leq b-2$. Let $Q \subset \mathbb{P}^{3}$ be a hyperbolic quadric surface defined over a finite field K and $Y \in\left|\mathcal{O}_{Q}(a, b)\right|$ a geometrically integral curve defined over K with only ordinary nodes or ordinary cusps as singularities. Let $u: C \rightarrow Y$ be the normalization. Fix a a zero-dimensional scheme $E \subset C \backslash u^{-1}(\operatorname{Sing}(Y))$ and a set $B \subset C(K) \backslash\left(u^{-1}(\operatorname{Sing}(Y)) \cup E_{\text {red }}\right)$. Set $n:=\sharp(B)$ and $k:=(x+1)(y+1)-\operatorname{deg}(E)$. Assume $\sharp(\operatorname{Sing}(Y))+\operatorname{deg}(E) \leq y-1$ and $n+\operatorname{deg}(E)>a y+b x$. Set $\mathcal{C}:=\mathcal{C}\left(B, \mathcal{O}_{C}(x, y)(-E)\right)$. Then \mathcal{C} is an $[n, k]$-code and its dual \mathcal{C}^{\perp} has minimum distance $\geq y+2-\operatorname{deg}(E)$.

Theorem 1.2. Fix positive integers a, b, x, y such that $x \geq y, x \leq a-2$ and $y \leq b-2$. Let Q be a hyperbolic quadric surface defined over a finite field K and $C \in\left|\mathcal{O}_{Q}(a, b)\right| a$ smooth curve defined over K. Fix a a zero-dimensional scheme $E \subset C$ defined over K and a set $B \subset C(K) \backslash E_{\text {red }}$. Set $n:=\sharp(B)$ and $k:=(x+1)(y+1)-\operatorname{deg}(E)$. Assume $\operatorname{deg}(E) \leq y-1$ and $n+\operatorname{deg}(E)>a y+b x$. Set $\mathcal{C}:=\mathcal{C}\left(B, \mathcal{O}_{C}(x, y)(-E)\right)$. Then \mathcal{C} is an $[n, k]$-code and its dual \mathcal{C}^{\perp} has minimum distance $\geq y+2-\operatorname{deg}(E)$.
(a) There is a codeword of \mathcal{C}^{\perp} with weight $y+2-\operatorname{deg}(E)$ if and only if either there is $D \in\left|\mathcal{O}_{Q}(1,0)\right|$ with $E \subset D$ and $\sharp(B \cap D) \geq y+2-\operatorname{deg}(E)$ or $x=y$ and there is $D^{\prime} \in\left|\mathcal{O}_{Q}(0,1)\right|$ with $E \subset D^{\prime}$ and $\sharp\left(B \cap D^{\prime}\right) \geq y+2-\operatorname{deg}(E)$.
(b) Take D (resp. D^{\prime} if $x=y$) and any $S \subseteq D \cap B$ (resp. $S \subseteq D^{\prime} \cap B$) such that $\sharp(S)=y+2-\operatorname{deg}(E)$. There is a unique (up to a scalar) codeword of \mathcal{C}^{\perp} with S as its support.
(c) Each codeword with weight $\leq 3 y-2-\operatorname{deg}(E)$ (if any) has as support a set S such that either there is $D \in\left|\mathcal{O}_{Q}(1,0)\right|$ with $\operatorname{deg}((S \cup E) \cap D) \geq y+2$ or there is $D^{\prime} \in\left|\mathcal{O}_{Q}(0,1)\right|$ such that $\operatorname{deg}\left((E \cup S) \cap D^{\prime}\right) \geq x+2$ or there is $A \in\left|\mathcal{O}_{Q}(1,1)\right|$ such that $\operatorname{deg}((E \cup S) \cap A) \geq x+y+2$.

See Propositions 3.8 and 3.9 for a description of the minimum weight codewords of \mathcal{C}^{\perp} and a shortening of \mathcal{C}^{\perp} with better parameters (when Y is smooth). For smooth curves on a elliptic quadric surface U we prove the following result.

Theorem 1.3. Let $U \subset \mathbb{P}^{3}$ be an elliptic quadric surface defined over K. Let $C \subset U$ be a smooth curve of degree $2 a$ defined over K, E a zero-dimensional subscheme of C defined over K and $B \subseteq C(K) \backslash E_{\text {red }}$ a finite set. Fix a positive integer $x \geq \operatorname{deg}(E)-1$. Assume $n:=\sharp(B)>a x-\operatorname{deg}(E)$. Set $k=(x+1)^{2}-\operatorname{deg}(E)$ if $x<a$ and $k=$ $(x+1)^{2}-(x-a+1)^{2}-\operatorname{deg}(E)$ if $x \geq a$. Set $\mathcal{C}:=\mathcal{C}\left(B, \mathcal{O}_{C}(x)(-E)\right)$. Then \mathcal{C} is an $[n, k]$-code and its dual \mathcal{C}^{\perp} has minimum distance $\geq 2 x+2-\operatorname{deg}(E)$. If \mathcal{C}^{\perp} has minimum distance $2 x+2-\operatorname{deg}(E)$, then for each codeword \mathbf{w} of \mathcal{C}^{\perp} with minimum weight there is a smooth linear section A of U defined over K and such that $S \cup E \subset A$, where $S \subseteq B$ is the support of \mathbf{w}.

Very few maximal curves are contained in a quadric surface ($[7], \S 10.4$) and, except very small fields, all of them are on a quadric cone, T, and contains the vertex O of the cone ([7], Lemma 10.39 (iv), Theorem 10.41 and Proposition 10.44). Since the quadric cone $T \subset \mathbb{P}^{3}$ contains many curves with a large number of K-points, it is natural to study the Goppa codes arising studying curves inside T. In section 5 we prove the following result. Theorem 1.2. Let $T \subset \mathbb{P}^{3}$ be a geometrically integral quadric cone defined over K. Let $C \subset T$ be a smooth and geometrically connected curve of degree $2 a+\epsilon, a>1, \epsilon \in\{0,1\}$, defined over K. Fix an integer $y \geq 3$ and a zero-dimensional scheme $E \subset C$ with $\operatorname{deg}(E)<y$. Fix a set $B \subset C(K) \backslash E_{\text {reg }}$ such that $n:=\sharp(B)>y \cdot \operatorname{deg}(C)-\operatorname{deg}(E)$. Set $k:=(y+1)^{2}-\operatorname{deg}(E)$ if $y<a, k:=(y+1)^{2}-(y-a+1)^{2}-\operatorname{deg}(E)$ if $\epsilon=0$ and $y \geq a$, $k:=(y+1)^{2}-(t-a)(t-a+1)-\operatorname{deg}(E)$ if $y \geq a$ and $\epsilon=1$. Set $\mathcal{C}:=\mathcal{C}\left(B, \mathcal{O}_{C}(y)(-E)\right)$.
(i) \mathcal{C} is an $[n, k]$-code and \mathcal{C}^{\perp} has minimum distance $\geq y+2-\operatorname{deg}(E)$.
(ii) Let \mathcal{S} be the set of all lines $J \subset C$ such that $\operatorname{deg}((E \cup B) \cap J) \geq y+2$. Let \mathcal{S}^{\prime} be the set of all $J \in \mathcal{S}$ such that the integer $e:=\operatorname{deg}(E \cap J) \geq 0$ is maximal among all lines in \mathcal{S}. Let $\mathcal{S}^{\prime}(B)$ be the set of all pairs (S, J), where $J \in \mathcal{S}^{\prime}, S \subseteq J \cap B$ and $\sharp(S)=y+2-e$. Let $\mathcal{S}^{\prime \prime}(B)$ be the set of all $S \subset B$ with $(J, S) \in \mathcal{S}^{\prime}(B)$. If $\mathcal{S}=\emptyset$, then \mathcal{C}^{\perp} has minimum distance $\geq 2 y+2-\operatorname{deg}(E)$. If $\mathcal{S} \neq \emptyset$, then \mathcal{C}^{\perp} has minimum distance $y+2-e$, each codeword of \mathcal{C}^{\perp} is supported by a unique $S \in \mathcal{S}^{\prime \prime}(B)$ and each $S \in \mathcal{S}^{\prime \prime}(B)$ is the support of a unique (up to a non-zero scalar) codeword of \mathcal{C}^{\perp} with minimum weight.

For each codeword of \mathcal{C}^{\perp} with weight $\leq 2 y+1-\operatorname{deg}(E)$ (say with support $S \subset B$) there is a unique $J \in \mathcal{S}$ such that $S \subset J$ and $\operatorname{deg}(J \cap(E \cup S)) \geq y+2$.

