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Abstract. Let N(v)= {x : vx∈E(G)} be the open neighborhood and N[v] =N(v)∪{v} be the closed neighborhood

of a vertex v∈V . A neighborhood pseudo coloring of a connected graph G(V,E) is a function c : V →{1,2, · · · ,k}

such that for each vertex v ∈ V , there exists at least two vertices u,w ∈ N[v] with c(u) = c(w). A neighborhood

pseudo coloring c : V →{1,2, · · · ,k} which is surjective, is called neighborhood pseudo k−coloring and the maxi-

mum k for which G admits a neighborhood pseudo k−coloring is called the neighborhood pseudo chromatic num-

ber of G, denoted by ψnhd(G). Chromatic polynomials are defined and studied for various types of proper coloring.

In this paper, we initiate the study of neighborhood pseudo chromatic polynomial of a graph G as a polynomial

in λ to count the number of distinct ways to neighborhood pseudo color G with atmost λ colors. Neighborhood

pseudo chromatic polynomial of a path Pn is determined with a recurrence relation for its coefficients. Further an

efficient algorithm is developed for its evaluation.
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1. INTRODUCTION

Let G(V,E) be a graph of order n. For a given positive integer k ≤ n, a vertex k-coloring of

G is a surjection c : V → {1,2,3, · · · ,k}. A vertex k-coloring of G is said to be a proper vertex

k-coloring of G if c(u) 6= c(v), whenever u and v are adjacent in G. The smallest integer such

that the graph G admits a proper vertex k-coloring is called a chromatic number of G and is

denoted by χ(G).

The chromatic polynomial of a graph is a polynomial in λ which counts the number of dis-

tinct ways G admits proper coloring with atmost λ colors. George David Birkhoff introduced

the chromatic polynomial in 1912 as an attempt to prove four color theorem [4]. Some proper-

ties of chromatic polynomials are derived, coefficients and bounds of the chromatic polynomial

are studied in [1, 6, 7]. Some of the results on chromatic polynomial are found in [3]. standard

terminology terms not defined here may be found in [2, 5]. The graph coloring and chromatic

polynomial problem has huge number of applications like resource allocation, image segmen-

tation, networking etc.

A pseudo k-coloring of graph G is a k-coloring of G in which adjacent vertices can receive

the same color. In 2014, B. Sooryanarayana et. al [8] introduced a neighborhood pseudo k-

coloring of a graph G. Let G(V,E) be a simple, non trivial, connected and undirected graph. A

neighborhood pseudo coloring is a function c : V →{1,2, · · · ,k} such that for each vertex v∈V ,

there exists atleast two vertices u,w ∈ N[v] with c(u) = c(w). A neighborhood pseudo coloring

c : V → {1,2, · · · ,k} which is surjective, is called neighborhood pseudo k−coloring and the

maximum k for which G admits a neighborhood pseudo k−coloring is called the neighborhood

pseudo chromatic number of G, denoted by ψnhd(G). Also from [8], ψnhd(Pn) = bn
2c for n≥ 2

and 1≤ ψnhd(G)≤ n−1, we consider this result for the immediate reference.

The purpose of this paper is to introduce the new notion of pseudo chromatic polynomial for

the case of pseudo coloring similar to one which is well established as chromatic polynomial

for the purpose of proper coloring. Further, we obtained the neighborhood pseudo chromatic

polynomial of a path Pn.
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2. NEIGHBORHOOD PSEUDO CHROMATIC POLYNOMIAL

For given λ colors, a neighborhood pseudo chromatic polynomial of a graph G denoted

by Pnhd(G,λ ) is a polynomial in λ which counts the number of distinct ways to neighbor-

hood pseudo color the vertices of G with atmost λ colors and is given by Pnhd(G,λ ) = ∑
λ
k=1

(λCk)cnhd(G,k) where, cnhd(G,k) represents possible number of distinct neighborhood pseudo

coloring of V (G) with exactly k colors and is called the kth coefficient of neighborhood pseudo

chromatic polynomial Pnhd(G,λ ).

Observation 2.1. It is obvious that graph G can be neighborhood pseudo colored with one

color in exactly one way and hence cnhd(G,1) = 1.