2. Preliminaries

Let \bar{K} denote the algebraic closure of K. Every variety or scheme X arising in this paper is defined over \bar{K}. Let X be any projective scheme over a field L_{1} and \mathcal{F} a coherent sheaf on X defined over a field $L_{2} \supseteq L_{1}$. Fix any field $L_{3} \supseteq L_{2}$. Then X and \mathcal{F} are defined over L_{3}; call them $X_{L_{3}}$ and $\mathcal{F}_{L_{3}}$ as objects over L_{3}. Since any extension of fields is flat, the integers $\operatorname{dim}_{L_{3}}\left(H^{i}\left(X_{L_{3}}, \mathcal{F}_{L_{3}}\right)\right), i \in \mathbb{N}$, does not depend from the choice of L_{3} ([4], Proposition III.9.3). Set $h^{i}(X, \mathcal{F}):=\operatorname{dim}_{L_{3}}\left(H^{i}\left(X_{L_{3}}, \mathcal{F}_{L_{3}}\right)\right.$ for any field L_{3} on which both X and \mathcal{F} are defined. Hence to compute each cohomology group it is sufficient to quote references which state the corresponding result over an algebraically closed base field.
Lemma 2.1. Fix an integer $x>0$, a smooth curve $C \subset \mathbb{P}^{r}$ such that $h^{1}\left(\mathbb{P}^{r}, \mathcal{I}_{C}(x)\right)=0$, a zero-dimensional scheme $E \subset C$ such that $\operatorname{deg}(E) \leq x+1$ and a finite subset $B \subset C$ such that $B \cap E_{\text {red }}=\emptyset$. Let $\mathcal{C}:=\mathcal{C}\left(\mathcal{O}_{C}(x)(-E)\right)$ the code on C obtained evaluating the complete linear system $\left|\mathcal{O}_{C}(x)(-E)\right|$ at the points of B. Set $c:=\operatorname{deg}(C)$. Assume $\sharp(B)+\operatorname{deg}(E)>x c$. Set $n:=\sharp(B)$, and $k:=h^{0}\left(C, \mathcal{O}_{C}(x)\right)-\operatorname{deg}(E)$. Then \mathcal{C} is an $[n, k]$-code and the minimum distance of \mathcal{C}^{\perp} is the minimal cardinality, s, of a subset of B such that $h^{1}\left(\mathbb{P}^{2}, \mathcal{I}_{S \cup E}(x)\right)>0\left(\right.$ or, equivalently, $h^{1}\left(C, \mathcal{O}_{C}(-E-S)\right)>h^{1}\left(C, \mathcal{O}_{C}(-E)\right)$. A codeword of \mathcal{C}^{\perp} has weight s if and only if it is supported by $S \subseteq B$ such that $\sharp(B)=s$ and $h^{1}\left(\mathbb{P}^{r}, \mathcal{I}_{E \cup S}(x)\right)>h^{1}\left(\mathbb{P}^{r}, \mathcal{I}_{E}(x)\right)$.

Proof. We imposed that B does not intersect the support of E. Since $h^{1}\left(\mathbb{P}^{r}, \mathcal{I}_{C}(x)\right)=0$, the restriction map $\rho_{x}: H^{0}\left(\mathbb{P}^{r}, \mathcal{O}_{\mathbb{P}^{r}}(x)\right) \rightarrow H^{0}\left(C, \mathcal{O}_{C}(x)\right)$ is surjective. Hence \mathcal{C} is obtained evaluating a family of homogeneous degree x polynomials (the ones vanishing on the scheme E) at the points of B. Since $\operatorname{deg}(E) \leq x+1$, we have $h^{1}\left(\mathbb{P}^{r}, \mathcal{I}_{E}(x)\right)=0$ ([1], Lemma 34), i.e. E imposes $\operatorname{deg}(E)$ independent conditions to the set of all degree x homogeneous polynomials. Hence the restriction map $\rho_{x, E}: H^{0}\left(\mathbb{P}^{r}, \mathcal{I}_{E}(x)\right) \rightarrow$
$H^{0}\left(C, \mathcal{O}_{C}(x)(-E)\right)$ is surjective. Hence a finite subset $S \subset C \backslash E_{\text {red }}$ imposes independent condition to $H^{0}\left(C, \mathcal{O}_{C}(x)(-E)\right)$ if and only if S imposes independent conditions to $H^{0}\left(\mathbb{P}^{r}, \mathcal{I}_{E}(x)\right)$. S imposes independent conditions to $H^{0}\left(\mathbb{P}^{r}, \mathcal{I}_{E}(x)\right)$ if and only if $h^{1}\left(\mathbb{P}^{r}, \mathcal{I}_{E \cup S}(x)\right)=h^{1}\left(\mathbb{P}^{r}, \mathcal{I}_{E}(x)\right)$ (here we use again that $\left.S \cap E=\emptyset\right)$. This completes the proof.

Remark 2.2. Take the set-up of the proof of Lemma 2.1. Since the restriction maps ρ_{x} and $\rho_{x, E}$ are surjective, the condition " $h^{1}\left(\mathbb{P}^{2}, \mathcal{I}_{E \cup S}(x)\right)>h^{1}\left(\mathbb{P}^{2}, \mathcal{I}_{E}(x)\right)$ " is equivalent to the condition " $h^{0}\left(C, \mathcal{O}_{C}(d)(-(E \cup S))>h^{0}\left(C, \mathcal{O}_{C}(d)(-E)\right)-\sharp(S)\right.$ or, equivalently (Riemann-Roch) $h^{1}\left(C, \mathcal{O}_{C}(d)(-(E \cup S))>h^{1}\left(C, \mathcal{O}_{C}(d)(-E)\right)\right.$. In the applications we will usually have $d \leq \operatorname{deg}(C)-2$ and hence $h^{1}\left(C, \mathcal{O}_{C}(d)\right)>0$.
Remark 2.3. Let W be any projective scheme and L a line bundle on it. Fix any subscheme $E \subseteq Z$. Since Z is zero-dimensional, we have $h^{1}\left(Z, \mathcal{I}_{E, Z}(x, y)\right)>0$. Hence the restriction map $H^{0}(Z, L \mid Z) \rightarrow H^{0}(E, L \mid E)$ is surjective. Hence if $h^{1}\left(W, \mathcal{I}_{W} \otimes L\right)>0$, then $h^{1}\left(W, \mathcal{I}_{Z} \otimes L\right)>0$.

3. On a hyperbolic quadric surface

In this paper Q is a smooth quadric surface defined over K and hyperbolic, i.e. Q isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{1}$ over K. See [4] and [6] for the geometry of quadric hypersurfaces over a finite field, [7] for their use for curves over a finite field and [4], §V.2, for quadric surfaces over an algebraically closed base field.

There are two rulings on Q defined over K and $\operatorname{Pic}(Q)(K)$ is freely generated by the two rulings, which we call $\mathcal{O}_{Q}(1,0)$ and $\mathcal{O}_{Q}(0,1)$. Hence there is a bijection $(a, b) \mapsto \mathcal{O}_{Q}(a, b)$ between \mathbb{Z}^{2} and $\operatorname{Pic}(Q)(K)$.
Remark 3.1. Since $Q \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$, Künneth formula gives

$$
\begin{gathered}
H^{0}\left(Q, \mathcal{O}_{Q}(a, b)\right) \cong H^{0}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(a)\right) \otimes H^{0}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(b)\right), \\
H^{0}\left(Q, \mathcal{O}_{Q}(a, b)\right) \cong H^{0}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(a)\right) \otimes H^{1}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(b)\right) \oplus H^{1}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(a)\right) \otimes H^{0}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(b)\right)
\end{gathered}
$$

in which the tensor powers are over the base field and all cohomology groups $H^{i}, i=0,1$, are finite-dimensional over that field. Hence $H^{0}\left(Q, \mathcal{O}_{Q}(a, b)\right)=0$ if either $a<0$ or $b<0$,
$h^{0}\left(Q, \mathcal{O}_{Q}(a, b)\right)=(a+1)(b+1)$ if $a \geq-1$ and $b \geq-1$ and $H^{1}\left(Q, \mathcal{O}_{Q}(a, b)\right)=0$ if $a \geq-1$ and $b \geq-1$.

Remark 3.2. We have $\omega_{Q} \cong \mathcal{O}_{Q}(-2,-2)$ ([4], Example II.8.20.3). Fix integers $(a, b) \in$ $\mathbb{N}^{2} \backslash\{(0,0)\}$ and any divisor $Y \in\left|\mathcal{O}_{Q}(a, b)\right|$ defined over a field K. For all integers x, y we have an exact sequence of coherent sheaves

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{Q}(x-a, y-b) \rightarrow \mathcal{O}_{Q}(x, y) \rightarrow \mathcal{O}_{Y}(x, y) \rightarrow 0 \tag{1}
\end{equation*}
$$

The adjunction formula gives $\omega_{Y} \cong \mathcal{O}_{Y}(a-2, b-2)$ ([4], Proposition V.1.5 and Example V.1.5.2). Duality ([4], Corollary III.7.8) and Remark 3.1 gives $h^{2}\left(Q, \mathcal{O}_{Q}(-2,-2)\right)=1$ and $h^{2}\left(Q, \mathcal{O}_{Q}(x, y)\right)=0$ if $x \geq-2, y \geq-2$ and $(x, y) \neq(-2,-2)$. Hence Remark 3.1 and the case $x=a-2, y=a-2$ of (1), give that the restriction map $\left.\rho_{Y}: H^{0}\left(Q, \mathcal{O}_{Q}(a-2), b-2\right)\right) \rightarrow$ $H^{0}\left(Y, \omega_{Y}\right)$ is an isomorphism defined over K. Now assume that Y is geometrically integral and let $u: C \rightarrow Y$ be the normalization map. The map u is defined over K and C is a geometrically smooth projective curve defined over K, because any finite field is perfect. There is an ideal sheaf \mathcal{J} of \mathcal{O}_{Q} whose support is the union $\operatorname{Sing}(Y)$ of all singular points of $Y(\bar{K})$ such that there is an isomorphism $\sigma_{Y}: H^{0}(Q, \mathcal{J}(a-2, b-2)) \rightarrow H^{0}\left(C, \omega_{C}\right)$; \mathcal{J} is called the conductor of u or the conductor of Y. The sheaf \mathcal{J}, the set $\operatorname{Sing}(Y)$ and the isomorphism σ_{Y} are defined over K. However, if $\sharp(\operatorname{Sing}(Y)) \geq 2$, then a single point of $\operatorname{Sing}(Y)$ may be not defined over K; we are only sure of the existence of an extension K^{\prime} of K of degree $\leq \sharp(\operatorname{Sing}(Y))$ such that each $P \in \operatorname{Sing}(Y)$ is defined over F^{\prime}. If each singular point of Y is either an ordinary node or an ordinary cusp, then \mathcal{J} is the ideal sheaf $\mathcal{I}_{\operatorname{Sing}(Y)}$ of the set $\operatorname{Sing}(Y)$. We have $\operatorname{deg}\left(\mathcal{O}_{Q} / \mathcal{J}\right)=p_{a}(Y)-p_{a}(C)$. Since σ_{Y} is an isomorphism, $h^{0}\left(Y, \omega_{Y}\right)=p_{a}(Y)$ and $h^{0}\left(C, \omega_{C}\right)=p_{a}(C)$, we have $H^{0}(Q, \mathcal{J}(a-2, b-2))=$ $(a-1)(b-1)-p_{a}(Y)+p_{a}(C)$ and $h^{1}(Q, \mathcal{J}(a-2, b-2))=0$. For any $(x, y) \in \mathbb{Z}^{2}$ set $\left.\mathcal{O}_{C}(x, y)\right):=u^{*}\left(\mathcal{O}_{C}(x, y)\right)$. Notice that $\mathcal{O}_{C}(x, y)$ is a line bundle of degree $y a+b x$ on C defined over K. For any zero-dimensional scheme $E \subset Y_{\text {reg }}, u$ induces an isomorphism between $u^{-1}(E)$ and E. In particular for any $P \in Y_{\text {reg }}$ and any integer $e>0$ we may identify the unique degree e zero-dimensional subscheme of Y with P as its support with the effective divisor $e u^{-1}(P)$ of the smooth curve C. Hence we may use u to study certain

Goppa codes on C with certain data on Y (for instance, for a one-point code associated to $O \in C$ we require $O \notin u^{-1}(\operatorname{Sing}(Y))$.

Remark 3.3. Fix integers m, m^{\prime} with $\left(m, m^{\prime}\right) \in \mathbb{N}^{2} \backslash\{(0,0)\}$ and any divisor $H \in$ $\left|\mathcal{O}_{Q}\left(m, m^{\prime}\right)\right|$. Let $\operatorname{Res}_{H}(Z)$ be the residual scheme of Z with respect to H, i.e. the closed subscheme of Q with $\mathcal{I}_{Z}: \mathcal{I}_{H}$ as its ideal sheaf. We have $\operatorname{deg}(Z)=\operatorname{deg}\left(\operatorname{Res}_{H}(Z)\right)+\operatorname{deg}(H \cap$ $Z)$ (scheme-theoretic intersection) and for all $\left(v, v^{\prime}\right) \in \mathbb{Z}^{2}$ there is an exact sequence of sheaves on Q :

$$
\begin{equation*}
0 \rightarrow \mathcal{I}_{\operatorname{Res}_{H}(Z)}\left(v-m, v^{\prime}-m^{\prime}\right) \rightarrow \mathcal{I}_{Z}\left(v, v^{\prime}\right) \rightarrow \mathcal{I}_{H \cap Z, H}\left(v, v^{\prime}\right) \rightarrow 0 \tag{2}
\end{equation*}
$$

Remark 3.4. Fix $(x, y) \in \mathbb{N}^{2}$, any $D \in\left|\mathcal{O}_{Q}(1,0)\right|$, any $D^{\prime} \in\left|\mathcal{O}_{Q}(0,1)\right|$ and any $A \in$ $\left|\mathcal{O}_{Q}(1,1)\right|$. We have $D \cong \mathbb{P}^{1} \cong D^{\prime}, \operatorname{deg}\left(\mathcal{O}_{D}(x, y)\right)=y$ and $\operatorname{deg}\left(\mathcal{O}_{D^{\prime}}(x, y)\right)=x$. Hence $h^{0}\left(D, \mathcal{O}_{D}(x, y)\right)=y+1$ and $h^{0}\left(D^{\prime}, \mathcal{O}_{D^{\prime}}(x, y)\right)=x+1$. Since $h^{1}\left(Q, \mathcal{O}_{Q}(x-1, x-1)\right)=0$ (Remark 3.1), we have $h^{0}\left(A, \mathcal{O}_{A}(x, y)\right)=(x+1)(y+1)-x y=x+y+1$. If W is a zerodimensional subscheme of D (resp. D^{\prime}, resp. A) and $\operatorname{deg}(W) \geq y+2$ (resp. $\operatorname{deg}(W) \geq$ $x+2$, resp. $\operatorname{deg}(W) \geq x+y+2)$, then $h^{1}\left(D, \mathcal{I}_{W, D}(x, y)\right)>0\left(\right.$ resp. $h^{1}\left(D^{\prime}, \mathcal{I}_{W, D^{\prime}}(x, y)\right)>0$, resp. $h^{1}\left(A, \mathcal{I}_{W, A}(x, y)\right)>0$). Fix any subscheme $E \subseteq Z$. Remark 2.3 gives that if $h^{1}\left(Q, \mathcal{I}_{E}(x, y)\right)>0$, then $h^{1}\left(Q, \mathcal{I}_{Z}(x, y)\right)>0$. Hence if either $\operatorname{deg}(D \cap Z) \geq y+2$ or $\operatorname{deg}\left(D^{\prime} \cap Z\right) \geq x+2$ or $\operatorname{deg}(A \cap Z) \geq x+y+2$, then $h^{1}\left(Q, \mathcal{I}_{Z}(x, y)\right)>0$.

Lemma 3.5. Fix positive integers x, y. Fix $D \in\left|\mathcal{O}_{Q}(1,0)\right|$ and $D^{\prime} \in\left|\mathcal{O}_{Q}(0,1)\right|$ and set $A:=D \cup D^{\prime}$. Let $Z \subset A$ be a zero-dimensional scheme. We have $h^{1}\left(A, \mathcal{I}_{Z}(x, y)\right)>0$ if and only if either $\operatorname{deg}(Z) \geq x+y+2$ or $\operatorname{deg}(D \cap Z) \geq y+2$ or $\operatorname{deg}\left(D^{\prime} \cap Z\right) \geq x+2$.

Proof. Remark 3.4 gives the " if "part. Now assume $h^{1}\left(A, \mathcal{I}_{A}(x, y)\right)>0$. Since $h^{1}\left(Q, \mathcal{O}_{Q}(x-1, y-1)\right)=0$ (Remark 3.1) and $Z \subset A$, our assumption is equivalent to $h^{1}\left(Q, \mathcal{I}_{Z}(x, y)\right)>0$. Assume also $\operatorname{deg}(Z) \leq x+y+1$ and $\operatorname{deg}(Z \cap A) \leq y+1$. See Z as a closed subscheme of Q to compute $\operatorname{Res}_{D}(Z)$. Since $\operatorname{deg}(Z \cap D) \leq y+1$, we have $h^{1}\left(D, \mathcal{I}_{Z \cap D, D}(x, y)\right)=0$. Hence (2) with $H:=D$ and $\left(v, v^{\prime}\right)=(x, y)$ gives $h^{1}\left(Q, \mathcal{I}_{\operatorname{Res}_{D}(Z)}(x-1, y)\right)>0$. Since $A \subset D \cup D^{\prime}$, we have $\operatorname{Res}_{D}(Z) \subset D^{\prime}$. Hence $h^{1}\left(Q, \mathcal{I}_{\operatorname{Res}_{D}(Z)}(x-1, y)\right)=h^{1}\left(D^{\prime}, \mathcal{I}_{\operatorname{Res}_{D}(Z), D^{\prime}}(x-1, y)\right)$. Hence $\operatorname{deg}\left(\operatorname{Res}_{D}(Z)\right) \geq x+1$. Since $Z \cap D \subseteq \operatorname{Res}_{D}(Z)$, we get $\operatorname{deg}\left(Z \cap D^{\prime}\right)=\operatorname{deg}\left(\operatorname{Res}_{D}(Z)\right)=x+1$. Now we reverse the
role of D and D^{\prime}. Since $\operatorname{deg}\left(D^{\prime} \cap Z\right) \leq x+1$, we have $h^{1}\left(D^{\prime}, \mathcal{I}_{Z \cap D^{\prime}, D^{\prime}}(x, y)\right)=0$. Hence (2) with $\left(m, m^{\prime}\right)=(0,1)$ gives $h^{1}\left(Q, \mathcal{I}_{\operatorname{Res}_{D^{\prime}}(Z)}(x, y-1)\right)>0$. Since $\operatorname{Res}_{D^{\prime}}(Z) \subset D^{\prime}$, the first part of the proof gives $\operatorname{deg}\left(\operatorname{Res}_{D^{\prime}}(Z)\right) \geq y+1$. Hence $\operatorname{deg}(Z)=\operatorname{deg}\left(\operatorname{Res}_{D^{\prime}}(Z)\right)+$ $\operatorname{deg}\left(D^{\prime} \cap Z\right) \geq x+y+2$. This completes the proof.