Observation 2.2. By the definition of neighborhood pseudo coloring, atmost ψnhd(G) colors

can be used for any neighborhood pseudo coloring of G, which implies cnhd(G,k) = 0 when

k > ψnhd(G).

3. NEIGHBORHOOD PSEUDO CHROMATIC POLYNOMIAL OF A PATH

Let Pn be a path with the vertex set {v1,v2,v3, · · · ,vn} and the edge set {v1v2,v2v3,

, · · · ,vn−1vn}.

Observation 3.1. Consecutive three vertices of Pn does not receive three different colors for

any neighborhood pseudo coloring, for otherwise the closed neighborhood of the middle vertex

contain three different colors.

Observation 3.2. ψnhd(P2) = 1 and ψnhd(P3) = 1 which implies that cnhd(P2,1) = cnhd(P3,1) =

1 and cnhd(P2,k) = cnhd(P3,k) = 0 for every k > 1. Hence Pnhd(P2,λ ) = λ and Pnhd(P3,λ ) = λ .

Example 3.3. Pnhd(P2,2) =2C1× cnhd(P2,1)+2C2× cnhd(P2,2) = 2×1+1×0 = 2.

Distinct possible ways of neighborhood pseudo coloring of P2 with λ = 2, is as shown in

FIGURE 1.

Example 3.4. Pnhd(P3,2) =2C1× cnhd(P3,1)+2C2× cnhd(P3,2) = 2×1+1×0 = 2.
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FIGURE 1. All possible ways of neighborhood pseudo coloring of P2 with at-

most two colors.
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FIGURE 2. All possible ways of neighborhood pseudo coloring of P3 with at-

most two colors.

Distinct possible ways of neighborhood pseudo coloring of P3 with λ = 2, is as shown in

FIGURE 2.

Theorem 3.5. For the path Pn with n≥ 4, Pnhd(Pn,λ ) = 2n−2 for λ = 2.

Proof. Let Pn, n ≥ 4 be a path, and let the given two colors are represented by 1, 2. Then for

any neighborhood pseudo coloring c : V (Pn)→{1,2}, c(v1) = c(v2), c(vn−1) = c(vn) and each

vertex vi, 2≤ i≤ n−1 can be assigned with either 1 or 2, which implies Pnhd(Pn,2) = 2n−2. �

Since Pnhd(Pn,2) includes the possibilities of neighborhood pseudo coloring the vertices of

Pn using single color, we conclude the following lemma.

Lemma 3.6. For the path Pn, n≥ 4, cnhd(Pn,2) = 2n−2−2.

Lemma 3.7. For the path Pn, n≥ 2,

cnhd(Pn,3) =

 0 if 2≤ n≤ 5

an−1−3×2n−2 +3 if n≥ 6

where an−1 = 2an−2 +an−3,a3 = 9,a4 = 21.

Proof. ψnhd(Pn) = bn
2c for n ≥ 2 which imply the minimum value of n required for neighbor-

hood pseudo coloring with exactly three colors is six and hence cnhd(Pn,3) = 0 for every n with

2 ≤ n ≤ 5. Let n ≥ 6 and a1,a2,a3, ...,an represents the total number of possibilities of neigh-

borhood pseudo color the vertices v1,v2,v3, ...,vn respectively, using three colors say 1, 2 and 3,

assuming v1,v2,v3, ...,vi−1 are already colored while finding the possibilities to color the vertex

vi. Since for neighborhood pseudo coloring, v1 and v2 should receive the same color, the vertex
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v1, can color using either color 1 or 2 or 3 and so is the vertex v2, which imply a1 = a2 = 3

and for each choice of color of v2, v3 can color independently using three colors and hence

a3 = 3×a2 = 32. Consider the vertex v4 with n 6= 4. Let us denote color of vi as c(vi). Consider

the case when c(v2) = 1, then c(v3) = 1 or 2 or 3 and from Observation 3.1 if c(v3) = 1, then

v4 can color using either 1 or 2 or 3, if c(v3) = 2 then v4 can color using either 1 or 2 and

if c(v3) = 3, then v4 can color using either 1 or 3. Hence v4 has 3× (3× 1+ 2× 2) = 3× 7

possibilities of coloring, that is a4 = 21.

To find a5 consider the following cases with c(v1) = c(v2) = 1 and n 6= 5.