The proof of Lemma 3.5 gives the following result.
Lemma 3.6. Fix positive integers $x, y, D \in\left|\mathcal{O}_{Q}(1,0)\right|, D^{\prime} \in\left|\mathcal{O}_{Q}(0,1)\right|$ and $A \in$ $\left|\mathcal{O}_{Q}(1,1)\right|$. Fix zero-dimensional schemes $Z_{1} \subset D, Z_{2} \subset D^{\prime}$ and $Z_{3} \subset A$ such that $\operatorname{deg}\left(Z_{1}\right)=y+2$, $\operatorname{deg}\left(Z_{2}\right)=x+2$ and $\operatorname{deg}\left(Z_{3}\right)=x+y+2$. If A is reducible, say $A=D_{1} \cup D_{2}$ with $D_{1} \in\left|\mathcal{O}_{Q}(1,0)\right|$ and $D_{2} \in\left|\mathcal{O}_{Q}(0,1)\right|$ then assume $\operatorname{deg}\left(Z_{3} \cap D_{1}\right) \leq y+1$ and $\operatorname{deg}\left(Z_{3} \cap D_{2}\right) \leq x+1$ (equivalently, assume $Z_{3} \cap D_{1} \cap D_{2}=\emptyset, \operatorname{deg}\left(Z_{3} \cap D_{1}\right)=y+1$ and $\left.\operatorname{deg}\left(Z_{3} \cap D_{2}\right)=x+1\right)$. Then $h^{1}\left(Q, \mathcal{I}_{Z_{i}}(x, y)\right)=1, i=1,2,3$.
Lemma 3.7. Fix non-negative integer x, y, z such that $x \geq y \geq 0$ and $x>0$. Let $Z \subset Q$ be any zero-dimensional scheme such that $\operatorname{deg}(Z)=z$.
(i) If $z \leq y+1$, then $h^{1}\left(Q, \mathcal{I}_{Z}(x, y)\right)=0$.
(ii) Assume $y+2 \leq z \leq 3 y-1$; if $x=y$, then assume $z \leq 3 y-2$. Then $h^{1}\left(Q, \mathcal{I}_{Z}(x, y)\right)>0$ if and only if either there is a line $D \subset Q$ of type $(1,0)$ such that $\operatorname{deg}(Z \cap D) \geq y+2$ or $z \geq x+2$ and there is a line $D^{\prime} \subset$ of type $(0,1)$ such that $\operatorname{deg}\left(D^{\prime} \cap Z\right) \geq x+2$ or $z \geq x+y+2$ and there is $A \in\left|\mathcal{O}_{Q}(1,1)\right|$ such that $\operatorname{deg}(A \cap Z) \geq x+y+2$.

Proof. Remark 3.4 proves the "if " part of (ii).
(a) Now we prove (i) and the " only if "part of (ii). If $z=0$, i.e. if $Z=\emptyset$, then (i) is true (Remark 3.1). Hence we may assume $z>0$ and prove simultaneously (i) and the " only if " part of (ii) by induction on z. We also use induction on $x+y$, the case $(x, y)=(1,0)$ being obvious.

Set $Z_{0}:=Z$ and $z_{0}:=z$. Fix $D_{1} \in\left|\mathcal{O}_{Q}(1,0)\right|$ such that $a_{1}:=\operatorname{deg}\left(Z \cap D_{1}\right)$ is maximal and set $Z_{1}:=\operatorname{Res}_{D_{1}}(Z)$ and $z_{1}:=z-a_{1}$. For all integers $i \geq 2$ define recursively the divisors $D_{i} \in\left|\mathcal{O}_{Q}(1,0)\right|$, the scheme $Z_{i} \subseteq Z_{i-1}$ and the integers a_{i}, z_{i} in the following way. Take as D_{i} any divisor $D_{i} \in\left|\mathcal{O}_{Q}(1,0)\right|$ such that $a_{i}:=\operatorname{deg}\left(Z_{i-1} \cap D_{i}\right)$ is maximal and set $Z_{i}:=\operatorname{Res}_{D_{i}}\left(Z_{i-1}\right)$ and $z_{i}:=z_{i-1}-a_{i}$. Notice that $z_{i}=\operatorname{deg}\left(Z_{i}\right)$ and in particular
$z_{i} \geq 0$. Since $a_{i} \geq 0$, the sequence $\left\{z_{i}\right\}$ is non-increasing. Since $Z \neq \emptyset$, the maximality of the integer a_{1} implies $a_{1}>0$, i.e. $z_{1}<z_{0}$. For the same reason if $z_{i}>0$ then $a_{i}>0$ and $0 \leq z_{i+1}<z_{i}$. Hence $z_{i}=0$ and $Z_{i}=\emptyset$ if $i \geq \operatorname{deg}(Z)$. If $z_{1} \geq y+2$, then we are done. Hence we may assume $1 \leq a_{1} \leq y+1$. Hence $a_{i} \leq y+1$ for all i. Hence $h^{1}\left(D_{i}, \mathcal{I}_{D_{i} \cap Z_{i-1}, D_{i}}(x, y)\right)=0$ for all $i>0$. Applying (2) for $\left(m, m^{\prime}, v, v^{\prime}\right)=(1,0, x-i+1, y)$ we get $h^{1}\left(Q, \mathcal{I}_{Z_{i}}(x-i, y)\right) \geq h^{1}\left(Q, \mathcal{I}_{Z_{i-1}}(x-i+1, y)\right)$. Starting from the case $i=1$ we get $h^{1}\left(Q, \mathcal{I}_{Z_{i}}(x-i, y)\right)>0$ for all i. Let k be the first positive integer such that $z_{k}=0$. Since $h^{1}\left(Q, \mathcal{O}_{Q}(v, y)\right)=0$ for all $v \geq-1$, we get $k \geq x+2$. Hence $z \geq x+2$. Fix $R_{1} \in\left|\mathcal{O}_{Q}(0,1)\right|$ such that $b_{1}:=\operatorname{deg}\left(Z \cap R_{1}\right)$ is maximal. If $w_{1} \geq x+2$, then we are done. Hence we may assume $1 \leq b_{1} \leq x+1$.
(b) Set $M_{0}:=Z$ and $m_{0}:=z$. Fix any $A_{1} \in\left|\mathcal{O}_{Q}(1,1)\right|$ such that $e_{1}:=\operatorname{deg}(Z \cap A)$ is maximal among all elements of $\left|\mathcal{O}_{Q}(1,1)\right|$. For all integers $i \geq 2$ define recursively the divisors $A_{i} \in\left|\mathcal{O}_{Q}(0,1)\right|$, the scheme $M_{i} \subseteq M_{i-1}$ and the integer e_{i} in the following way. Take as A_{i} any divisor $A_{i} \in\left|\mathcal{O}_{Q}(1,1)\right|$ such that $e_{i}:=\operatorname{deg}\left(M_{i-1} \cap A_{i}\right)$ is maximal and set $M_{i}:=\operatorname{Res}_{A_{i}}\left(M_{i-1}\right)$ and $m_{i}:=m_{i-1}-e_{i}$. Notice that $m_{i}=\operatorname{deg}\left(M_{i}\right)$ and in particular $m_{i} \geq 0$. Since $e_{i} \geq 0$, the sequence $\left\{m_{i}\right\}$ is non-increasing. Since $h^{0}\left(Q, \mathcal{O}_{Q}(1,1)\right)=4$, any degree ≤ 3 zero-dimensional subscheme of Q is contained in some divisor of type $(1,1)$. Hence either $e_{i} \geq 3$ or $m_{i}=0$. Hence the first integer, s, such that $e_{s}=0$ satisfies $s \leq\lceil\operatorname{deg}(Z) / 3\rceil$. Since $z<3 y$, we have $e_{y}=0$. Since $s \leq y \leq x$, we have $h^{1}\left(Q, \mathcal{O}_{Q}(x-\right.$ $s, y-s))=0$. Hence applying s times (2) with integers $\left(m, m^{\prime}\right):=(x+1-i, y+1-i)$, $1 \leq i \leq s$, with $H=A_{i}$ and taking M_{i-1} instead of Z, we get the existence of an integer $t \in\{1, \ldots, s-1\}$ such that $h^{1}\left(A_{t}, \mathcal{I}_{A_{t} \cap M_{t-1}}(x-t+1, y-t+1)\right)>0$. Call t the minimal such an integer. Recall that $t \leq y$.
(b1) First assume that A_{t} is irreducible. Hence $A_{t} \cong \mathbb{P}^{1}$. Since $\operatorname{deg}\left(\mathcal{O}_{A_{t}}(x-t+1, y-\right.$ $t+1))=x+y-2 t+2$, we get $e_{t} \geq x+y-2 t+4$. Since $e_{c} \geq e_{t}$ for all $c \leq t$, we get $z \geq t(x+y-2 t+4)$. The function $\phi: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $\phi(c)=c(x+y-2 c+4)$ is convex in the interval $[1,(x+y+4) / 2]$ and it is increasing if $c \leq(x+y+4) / 4$ and decreasing in the interval $((x+y+4) / 4,(x+y+4) / 2]$. First assume $t=1$; we get $\operatorname{deg}\left(Z \cap A_{1}\right) \geq x+y+2$, concluding this case. Now assume $t=2$. We get $z \geq 2(x+y) \geq 4 y$,
absurd. Now assume $x+y$ odd and $t=(x+y+3) 2$. Since $e_{i} \geq 3$ for all $i<t$, we get $z \geq 3(x+y+1) / 2+(x+y+3) / 2 \geq 3 y$, absurd. Now assume $x+y$ even and $t=(x+y) / 2 ;$ we get $z \geq 3(x+y-2) / 2+2 \geq 3 y-1$ and equality only if $x=y$, a contradiction. Since $t \leq y$, we do not need to test cases with $t>(x+y) / 2$ and hence we completed the proof if A_{t} is irreducible.
(b2) Now assume that A_{t} is reducible and write $A_{t}=D \cup D^{\prime}$ with $D \in\left|\mathcal{O}_{Q}(1,0)\right|$ and $D^{\prime} \in\left|\mathcal{O}_{Q}(0,1)\right|$. By the proof of step (b1) we may assume $e_{t} \leq x+y-2 t+3$. Lemma 3.5 gives that either $\operatorname{deg}\left(D \cap M_{t-1}\right) \geq y-t+3$ or $\operatorname{deg}\left(D^{\prime} \cap M_{t-1}\right) \geq x-t+3$. First assume $\operatorname{deg}\left(D \cap M_{t-1}\right) \geq y-t+3$; since $e_{t} \geq \operatorname{deg}\left(D \cap M_{t-1}\right)$, we get $z \geq t(y-t+3)$. If $3 \leq t \leq y$, we get $z \geq 3 y$, absurd. Recall that $t \leq y$. Assume $t=2$. Since $a_{1} \geq \operatorname{deg}(D \cap Z) \geq \operatorname{deg}\left(D \cap M_{1}\right)$, we get $a_{1}=y+1$. Since $h^{1}\left(Q, \mathcal{I}_{Z_{1}}(x-1, y)\right)>0$. Since $\operatorname{deg}\left(Z_{1}\right)=z-y-1<\min \{3(y-1), 3(x-1)\}$, we may apply the lemma for $(x-1, y)$ and get that either $a_{2} \geq y+2$ (absurd) or there is a line $D^{\prime} \in\left|\mathcal{O}_{Q}(0,1)\right|$ such that $\left.\operatorname{deg}\left(D^{\prime} \cap Z_{1}\right)\right) \geq x+1$ or there is $F \in\left|\mathcal{O}_{Q}(1,1)\right|$ such that $\operatorname{deg}\left(F \cap \operatorname{Res}_{D}(F \cap Z)\right) \geq x+y+1$. If F exists, then $z \geq y+1+(x+y-1) \geq 3 y$, absurd. If D^{\prime} exists, then we are done, because $\operatorname{deg}\left(Z \cap\left(D \cap D^{\prime}\right)=\operatorname{deg}(Z \cap D)+\operatorname{deg}\left(Z_{1}\right) \cap D^{\prime}\right) \geq x+y+2$. Now assume $t=1$. Applying Lemma 3.5 to the reducible curve A_{1} we get that either $a_{1} \geq y+2$ or $b_{1} \geq x+2$ or $\operatorname{deg}\left(Z \cap A_{1}\right) \geq x+y+2$.