Case 1: c(v3) = 1.

i. If c(v4) = 1 then c(v5) = 1 or 2 or 3 — Three possibilities.

ii. If c(v4) = 2 then c(v5) = 1 or 2 — Two possibilities.

iii. If c(v4) = 3 then c(v5) = 1 or 2 — Two possibilities.

Case 2: c(v3) = 2.

i. If c(v4) = 1 then c(v5) = 1 or 2 — Two possibilities.

ii. If c(v4) = 2 then c(v5) = 1 or 2 or 3 — Three possibilities.

Case 3: c(v3) = 3.

i. If c(v4) = 1 then c(v5) = 1 or 3 — Two possibilities.

ii. If c(v4) = 3 then c(v5) = 1 or 2 or 3 — Three possibilities.

Hence v5 has 3× (3×3+2×4) = 3×17 possibilities of coloring, that is a5 = 51 = 3× (3×

3+2×4) = 3×32 +2(12) = 3×32 +2(21−9) = 3×a3 +2(a4−a3) = a3 +2a4.

Further listing the possibilities, to find a6, consider the following cases with c(v1) = c(v2) = 1

and n 6= 6.

Case 1: c(v3) = 1.

Subcase 1: c(v4) = 1.

i. If c(v5) = 1 then c(v6) = 1 or 2 or 3 — Three possibilities.

ii. If c(v5) = 2 then c(v6) = 1 or 2 — Two possibilities.

iii. If c(v5) = 3 then c(v6) = 1 or 3 — Two possibilities.

Subcase 2: c(v4) = 2.

i. If c(v5) = 1 then c(v6) = 1 or 2 — Two possibilities.
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ii. If c(v5) = 2 then c(v6) = 1 or 2 or 3 — Three possibilities.

Subcase 3: c(v4) = 3.

i. If c(v5) = 1 then c(v6) = 1 or 3 — Two possibilities.

ii. If c(v5) = 3 then c(v6) = 1 or 2 or 3 — Three possibilities.

Case 2: c(v3) = 2.

Subcase 1: c(v4) = 1.

i. If c(v5) = 1 then c(v6) = 1 or 2 or 3 — Three possibilities.

ii. If c(v5) = 2 then c(v6) = 1 or 2 — Two possibilities.

Subcase 2: c(v4) = 2.

i. If c(v5) = 1 then c(v6) = 1 or 2 — Two possibilities.

ii. If c(v5) = 2 then c(v6) = 1 or 2 or 3 — Three possibilities.

iii. If c(v5) = 3 then c(v6) = 2 or 3 — Two possibilities.

Case 3: c(v3) = 3.

Subcase 1: c(v4) = 1.

i. If c(v5) = 1 then c(v6) = 1 or 2 or 3 — Three possibilities.

ii. If c(v5) = 3 then c(v6) = 1 or 3 — Two possibilities.

Subcase 2: c(v4) = 3.

i. If c(v5) = 1 then c(v6) = 1 or 3 — Two possibilities.

ii. If c(v5) = 2 then c(v6) = 2 or 3 — Two possibilities.

iii. If c(v5) = 3 then c(v6) = 1 or 2 or 3 — Three possibilities.

Hence v6 has 3× (3× 7 + 2× 10) = 3× 41 = 123 possibilities of coloring, that is a6 =

3× (3×7+2×10) = 3×21+2(30) = 3×21+2(51−21) = 3×a4 +2(a5−a4) = a4 +2a5.

In general, neighborhood pseudo coloring of any vertex vi is effected only by c(vi−1) and

c(vi−2), the similar pattern of coloring follows at each level and hence ai is recursively ex-

pressed in terms of ai−1 and ai−2. Therefore, ai = 2ai−1 + ai−2 for any i with 4 ≤ i ≤ n− 1.