Now assume $\operatorname{deg}\left(D^{\prime} \cap M_{t-1}\right) \geq x-t+3$. Hence $z \geq t(x-t+3)$. Recall that $t \leq y$. If $3 \leq t \leq y$, then we get $z \geq 3 y$, absurd. Assume $t=2$. Since $b_{1} \geq \operatorname{deg}\left(D^{\prime} \cap Z\right) \geq$ $x-t+3=x+1$, we get $b_{1}=x+1$ and $\operatorname{deg}\left(D^{\prime} \cap Z\right)=x+1$. Since $h^{1}\left(D^{\prime}, \mathcal{I}_{Z \cap D^{\prime}}(x, y)\right)=0$, (2) with $H=D^{\prime}$ gives $h^{1}\left(Q, \mathcal{I}_{\operatorname{Res}_{D^{\prime}}(Z)}(x, y-1)\right)>0$. Assume for the moment $x \geq 2$. Since $\operatorname{deg}\left(\operatorname{Res}_{D^{\prime}}(Z)\right)=z-x-1<3 y-4$, we may use the inductive assumption on $x+y$ and conclude. If $x=1$, then $z=0$ by our numerical assumptions. This completes the proof.
Proposition 3.8. Take the set-up of Theorem 1.2. Assume $E \neq \emptyset$. If $x=y$, then assume $\operatorname{deg}(E) \geq 2$. Assume that \mathcal{C}^{\perp} has minimum distance $y+2-\operatorname{deg}(E)$. The curve D or D^{\prime} is uniquely determined by E and that not both may occur. Call $D^{\prime \prime}$ the one which occur and $w=\sharp(D \cap B)$. Let \mathcal{S} be the set of all $S \subseteq B \cap D^{\prime \prime}$ such that $\sharp(S)=y+2-\operatorname{deg}(E)$.

There are $(\sharp(K)-1)\binom{w}{y+2-\operatorname{deg}(E)}$ codewords with minimal weight, each of them having as support an element of \mathcal{S}, while any $S \in \mathcal{S}$ is the support (up to a non-zero scalar) of a codeword with minimum weight.

Proof. Each codeword of \mathcal{C}^{\perp} has as support some $S \in \mathcal{S}$ (Lemma 2.1).The fact that each $S \in \mathcal{S}$ is the support of a codeword follows from Lemma 3.7, which also shows that the codeword has minimal weight. The uniqueness (up to a non-zero constant) of the codeword supported from each $S \in \mathcal{S}$ follows from (and it is equivalent to) Lemma 3.6. This completes the proof.

Proposition 3.9. Take the set-up of Proposition 3.8 and set $B_{1}:=B \backslash B \cap D^{\prime \prime}$ and $n_{1}:=\sharp\left(B_{1}\right)$. Assume $n_{1}>b y+a(x-1)$ if $D^{\prime \prime} \in\left|\mathcal{O}_{Q}(1,0)\right|$ and $n_{1}>b(y-1)+a x$ if $D^{\prime \prime} \in\left|\mathcal{O}_{Q}(0,1)\right|$. Set $\mathcal{C}_{1}:=\mathcal{C}\left(B_{1}, \mathcal{O}_{C}(x, y)(-E)\right)$. Then the code \mathcal{C}_{1} is an $\left[n_{1}, k\right]$-code and its dual \mathcal{C}_{1}^{\perp} has minimum distance $\geq y+2($ case $y \neq x)$ or $\geq y+1($ case $x=y)$.

Proof. The parameters n_{1} and $k:=(y+1)(x+1)-\operatorname{deg}(E)$ of the code are obvious, because our assumptions imply $\sharp\left(B_{1}\right)+\operatorname{deg}(E)>a y+b x=\operatorname{deg}\left(\mathcal{O}_{C}(x, y)\right)$.

First assume $D^{\prime \prime} \in\left|\mathcal{O}_{Q}(1,0)\right|$. Set $\mathcal{C}_{2}:=\mathcal{C}\left(B_{1}, \mathcal{O}_{C}(y, x-1)\right)$. Since $n_{1}>b y+a(x-1), \mathcal{C}_{2}$ is an $\left[n_{1}, k_{1}\right]$-code with $k_{1}=(y+1) x$ (we are assuming $x \leq a$ and $y \leq b$). Since $E \subset D^{\prime \prime}$, \mathcal{C}_{1} is a subcode of \mathcal{C}. Hence it is sufficient to prove that \mathcal{C}_{2}^{\perp} has minimum distance $\geq y+2$ (case $y \neq x$) or $\geq y+1$ (case $x=y$). Apply Lemma 3.7 with $Z=S, \sharp(S)=\min \{y, x-1\}$, i.e. use Proposition3.8 for the integers $(x-1, y)$ and the scheme \emptyset instead of E.

Now assume $D^{\prime \prime} \in\left|\mathcal{O}_{Q}(0,1)\right|$. Hence $x=y$. We repeat the proof of the case $D^{\prime \prime} \in$ $\left|\mathcal{O}_{Q}(1,0)\right|$ taking $\mathcal{C}\left(B_{1}, \mathcal{O}_{C}(x, y-1)\right)$ instead of \mathcal{C}_{2}. This completes the proof.

4. On an elliptic quadric surface

Let $U \subset \mathbb{P}^{3}$ be a smooth and elliptic quadric surface. Hence $\operatorname{Pic}(U)(K) \cong \mathbb{Z}, \mathcal{O}_{U}(1)$ is a generator of $\operatorname{Pic}(U)(K)$ and every curve on U defined over K is the complete intersection of U with a surface of \mathbb{P}^{3} defined over K.