Also for path Pn the end vertex vn should receive the same color as that of vn−1 for neighbor-

hood pseudo coloring and hence an−1 = an = 2an−2 + an−3. Particularly, a5 = 51, a6 = 123

⇒ a7 = 2a6 + a5 = 2(123) + 51 = 297, a8 = 2a7 + a6 = 2(297) + 123 = 717 so on. But

this an also include the counts of possibilities of neighborhood pseudo coloring with exactly
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one and exactly two colors and number of possibilities with exactly one color is in 3 ways;

with exactly two colors is in 3C2× (2n−2− 2) ways from Lemma 3.6. Therefore for n ≥ 6,

cnhd(Pn,3) = 2an−2 + an−3−3C2(2n−2 − 2)− 3 = 2an−2 + an−3 − 3× 2n−2 + 3 with a3 = 9,

a4 = 21 and a5 = 51. �

Observation 3.8. It follows from the proof of Lemma 3.7, for n ≥ 6, the value of neighbor-

hood pseudo chromatic polynomial of path Pn with atmost three colors is Pnhd(Pn,3) = an−1 =

2an−2 +an−3 with a3 = 9, a4 = 21 and a5 = 51.

Example 3.9. For the path P6, cnhd(P6,3) = 2a6−2+a6−3−3×26−2+3 = 2a4+a3−3×24+

3 = 2(21)+9−48+3 = 6.

For the path P7, cnhd(P7,3) = 2a7−2+a7−3−3×27−2+3 = 2a5+a4−3×25+3 = 2(51)+

21−96+3 = 30.

Possible ways of neighborhood pseudo coloring of P7 with exactly three colors and the pro-

gram output for number of possibilities of neighborhood pseudo coloring of P7 with exactly

three colors, are shown in FIGURE 3 and FIGURE 4 respectively.

FIGURE 3. Possible ways of neighborhood pseudo coloring of P7 with exactly

three colors when c(v1) = 1.

Lemma 3.10. For the path Pn, n≥ 2,

cnhd(Pn,4) =

 0 if 2≤ n≤ 7

an−1−4 C3× cnhd(Pn,3)−4 C2× cnhd(Pn,2)−4, if n≥ 8
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FIGURE 4. Program output for the value of cnhd(P7,3).

where an = 2an−2 +2an−3,a2 = 4,a3 = 16.

Proof. We have ψnhd(P8) = 4, which imply cnhd(Pn,4) = 0 for every n with 2 ≤ n ≤ 7. Let

n ≥ 8 and a1,a2,a3, ...,an represents the total number of possibilities of neighborhood pseudo

color the vertices v1,v2,v3, ...,vn respectively, using four colors say 1, 2, 3 and 4, assuming

v1,v2,v3, ...,vi−1 are already colored while finding ai. We have, a1 = a2 = 4 and v3 can color

independently using four colors and hence a3 = 4× a2 = 42 = 16. Consider the case when

c(v1) = c(v2) = 1 and using Observation 3.1, v4 can be colored in the following ways:

i. If c(v3) = 1 then c(v4) = 1 or 2 or 3 or 4— four possibilities.

ii. If c(v3) = 2 then c(v4) = 1 or 2 — two possibilities.

iii. If c(v3) = 3 then c(v4) = 1 or 3 — two possibilities.

iv. If c(v3) = 4 then c(v4) = 1 or 4 — two possibilities.

Hence v4 has 4× (4×1+2×3) = 40 possibilities of coloring.

Therefore, a4 = 40 = 4× (4×1+2×3) = (4×4+2×12) = 4×a2 +2× (a3−a2).

Similarly possibilities of neighborhood pseudo coloring of the vertex v5 are;

Case 1: c(v3) = 1.

i. If c(v4) = 1 then c(v5) = 1 or 2 or 3 or 4 — Four possibilities.

ii. If c(v4) = 2 then c(v5) = 1 or 2 — Two possibilities.

iii. If c(v4) = 3 then c(v5) = 1 or 3 — Two possibilities.

iv. If c(v4) = 4 then c(v5) = 1 or 4 — Two possibilities.

Case 2: c(v3) = 2.

i. If c(v4) = 1 then c(v5) = 1 or 2 — Two possibilities.

ii. If c(v4) = 2 then c(v5) = 1 or 2 or 3 or 4 — Four possibilities.
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Case 3: c(v3) = 3

i. If c(v4) = 1 then c(v5) = 1 or 3 — Two possibilities.

ii. If c(v4) = 3 then c(v5) = 1 or 2 or 3 or 4 — Four possibilities.

Case 4: c(v3) = 4

i. If c(v4) = 1 then c(v5) = 1 or 4 — Two possibilities.

ii. If c(v4) = 4 then c(v5) = 1 or 2 or 3 or 4 — Four possibilities.