Proof of Theorem 1.3. The curve C is the complete intersection of U and a surface of degree a. Hence it is a complete intersection. Hence the restriction map $H^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(x)\right) \rightarrow$
$H^{0}\left(C, \mathcal{O}_{C}(x)\right)$ is surjective. Hence the restriction map $H^{0}\left(U, \mathcal{O}_{U}(x)\right) \rightarrow H^{0}\left(C, \mathcal{O}_{C}(x)\right)$ is surjective. Since $h^{1}\left(U, \mathcal{O}_{U}(x-a)\right)=0\left(\right.$ Remark 3.1) we get $h^{0}\left(C, \mathcal{O}_{C}(x)\right)=(x+1)^{2}$ if $x<a$ and $h^{0}\left(C, \mathcal{O}_{C}(x)\right)=(x+1)^{2}-(x-a+1)^{2}$ if $x \geq a$. Since $\operatorname{deg}(E) \leq x+1$, Lemma 3.7 gives $h^{0}\left(C, \mathcal{O}_{C}(x)\right)-\operatorname{deg}(E)$. Since $\sharp(B)>a x-\operatorname{deg}(E)=\operatorname{deg}\left(\mathcal{O}_{C}(x)(-E)\right)$, we have $h^{0}\left(C, \mathcal{O}_{C}(x)(-E-B)\right)=0$. Hence \mathcal{C} is an $[n, k]$-code. Fix a set $S \subseteq B$ which is the support of a codeword of \mathcal{C}^{\perp} with minimal weight. Lemma 2.1 gives $h^{1}\left(\mathbb{P}^{3}, \mathcal{I}_{E \cup S}(x)\right)>0$ and $h^{1}\left(\mathbb{P}^{3}, \mathcal{I}_{E \cup S^{\prime}}(x)\right)=0$ for any $S^{\prime} \subsetneq S$. Hence $h^{1}\left(U, \mathcal{I}_{E \cup S}(x)\right)>0$ and $h^{1}\left(U, \mathcal{I}_{E \cup S^{\prime}}(x)\right)=$ 0 for any $S^{\prime} \subsetneq S$.

Let K_{1} be the quadratic extension of K. The surface U is defined over K_{1}, but over K_{1} the degree 2 surface $U_{K_{1}}$ is a hyperbolic quadric, Q. We apply Lemma 3.7 with $x=y$. We get the existence either of $D \in\left|\mathcal{O}_{Q}(1,0)\right|$ such that $\operatorname{deg}((S \cup E) \cap D) \geq x+2$ or the existence of $D^{\prime} \in\left|\mathcal{O}_{Q}(1,0)\right|$ such that $\operatorname{deg}\left(D^{\prime} \cap(B \cup E)\right) \geq x+2$ or the existence of $A \in\left|\mathcal{O}_{Q}(1,1)\right|$ such that $\operatorname{deg}((S \cup E) \cap A) \geq 2 x+2$; the curves D (or D^{\prime} or A) are defined over K_{1}.

We claim that neither D nor D^{\prime} may exist. To prove this claim we first assume $\operatorname{deg}(E) \leq$ x. Since $x+2 \geq 2+\operatorname{deg}(E)$, there would be $P, P^{\prime} \in S \cap D$ (or $P, P^{\prime} \in S \cap D^{\prime}$) with $P \neq P^{\prime}$. Each point of S is defined over K and hence the line D (or D^{\prime}) spanned by P and P^{\prime} would be a line of U defined over K. Since $E \cup S$ is contained in D (or D^{\prime}) and $x+2>2$, Bezout theorem implies that U is contained in the quadric surface U, contradicting the assumption that U is an elliptic quadric surface. Now assume $\operatorname{deg}(E)=x+1$. Since $\operatorname{deg}(E) \geq 2, D$ or D^{\prime} is spanned by E. Hence D is defined over K. Again, Bezout theorem gives that U contains a line, absurd. Hence our claim is true. Hence there is $A \in\left|\mathcal{O}_{Q}(1,1)\right|$ such that $\operatorname{deg}((S \cup E) \cap A) \geq 2 x+2$. Hence $\sharp(S) \geq \sharp(S \cap A) \geq 2 x-2-\operatorname{deg}(E)$.

Now assume that \mathcal{C}^{\perp} has minimum weight $2 x+2-\operatorname{deg}(E)$. Since $h^{1}\left(U, \mathcal{I}_{E \cup S^{\prime}}(x)\right)=0$ for any $S^{\prime} \subsetneq S$, Lemma 3.5 gives $S \subset A$ and $\sharp(S)=2 x+2-\operatorname{deg}(E)$. Assume for the moment $E \cup S \subset A_{1}$ with $A_{1} \in\left|\mathcal{O}_{Q}(1,1)\right|, A_{1}$ defined over any extension of K, and $A_{1} \neq A$. Since $\mathcal{O}_{Q}(1,1) \cdot \mathcal{O}_{Q}(1,1)=2>\operatorname{deg}(E \cup S)$, we get that A and A_{1} are reducible and with a common irreducible component, M. Write $A=M \cup M^{\prime}$ and $A_{1}=M \cup M^{\prime \prime}$ with $M^{\prime \prime} \neq M^{\prime}$ and, say, M of type (1,0). Since $A \cap A_{1}=M$ and $\sharp(S) \geq 2 x+2-\operatorname{deg}(E) \geq 2$,
M contains at least two points of S. Since each point of S is defined over K, the line M must be defined over K. Since $S \subseteq U(K)$ and U contains no line, we get a contradiction. Hence A is the unique element of $\left|\mathcal{O}_{Q}(1,1)\right|$ containing $S \cup E$. Since $S \cup E$ is defined over K, A is defined over K. Since $\sharp(S) \geq 2$ and U contains no line defined over K, as above we get that A is geometrically irreducible. Hence A is a smooth hyperplane section of U defined over K. This completes the proof.

5. On a quadric cone

Let $T \subset \mathbb{P}^{3}$ be a quadric cone defined over K and $O \in T(K)$ its vertex. We will look at integral curves $Y \subset T$ defined over K and to their normalizations, C. Set $c:=\lfloor\operatorname{deg}(Y) / 2\rfloor$. In the statement of Theorem 1.4 we take Y smooth and $a=c$. We assume that Y is not a line, i.e. we assume $a>0$. We will always assume that either $O \notin Y$ or that Y is smooth at O. We use the following classical fact: if $O \notin Y$, then $\operatorname{deg}(Y)$ is even and Y is the complete intersection of T and a surface of degree $\operatorname{deg}(Y) / 2$, while if O is a smooth point of Y, then $\operatorname{deg}(Y)$ is odd and Y has very strong cohomological properties (see Lemmas 5.3, 5.4 and 5.5). An excellent source for the geometry of T is [4], V.2.11.4 and Ex. V.2.9. Unfortunately, in the case in which Y is singular we cannot quote [4], Ex. V.2.9, but need to use the following set-up implicit in its proof.

Let $\alpha: \widetilde{\mathbb{P}}^{3} \rightarrow \mathbb{P}^{3}$ be the blowing-up of O. Since $O \in \mathbb{P}^{3}(K), \widetilde{\mathbb{P}}^{3}$ and α are defined over K. Let $T_{2} \subset \widetilde{\mathbb{P}}^{3}$ be the closure of $\alpha^{-1}(T \backslash\{O\})$ in $\widetilde{\mathbb{P}}^{3}$. Set $u:=\alpha \mid T_{2} . T_{2}$ is a geometrically integral smooth surface defined over K and u is defined over K. Set $h:=\alpha^{-1}(O)$. We have $h \cong \mathbb{P}^{1}$ over K. The surface T_{2} is isomorphic over K to Hirzebruch surface F_{2} ([4] \S V.2) and hence it has a ruling $\pi: T_{2} \rightarrow \mathbb{P}^{1}$ and each fiber of π is mapped isomorphically by u onto one of the lines of T. We call f any fiber of π seen as an effective divisor of T_{2}. The morphism $\pi \mid h: h \rightarrow \mathbb{P}^{1}$ is an isomorphism, i.e. h intersects transversally each fiber of π at exactly one point. We have $\operatorname{Pic}\left(T_{2}\right) \cong \mathbb{Z}^{2}, h$ and f are free generators of $\operatorname{Pic}\left(T_{2}\right)$. We have $f^{2}=0, h \cdot f=1$ and $h^{2}=-2$ (in the set-up of [4], $\S V .2$, we have $e=2$ and $H=h+2 f)$. Let $Y \subset T$ be any geometrically integral curve defined over K. Let Y^{\prime} be the closure of $u^{-1}(Y \backslash\{O\})$ inside T_{2}. Y^{\prime} is a geometrically integral curve defined over
K and $u \mid Y^{\prime}: Y^{\prime} \rightarrow Y$ is a birational morphism, which is an isomorphism, except perhaps at the points of $Y^{\prime} \cap h$. If $O \notin Y$, then $h \cap Y=\emptyset$ and hence $Y^{\prime} \cong Y$ over K. If O is a smooth point of Y, then $\alpha \mid Y^{\prime}$ is an isomorphism. Hence our standing assumptions imply $Y^{\prime} \cong Y$. In particular if Y is smooth, then $Y^{\prime} \cong Y$ over K. We recall that the morphism u is induced by the complete linear system $\left|\mathcal{O}_{T_{2}}(h+2 f)\right|$, that u send isomorphically $T_{2} \backslash h$ onto $T \backslash\{O\}$. Let a, b be the only integers such that $Y^{\prime} \in\left|\mathcal{O}_{T_{2}}(a h+b f)\right|$.