Hence v5 has 4× (4×4+2×6) = 112 possibilities of coloring.

Therefore a5 = 112 = 4× (4×4+2×6) = (4×42 +2×24) = 4×a3 +2× (a4−a3).

Similarly possibilities of neighborhood pseudo coloring of the vertex v6 are;

Case 1: c(v3) = 1

Subcase 1: c(v4) = 1.

i. If c(v5) = 1 then c(v6) = 1 or 2 or 3 or 4 — Four possibilities.

ii. If c(v5) = 2 then c(v6) = 1 or 2 — Two possibilities.

iii. If c(v5) = 3 then c(v6) = 1 or 3 — Two possibilities.

iv. If c(v5) = 4 then c(v6) = 1 or 4 — Two possibilities.

Subcase 2: c(v4) = 2.

i. If c(v5) = 1 then c(v6) = 1 or 2 — Two possibilities.

ii. If c(v5) = 2 then c(v6) = 1 or 2 or 3 or 4 — Four possibilities.

Subcase 3: c(v4) = 3.

i. If c(v5) = 1 then c(v6) = 1 or 3 — Two possibilities.

ii. If c(v5) = 3 then c(v6) = 1 or 2 or 3 or 4 — Four possibilities.

Subcase 4: c(v4) = 4.

i. If c(v5) = 1 then c(v6) = 1 or 4 — Two possibilities.

ii. If c(v5) = 4 then c(v6) = 1 or 2 or 3 or 4 — Four possibilities.

Case 2: c(v3) = 2.

Subcase 1: c(v4) = 1.

i. If c(v5) = 1 then c(v6) = 1 or 2 or 3 or 4 — Four possibilities.

ii. If c(v5) = 2 then c(v6) = 1 or 2 — Two possibilities.

Subcase 2: c(v4) = 2.
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i. If c(v5) = 1 then c(v6) = 1 or 2 — Two possibilities.

ii. If c(v5) = 2 then c(v6) = 1 or 2 or 3 or 4 — Four possibilities.

iii. If c(v5) = 3 then c(v6) = 2 3 — Two possibilities.

iv. If c(v5) = 4 then c(v6) = 2 or 4 — Two possibilities.

Case 3: c(v3) = 3.

Subcase 1: c(v4) = 1.

i. If c(v5) = 1 then c(v6) = 1 or 2 or 3 or 4 — Four possibilities.

ii. If c(v5) = 3 then c(v6) = 1 or 3 — Two possibilities.

Subcase 2: c(v4) = 3.

i. If c(v5) = 1 then c(v6) = 1 or 3 — Two possibilities.

ii. If c(v5) = 2 then c(v6) = 2 or 3 — Two possibilities.

iii. If c(v5) = 3 then c(v6) = 1 or 2 or 3 or 4 — Four possibilities.

iv. If c(v5) = 4 then c(v6) = 4 or 3 — Two possibilities.

Case 4: c(v3) = 4.

Subcase 1: c(v4) = 1.

i. If c(v5) = 1 then c(v6) = 1 or 2 or 3 or 4 — Four possibilities.

ii. If c(v5) = 4 then c(v6) = 1 or 4 — Two possibilities.

Subcase 2: c(v4) = 4.

i. If c(v5) = 1 then c(v6) = 1 or 4 — Two possibilities.

ii. If c(v5) = 2 then c(v6) = 2 or 4 — Two possibilities.

iii. If c(v5) = 3 then c(v6) = 3 or 4 — Two possibilities.

iv. If c(v5) = 4 then c(v6) = 1 or 2 or 3 or 4 — Four possibilities.

Hence v6 has 4× (4× 10 + 2× 18) = 304 possibilities of coloring. Therefore a6 = 304 =

(4×40+2×72) = 4×40+2×(112−40) = 4×a4+2×(a5−a4) and the recurrence formula

follows at each level, hence ai = 4×ai−2+2× (ai−1−ai−2) = 2ai−1+2ai−2 for any i with 4≤

i≤ n−1. Also an = an−1 = 4×an−3+2×(an−2−an−3)= 2an−2+2an−3. Particulary a5 = 112,

a6 = 304, a7 = 2a5+2a6 = 2(112)+2(304) = 832, a8 = 2a6+2a7 = 2(304)+2(832) = 2272.

But this an represents the number of possibilities of neighborhood pseudo coloring of path Pn

using 4 colors which includes the coloring with exactly one, two, three colors. Therefore, when
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n≥ 8, cnhd(Pn,4) = an−1−4C3(cnhd(Pn,3))−4C2(cnhd(Pn,2))−4 where an−1 = 2an−2+2an−3

with a2 = 4,a3 = 16. �

Observation 3.11. It follows from the proof of Lemma 3.10, For n ≥ 8, the value of neighbor-

hood pseudo chromatic polynomial of path Pn with atmost four colors is Pnhd(Pn,4) = an−1 =

2an−2 +2an−3 where a2 = 4 and a3 = 16.

Example 3.12. For the path P8, cnhd(P8,4) = a7−4 C3(cnhd(P8,3))−4 C2(cnhd(P8,2))− 4 =

832−4(108)−6(26−2)−4 = 24.

For the path P9, cnhd(P9,4) = a8−4C3(cnhd(P9,3))−4C2(cnhd(P9,2))−4 = 2272−4(336)−

6(27−2)−4 = 168.

The program output for number of possibilities of neighborhood pseudo coloring of P9 with

exactly four colors, is shown in FIGURE 5.

 

FIGURE 5. Program output for the value of cnhd(P9,4)

Lemma 3.13. For the path Pn, n≥ 2,

cnhd(Pn,5) =

 0 if 2≤ n≤ 9

an−1−5 C4(cnhd(Pn,4))−5 C3(cnhd(Pn,3))−5 C2(cnhd(Pn,2))−5 if n≥ 10

where an−1 = 2an−2 +3an−3,a8 = 5465,a9 = 16405.

Proof. ψnbd(P10) = 5, which imply cnhd(Pn,5) = 0, 2 ≤ n ≤ 9. Let n ≥ 10 and a1,a2,a3, ...,an

represents the total number of possibilities of neighborhood pseudo color the vertices v1, v2, v3,

. . ., vn respectively, using five colors say 1, 2, 3, 4 and 5, assuming v1, v2, v3, . . . , vi−1 are already

colored while finding the possibilities to color the vertex vi. Then for neighborhood pseudo

coloring, v1 and v2 should receive the same color, which imply a1 = 5, a2 = 5 and for each

choice of color of v2, v3 can color independently using five colors and hence a3 = 5×a2 = 52 =
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25. Consider the case when c(v1) = c(v2) = 1 where remaining four cases follows similarly.

Then neighborhood pseudo coloring of the vertex v4 is as follows.

i. If c(v3) = 1 then c(v4) = 1 or 2 or 3 or 4 or 5 — five possibilities.

ii. If c(v3) = 2 then c(v4) = 1 or 2 — two possibilities.

iii. If c(v3) = 3 then c(v4) = 1 or 3 — two possibilities.

iv. If c(v3) = 4 then c(v4) = 1 or 4 — two possibilities.

v. If c(v3) = 5 then c(v4) = 1 or 5 — two possibilities.

Hence v4 has 5× (5×1+2×4) = 65 possibilities of coloring and therefore a4 = 65 = 5× (5×

1+2×4) = (5×5+2×20) = 5×a2 +2× (a3−a2).

Similarly possibilities of neighborhood pseudo coloring of the vertex v5 are as follows:

Case 1: c(v3) = 1.

i. If c(v4) = 1 then c(v5) = 1 or 2 or 3 or 4 or 5 — five possibilities.

ii. If c(v4) = 2 then c(v5) = 1 or 2 — Two possibilities.

iii. If c(v4) = 3 then c(v5) = 1 or 3 — Two possibilities.

iv. If c(v4) = 4 then c(v5) = 1 or 4 — Two possibilities.

v. If c(v4) = 5 then c(v5) = 1 or 5 — Two possibilities.

Case 2: c(v3) = 2.

i. If c(v4) = 1 then c(v5) = 1 or 2 — two possibilities.

ii. If c(v4) = 2 then c(v5) = 1 or 2 or 3 or 4 or 5 — five possibilities.