Remark 5.1. Since T is a surface of \mathbb{P}^{3}, for each integer t the restriction map ρ_{t} : $H^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(t)\right) \rightarrow H^{0}\left(T, \mathcal{O}_{T}(t)\right)$ is surjective. Since $\operatorname{Ker}\left(\rho_{t}\right) \cong H^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(t-2)\right)$, we get $h^{0}\left(T, \mathcal{O}_{T}(t)\right)=\binom{t+3}{3}-\binom{t+1}{3}$ for all $t \in \mathbb{N}$.
Remark 5.2. Fix integers $y>0$ and $x \geq 2 y$. We have $h^{1}\left(T_{2}, \mathcal{O}_{T_{2}}(y h+w f)\right)=0$ if and only if $w \geq 2 y-1$ ([4], Lemma V.2.4, and the cohomology of line bundles on \mathbb{P}^{1} as in [4], p. 380). We recall the existence of an integral $A \in\left|\mathcal{O}_{T_{2}}(y h+x f)\right|([4]$, Corollary V.2.18) and that $h^{0}\left(T_{2}, \mathcal{O}_{T_{2}}(y h+x f)=\sum_{i=0}^{y}(x-2 i+1)=([4]\right.$, Lemma V.2.4). In particular we have $h^{0}\left(T_{2}, \mathcal{O}_{Y}(y h+(2 y) f)\right)=(y+1)^{2}$, i.e. every section of $\mathcal{O}_{T_{2}}(y h+(2 y) f)$ is the pull-back of a section of $\mathcal{O}_{T_{2}}(y)$. For all $(x, y) \in \mathbb{N}^{2}$ we have $h^{0}\left(T_{2}, \mathcal{O}_{T_{2}}(y h+x f)\right)=\sum_{i=0}^{y}(x+1-2 i)$. In particular we have $h^{0}\left(T_{2}, \mathcal{O}_{T_{2}}(t h+2 t f)\right)=(t+1)^{2}$ and $h^{0}\left(T_{2}, \mathcal{O}_{T_{2}}(t h+(2 t+1) f)\right)=$ $(t+1)(t+2)$ for all $t \geq 0$.

Lemma 5.3. If $O \notin Y$, then $a=c$ and $b=2 c$. If $O \in Y$ and Y is smooth at O, then $a=c$ and $b=2 c+1$.

Proof. Since $u^{*}\left(\mathcal{O}_{T}(1)\right) \cong \mathcal{O}_{T_{2}}(h+2 f)$, we have $\operatorname{deg}(Y)=\mathcal{O}_{T_{2}}(a h+b f) \cdot \mathcal{O}_{T_{2}}(h+2 f)=b$. The integer $\mathcal{O}_{T_{2}}(h) \cdot \mathcal{O}_{T_{2}}(a h+b f)=b-2 a$ measures the multiplicity of Y at O. Hence this integer is 0 if $O \notin Y$, while it is 1 if O is a smooth point of Y. Hence $a=c$ and $b=2 c$ if $O \notin T$, while $a=c$ and $b=2 c+1$ if O is a smooth point of Y. This completes the proof.

Lemma 5.4. Assume $O \notin Y$. Then $\operatorname{deg}(Y)=2 c$ is even, $Y^{\prime} \cong Y, Y$ is the complete intersection of T and a surface of degree $c, Y^{\prime} \in\left|\mathcal{O}_{T_{2}}(c h+2 c f)\right|, p_{a}(Y)=p_{a}\left(Y^{\prime}\right)$. For each integer t such that $1 \leq t<c$ we have $h^{0}\left(Y, \mathcal{O}_{Y}(t)\right)=(t+1)^{2}$ and $h^{1}\left(Y, \mathcal{O}_{Y}(t)\right)=(c-1-t)^{2}$. For each integer $t \geq c$ we have $h^{0}\left(Y, \mathcal{O}_{Y}(t)\right)=(t+1)^{2}-(t-c+1)^{2}$ and $h^{1}\left(Y, \mathcal{O}_{Y}(t)\right)=0$.

Proof. Lemma 5.3 gives $\operatorname{deg}(Y)=2 c$ and $Y^{\prime} \cong Y$. This isomorphism sends $\mathcal{O}_{Y}(t)$ isomorphically onto $\mathcal{O}_{Y^{\prime}}(t h+(2 t) f)$. Remark 5.2 gives that Y is the complete intersection of T_{2} and a degree c surface. The cohomological properties of complete intersection curves (even the non-smooth ones. We have $\omega_{Y} \cong \mathcal{O}_{Y}(c-2)$. Hence $h^{i}\left(Y, \mathcal{O}_{Y}(t)\right)=$ $h^{1-i}\left(Y, \mathcal{O}_{Y}(c-2-t)\right)$ for all $i \in\{0,1\}$ and $t \in \mathbb{Z}$ by duality. Since $h^{1}\left(T, \mathcal{O}_{T}(x)\right)=0$ for all $x \in \mathbb{Z}$, the exact sequence of sheaves on T :

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{T}(t-c) \rightarrow \mathcal{O}_{T}(t) \rightarrow \mathcal{O}_{Y}(t) \rightarrow 0 \tag{3}
\end{equation*}
$$

gives $h^{0}\left(Y, \mathcal{O}_{Y}(t)\right)=0$ if $t<0, h^{0}\left(Y, \mathcal{O}_{Y}(t)\right)=(t+1)^{2}$ if $0 \leq t<c$ and $h^{0}\left(Y, \mathcal{O}_{Y}(t)\right)=$ $(t+1)^{2}-(t+1-c)^{2}$ for all $t \geq c$. This completes the proof.
Lemma 5.5. Assume $O \in Y$ and Y smooth at O. Then $\operatorname{deg}(Y)=2 c+1, p_{a}\left(Y^{\prime}\right)=$ $p_{a}(Y)=c^{2}-c$ and Y is arithmetically Cohen-Macaulay. Take any line $L \subset T$. Then $Y \cup L$ is the complete intersection of T and a surface of degree $(c+1) / 2$. We have $Y^{\prime} \in\left|\mathcal{O}_{T_{2}}(c h+(2 c+1) f)\right|$. Since $\omega_{T_{2}} \cong \mathcal{O}_{T_{2}}(-2 h-4 f)$, the adjunction formula gives $\omega_{Y^{\prime}} \cong \mathcal{O}_{Y^{\prime}}((c-2) h+(2 c-3 f))$. Hence $2 p_{a}\left(Y^{\prime}\right)-2=\operatorname{deg}\left(\omega_{Y^{\prime}}\right)=(c h+(2 c+1) f) \cdot((c-2) h+$ $(2 c-3) f))=-2 c(c-2)+(2 c+1)(c-2)+c(2 c-3)=2 c^{2}-2 c-2$. Hence $p_{a}(Y)=p_{a}\left(Y^{\prime}\right)=$ $c^{2}-c$. If $0 \leq t<c$, then $h^{0}\left(Y, \mathcal{O}_{Y}(t)\right)$. If $0 \leq t<c$, then $h^{0}\left(Y^{\prime}, \mathcal{O}_{Y^{\prime}}(t h+2 t f)\right)=(t+1)^{2}$. If $t \geq c$, then $h^{0}\left(Y^{\prime}, \mathcal{O}_{Y^{\prime}}(t h+2 t f)\right)=(t+1)^{2}-(t-c)(t-c+1)$.

Proof. We have $Y^{\prime} \in\left|\mathcal{O}_{T_{2}}(c h+(2 c+1) f)\right|$. Since $\omega_{T_{2}} \cong \mathcal{O}_{T_{2}}(-2 h-4 f)$, the adjunction formula gives $\omega_{Y^{\prime}} \cong \mathcal{O}_{Y^{\prime}}((c-2) h+(2 c-3 f))$. Hence $2 p_{a}\left(Y^{\prime}\right)-2=\operatorname{deg}\left(\omega_{Y^{\prime}}\right)=\mathcal{O}_{T_{2}}(c h+$ $\left.(2 c+1) f) \cdot \mathcal{O}_{T_{2}}((c-2) h+(2 c-3) f)\right)=-2 c(c-2)+(2 c+1)(c-2)+c(2 c-3)=2 c^{2}-2 c-2$. Hence $p_{a}(Y)=p_{a}\left(Y^{\prime}\right)=c^{2}-c$. Take $F \in|f|$ such that $u(F)=L$. We have $Y^{\prime} \cup(F \cup h) \in$ $\left|\mathcal{O}_{T_{2}}((c+1) h+(2 c+2) f)\right|$. Since $u^{*}: H^{0}\left(T, \mathcal{O}_{T}((c+1))\right) \rightarrow H^{0}\left(T_{2}, \mathcal{O}_{T_{2}}((c+1) h+(2 c+2) f)\right)$ is an isomorphism (case $u=c+1$ of Remark 5.2) we get that $Y \cup L$ is a complete intersection of T and a degree $c+1$ surface. Recall that a curve (even not integral) $D \subset \mathbb{P}^{3}$ is said to be arithmetically Cohen-Macaulay if for all integers $t \geq 0$ the restriction map $H^{0}\left(D, \mathcal{O}_{D}(t)\right)$ is surjective. Any line is arithmetically Cohen-Macaulay. Since L is arithmetically Cohen-Macaulay and the scheme $Y^{\prime} \cup L$ is a complete intersection, Y is arithmetically Cohen-Macaulay ([3], part (b) of Theorem 21.23, [9], Theorem A.9.1).