Case 3: c(v3) = 3.

i. If c(v4) = 1 then c(v5) = 1 or 3 — two possibilities.

ii. If c(v4) = 3 then c(v5) = 1 or 2 or 3 or 4 or 5 — five possibilities.

Case 4: c(v3) = 4.

i. If c(v4) = 1 then c(v5) = 1 or 4 — two possibilities.

ii. If c(v4) = 4 then c(v5) = 1 or 2 or 3 or 4 or 5 — five possibilities.

Case 5: c(v3) = 5.

i. If c(v4) = 1 then c(v5) = 1 or 5 — two possibilities.

ii. If c(v4) = 5 then c(v5) = 1 or 2 or 3 or 4 or 5 — five possibilities.
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Hence v5 has 5× (5× 5+ 2× 8) = 205 possibilities of coloring and therefore a5 = 205 =

5× (5× 5+ 2× 8) = (5× 52 + 2× 40) = 5× a3 + 2× (a4− a3) and the recurrence formula

follows at each level, hence ai = 5×ai−2+2× (ai−1−ai−2) = 2ai−1+3ai−2 for any i with 4≤

i≤ n−1. Also, an = an−1 = 5×an−3+2×(an−2−an−3) = 2an−2+3an−3. Particulary a4 = 65,

a5 = 205⇒ a6 = 2a5+3a4 = 2(205)+3(65) = 605, a7 = 2a6+3a5 = 2(605)+3(205) = 1825,

a8 = 2a7 +3a6 = 2(1825)+3(605) = 5465.

But this an represents the number of possibilities of neighborhood pseudo coloring of path

Pn using five colors which includes the coloring with exactly one, two, three, four colors.

Therefore when n ≥ 10, cnhd(Pn,5) = an−1−5C4(cnhd(Pn,4)) −5 C3(cnhd(Pn,3)) −5

C2(cnhd(Pn,2))−5 where an−1 = 2an−2 +3an−3 with a8 = 5465,a9 = 16405. �

Observation 3.14. For n≥ 10, value of the neighborhood pseudo chromatic polynomial of path

Pn with atmost five colors is Pnhd(Pn,5) = an−1 = 2an−2 +3an−3 with a8 = 5465,a9 = 16405.

Example 3.15. For the path Pn, cnhd(P10,5) = a9−5 C4(cnhd(P10,4))−5 C3(cnhd(P10,3))−5

C2(cnhd(P10,2))−5 = 16405−5(816)−10(966)−10(28−2)−5 = 120.

Theorem 3.16. The kth coefficient of the neighborhood pseudo chromatic polynomial of path

Pn with n≥ 2k and k ≥ 3 is cnhd(Pn,k) = an−1(k)−k Ck−1(cnhd(Pn,k−1))−k Ck−2(cnhd(Pn,k−

2))−·· ·−k C2(cnhd(Pn,2))− k where an−1(k) = 2an−2(k)+(k−2)an−3(k).

Proof. From Lemma 3.7, given 3 colors, a1 = a2 = 3, a3 = 32, a4 = 3×(3×1+2×2), · · · ,ai =

3×ai−2 +2× (ai−1−ai−2) = 2ai−1 +ai−2, · · · ,an−1 = 2an−2 +an−3

From Lemma 3.10, given 4 colors, a1 = a2 = 4, a3 = 42, a4 = 4× (4× 1+ 2× 3), · · · ,ai =

4×ai−2 +2× (ai−1−ai−2) = 2ai−1 +2ai−2, · · · ,an−1 = 2an−2 +2an−3

From Lemma 3.13, given 5 colors, a1 = a2 = 5, a3 = 52, a4 = 5× (5× 1+ 2× 4), · · · ,ai =

5×ai−2 +2× (ai−1−ai−2) = 2ai−1 +3ai−2, · · · ,an−1 = 2an−2 +3an−3
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Representing ai(k) be the number of possibilities of neighborhood pseudo coloring of the

vertex vi of path Pn with k colors, then by induction on k, a1(k) = k, a2(k) = k, a3(k) = k2,

a4(k) = k(k×1+2(k−1))

= k× k+2(k2− k)

= k×a2(k)+2(a3(k)−a2(k))

= 2a3(k)+(k−2)a2(k),

...

ai(k) = 2ai−1(k)+(k−2)ai−2(k),

...

an(k) = an−1(k) = 2an−2(k)+(k−2)an−3(k).

Therefore, cnhd(Pn,k) = an−1(k)−k Ck−1(cnhd(Pn,k− 1))−k Ck−2(cnhd(Pn,k− 2))− ·· · −k

C2(cnhd(Pn,2))− k where an−1(k) = 2an−2(k)+(k−2)an−3(k). �

Solving the recurrence relation an−1(k) = 2an−2(k) + (k− 2)an−3(k), indicated in Theo-

rem 3.16, by taking an−1 = Amn−1, an−2 = Amn−2, an−3 = Amn−3 we get

an−1 = A(1+
√

k−1)n +B(1−
√

k−1)n.

The constants A and B are found using a1 = a2 = k and hence an−1(k) = k
2 [(1+

√
k−1)n−2 +

(1−
√

k−1)n−2]. We record this fact together with the results in Theorem 3.5 in the form of

the following theorem.

Theorem 3.17. The neighborhood pseudo chromatic polynomial of a path Pn is given by

Pnhd(Pn,λ ) =
λ

∑
k=1

λCkcnhd(Pn,k),

where

cnhd(Pn,k)= an−1(k)− kCk−1(cnhd(Pn,k−1))−kCk−2(cnhd(Pn,k−2)) · · ·−kC2(cnhd(Pn,2))−k
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and

an−1(k) =

 2n−2 if n≥ 4 and k = 2
k
2 [(1+

√
k−1)n−2 +(1−

√
k−1)n−2] if n≥ 2k and k ≥ 3.

Example 3.18. The value of neighborhood pseudo chromatic polynomial of a path P5, given

six colors, is Pnhd(P5,6) =6 C1 × cnhd(P5,1) +6 C2 × cnhd(P5,2) +6 C3 × cnhd(P5,3) +6 C4 ×

cnhd(P5,4)+ 6C5×cnhd(P5,5)+6C6×cnhd(P5,6) = 6(1)+15(23−2)+20(0)+15(0)+6(0)+

1(0) = 96.

Example 3.19. The value of neighborhood pseudo chromatic polynomial of a path P8, given

four colors is

Pnhd(P8,4) =4 C1× cnhd(P8,1)+4 C2× cnhd(P8,2)+4 C3× cnhd(P8,3)+4 C4× cnhd(P8,4)

= 4(1)+6(28−2)+4(108)+1(24) = 1984.

The program outcome for the value of neighborhood pseudo chromatic polynomial of P6

when λ = 10, is shown in the FIGURE 6.

 

FIGURE 6. Program output for the value of Pnhd(P6,10).

4. PSEUDO CODE TO COMPUTE NEIGHBORHOOD PSEUDO CHROMATIC POLYNOMIAL

OF A PATH Pn

Input number of colors and vertices.

If (chromatic number of path >input Colors)

psi = input colors;

else

psi = chromatic number
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For loop from 1 to psi, as i,

{calculate cn for each i value from 1 to psi }

if index = 1

cn = 1

else

valueA = { compute an−1 using recursive findValueOfA(vertices −1, index) algorithm }

For ( i from 1 to index) do

Compute nCr with n =index and r =(index −i)

Multiply computed nCr value with previous computed cn value [cn value of i−1]

Subtract result from valueA

End for loop

cn = valueA

polynomialValue = 0

Loop through all the calculated cn values as pi and do,

a. extract index i value from pi

b. compute nCr with n =input colors and r = i

c. polynomialValue = polynomialValue + computed nCr ∗ pi

polynomialValue is the result.

Logic to find Value of A

findValueOfA(vertices, input colors)

if vertices < 1 or input colors < 1

return ”Invalid input”

else if vertices = 1 or vertices= 2

return input colors

else if vertices = 3

return input colors ∗ input colors

else
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return 2∗ findValueOfA(vertices +1 − 2, input colors) + (input colors −2)

∗findValueOfA(vertices +1−3, input colors)

5. CONCLUSION

We have derived the general formula for kth coefficient of the pseudo chromatic polynomial

and hence obtained the pseudo chromatic polynomial of a path Pn. The complexity of com-

puting the coefficients and pseudo chromatic polynomial of a path Pn is reduced by solving

the recurrence formula, developing the pseudo code and implemented the same through Java

program.
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