Hence for all integers $t \geq 0$ the restriction map $H^{0}\left(T, \mathcal{O}_{T}(t)\right) \rightarrow H^{0}\left(Y, \mathcal{O}_{Y}(t)\right)$ is surjective. Since $Y^{\prime} \cong Y$ and $u^{*}: H^{0}\left(T, \mathcal{O}_{T}(t)\right) \rightarrow H^{0}\left(T_{2}, \mathcal{O}_{T_{2}}(t h+2 t f)\right)$ is surjective, we get the surjectivity of the restriction map $H^{0}\left(T_{2}, \mathcal{O}_{T_{2}}(t h+2 t f)\right) \rightarrow H^{0}\left(Y^{\prime}, \mathcal{O}_{Y^{\prime}}(t h+2 t f)\right)$. Since $\left.Y^{\prime} \in \mid \mathcal{O}_{T_{2}}(c h+(2 c+1) f)\right) \mid$, for all $y, x \in \mathbb{Z}$ we have an exact sequence

$$
0 \rightarrow \mathcal{O}_{T_{2}}((y-c) h+(x-2 c-1) f) \rightarrow \mathcal{O}_{T_{2}}(y h+x f) \rightarrow \mathcal{O}_{Y^{\prime}}(y h+x f) \rightarrow
$$

Hence $h^{0}\left(Y^{\prime}, \mathcal{O}_{Y^{\prime}}(t h+2 t f)\right)=h^{0}\left(T_{2}, \mathcal{O}_{T_{2}}(t h+2 t f)\right)-h^{0}\left(T_{2}, \mathcal{O}_{T_{2}}((t-c) f+(t-2 c-1) f)\right)$ for all t. If $t<0$, then we get $h^{0}\left(Y^{\prime}, \mathcal{O}_{Y^{\prime}}(t h+2 t f)\right)=0$. If $0 \leq t<c$, then we get $h^{0}\left(Y^{\prime}, \mathcal{O}_{Y^{\prime}}(t h+2 t f)\right)=(t+1)^{2}$. Now assume $t \geq c$. Since $\mathcal{O}_{T_{2}}(h) \cdot \mathcal{O}_{T_{2}}((t-c) f+(t-$ $2 c-1))=-2(t-c)+t-2 c-1=-1<0, h$ is in the base locus of the linear system $\left|\mathcal{O}_{T_{2}}((t-c) h+(t-2 c-1) f)\right|$. Hence $h^{0}\left(T_{2}, \mathcal{O}_{T_{2}}((t-c) f+(t-2 c-1) f)\right)=h^{0}\left(T_{2}, \mathcal{O}_{T_{2}}((t-\right.$ $c-1) f+(t-2 c-1) f))$. Hence $h^{0}\left(Y^{\prime}, \mathcal{O}_{Y^{\prime}}(t h+2 t f)\right)=(t+1)^{2}-(t-c)(t-c+1)$ for all $t \geq c$. This complete the proof.

Proof of Theorem 1.4. Since C is arithmetically Cohen-Macaulay (Lemma 5.5), we have $h^{1}\left(\mathbb{P}^{3}, \mathcal{I}_{C}(y)\right)=0$. We computed the integer $h^{0}\left(C, \mathcal{O}_{C}(y)\right)$ in lemmas ?? and ??. Since $\operatorname{deg}(E) \leq y+1$, we have $h^{1}\left(\mathbb{P}^{3}, \mathcal{I}_{E}(y)\right)=0$ ([1], Lemma 34). Hence E gives $\operatorname{deg}(E)$ independent conditions to $H^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(y)\right)$. Since $E \subset C \subset \mathbb{P}^{3}, E$ imposes $\operatorname{deg}(E)$ independent conditions to $h^{0}\left(C, \mathcal{O}_{C}(y)\right)$. Hence in all cases we have $h^{0}\left(C, \mathcal{O}_{C}(y)(-E)\right)=$ $h^{0}\left(C, \mathcal{O}_{C}(y)\right)-\operatorname{deg}(E)$. Since $\sharp(B)>\operatorname{deg}(C) \cdot y-\operatorname{deg}(E)=\operatorname{deg}\left(\mathcal{O}_{C}(y)(-E)\right)$, no non-zero section of $\mathcal{O}_{C}(y)(-E)$ vanishes at all points of B. Hence \mathcal{C} is an $[n, k]$ code. Assume that \mathcal{C}^{\perp} and take a codeword \mathbf{w} of \mathcal{C}^{\perp} with minimal weight. Let S be the support of \mathbf{w}. Since \mathcal{C}^{\perp} is linear and \mathbf{w} has minimum weight, all non-zero codewords of \mathcal{C}^{\perp} with support contained in S are of the form $\lambda \mathbf{w}$ for some $\lambda \in K \backslash\{0\}$. Lemma 2.1 gives $h^{1}\left(\mathbb{P}^{3}, \mathcal{I}_{E \cup S}(y)\right)>0$. Since $\operatorname{deg}(E \cup S) \leq 2 y+1$, there is a line $L \subset \mathbb{P}^{3}$ such that $\operatorname{deg}(L \cap(E \cup S)) \geq y+2$. Since $E \cup S \subset C \subset T$ and $y+2>\operatorname{deg}(T)$, Bezout theorem gives $L \subset T$. Hence $L \in \mathcal{S}$. Fix any $J \in \mathcal{S}$ and take $S \subseteq B \cap J$ such that $\operatorname{deg}((E \cup S) \cap J)=y+2$. Lemma 2.1 gives the existence of a non-zero codeword \mathbf{v} of \mathcal{C}^{\perp} whose support is contained in S. Fix any $S^{\prime} \subsetneq S$. Since $\operatorname{deg}((E \cup S) \cap J)=y+2>\operatorname{deg}(E)$, we have $\operatorname{deg}\left(\left(E \cup S^{\prime}\right) \cap J\right) \leq y+1$. Hence $h^{1}\left(\mathbb{P}^{3}, \mathcal{I}_{\left.\left(E \cup S^{\prime}\right) \cap J\right)}(y)\right)=0$.

Claim: $h^{1}\left(\mathbb{P}^{3}, \mathcal{I}_{E \cup S^{\prime}}(y)\right)=0$.
Proof of the Claim: Assume $h^{1}\left(\mathbb{P}^{3}, \mathcal{I}_{E \cup S^{\prime}}(y)\right)>0$. Let $H \subset \mathbb{P}^{3}$ be any plane containing J. Since $S^{\prime} \subset J \subset H$ is a finite set, we have $\operatorname{Res}_{H}\left(E \cup S^{\prime}\right)=\operatorname{Res}_{H}(E) \subseteq E$. Since $\operatorname{deg}\left(\operatorname{Res}_{H}(E) \leq \operatorname{deg}(E) \leq y\right.$, we have $h^{1}\left(\mathbb{P}^{3}, \mathcal{I}_{\operatorname{Res}_{H}(E)}(y-1)\right)=0$. Hence (2) gives $h^{1}\left(H, \mathcal{I}_{H \cap\left(E \cup S^{\prime}\right), H}(y)\right)>0$. See J as an effective divisor of H and set $E^{\prime}:=\operatorname{Res}_{J}(H \cap E)$. Since $S^{\prime} \subset J$, the exact sequence (2) gives the following exact sequence on $H \cong \mathbb{P}^{2}$:

$$
\begin{equation*}
0 \rightarrow \mathcal{I}_{E^{\prime}}(y-1) \rightarrow \mathcal{I}_{\left(E \cup S^{\prime}, H\right.}(y) \rightarrow \mathcal{I}_{\left(E \cup S^{\prime}\right) \cap J, J}(y) \rightarrow 0 \tag{4}
\end{equation*}
$$

Since $\operatorname{deg}\left(E^{\prime}\right) \leq \operatorname{deg}(E) \leq y$, we have $h^{1}\left(H, \mathcal{I}_{E^{\prime}}(y-1)\right)=0$ ([1], Lemma 34). Since $J \cong \mathbb{P} 1$ and $\operatorname{deg}\left(\left(E \cup S^{\prime}\right) \cap J\right) \leq y+1$, we have $h^{1}\left(J, \mathcal{I}_{\left(E \cup S^{\prime}\right) \cap J, J}(y)\right)=0$. Hence (4) gives $h^{1}\left(H, \mathcal{I}_{H \cap\left(E \cup S^{\prime}\right), H}(y)\right)=0$, absurd. The contradiction proves the Claim.

By the Claim and Lemma 2.1 S^{\prime} is not the support of a non-zero codeword of \mathcal{C}^{\perp}. Hence S is the support of \mathbf{v}. This completes the proof.

References

[1] A. Bernardi, A. Gimigliano, M. Idà, Computing symmetric rank for symmetric tensor, J. Symbolic. Comput. 46 (2011), no. 1, 34-53.
[2] A. Couvreur, The dual minimum distance of arbitrary dimensional algebraic-geometric codes. arXiv:0905.2345v3, J. Algebra (to appear).
[3] D. Eisenbud, Commutative Algebra, Springer, Berlin, 1995.
[4] R. Hatshorne, Algebraic Geometry, Springer-Verlag, Berlin, 1977.
[5] J. W. P. Hirschfeld, Projective geometries over finite fields, Clarendon Press, Oxford, 1979.
[6] J. W. P. Hirschfeld and J. A. Thas, General Galois Geometries, Clarendon Press, Oxford, 1991.
[7] J. W. P. Hirschfeld, G. Korchmáros, F. Torres, Algebraic curves over a finite field. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ, 2008.
[8] H. Stichtenoth, Algebraic Function Fields and Codes, Springer, Berlin, 1993.
[9] W. V. Vasconcelos, Computational methods in commutative algebra and algebraic geometry. With chapters by D. Eisenbud, D. R. Grayson, J. Herzog and M. Stillman. Algorithms and Computation in Mathematics, 2. Springer-Verlag, Berlin, 1998.
[10] J. H. van Lint, G. van der Geer, Introduction to coding theory and algebraic geometry. DMV Seminar, 12. Birkhäuser Verlag, Basel, 1988

[^0]: *Corresponding author
 E-mail address: ballico@science.unitn.it
 Received December 6, 2011

