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Abstract. We are concerned with a variational inclusion problem with two monotone mappings, and fixed-point

problems of asymptotically nonexpansive mappings and pseudocontractive mappings. A viscosity method is in-

troduced and studied for the two problems. A convergence theorem in norm of common solutions is established in

the setting of infinite dimensional real Hilbert spaces.
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1. INTRODUCTION

Let H be an infinite dimensional real Hilbert space and C be its convex and closed set. For

each point x ∈ H, we know that there exists a unique nearest point in C, denoted by PCx, s.t.

‖x− PCx‖ ≤ ‖x− y‖ ∀y ∈ C. The operator PC is called the metric projection of H onto C.

One knows the following known tools. (i) 〈y− z,PCy−PCz〉 ≥ ‖PCy−PCz‖2, ∀y,z ∈ H; (ii)

〈y−PCy,z−PCy〉 ≤ 0, ∀y∈H,z∈C; (iii) ‖y−z‖2≥‖y−PCy‖2+‖z−PCy‖2, ∀y∈H,z∈C; (iv)

‖y− z‖2 = ‖y‖2−‖z‖2−2〈y− z,z〉, ∀y,z ∈ H; (v) ‖λy+(1−λ )z‖2 = λ‖y‖2 +(1−λ )‖z‖2−
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λ (1−λ )‖y− z‖2, ∀y,z ∈ H,λ ∈ [0,1]. Given a mapping T on C. The notation Fix(T ) is used

to denote the fixed-point set of T , i.e., Fix(T ) = {u ∈C : Tu = u}. One recalls that T is said to

be asymptotically nonexpansive if ∃{θk} ⊂ [0,∞) with limk→∞ θk = 0 such that

‖T ku−T kv‖ ≤ (1+θk)‖u− v‖, ∀u,v ∈C,k ≥ 1.

In particular, if θk = 0, then T is said to be a nonexpansive mapping. T is said to be pseudocon-

tractive if 〈u− v,Tu−T v〉 ≤ 0, ∀u,v ∈C. T is said to be a contraction if ∃δ ∈ [0,1) such that

‖ f (u)− f (v)‖ ≤ δ‖u− v‖, ∀u,v ∈ C. Recently, the approximation of fixed points of (asymp-

totically) nonexpansive mappings and pseudocontractive mappings has extensively studied via

iterative techniques by lots of investigators; see, e.g., [1,2,3,4,5,6,7]. Let {Sn}∞
n=0 be a sequence

of continuous pseudocontractive mappings defined on C. One recalls that {Sn}∞
n=0 is a count-

able family of `-uniformly Lipschitzian pseudocontractive mappings on C if ∃` > 0 such that

each Sn is `-Lipschitz continuous. It is easy to see that if {Sn}∞
n=0 is a sequence of nonexpansive

mappings, then it is a countable family of `-uniformly Lipschitzian pseudocontractive mappings

with ` = 1. From [8], one knows that if ∑
∞
k=1 supx∈C ‖Skx− Sk−1x‖ < ∞, then, for each y ∈C,

{Sky} converges strongly to some point of C. Moreover, let S be a mapping on C defined by

Sy = limk→∞ Sky ∀y ∈C. Then limk→∞ supx∈C ‖Sx−Skx‖= 0.

Next, one gives the mapping of monotone type. Recall that a mapping F : C→ H is called

monotone if 〈Fu−Fv,u− v〉 ≥ 0, ∀u,v ∈C. It is called α-strongly monotone if ∃α > 0 such

that 〈Fu−Fv,u−v〉 ≥ α‖u−v‖2, ∀u,v ∈C. Also, it is called β -inverse-strongly monotone (or

β -cocoercive) if ∃β > 0 such that 〈Fu−Fv,u− v〉 ≥ β‖Fu−Fv‖2, ∀u,v ∈C.

Consider the classical variational inequality problem (VIP) of finding a point z ∈C such that

〈Az,y− z〉 ≥ 0, ∀y ∈C.

The solution set of the VIP is denoted by VI(C,A). Fixed point techniques are efficient and

important for studying solutions of the VIP and various convergence theorems were obtained

recently; see, e.g., [9,10,11,12,13,14,15]. Among them, Korpelevich [16] studied the following

iterative sequence
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 vk = PC(uk− τAuk),

uk+1 = PC(uk− τAvk) ∀k ≥ 0,

where the constant τ in (0, 1
L). If VI(C,A) 6= /0, {uk} converges weakly to a point in VI(C,A).

Let B : C→ 2H be a set-valued operator with Bx 6= /0, ∀x∈C. B is called monotone if for each

x,y ∈C, 〈u− v,x− y〉 ≥ 0, ∀u ∈ Bx,v ∈ By. B is called maximal monotone if (I +λB)C = H

for all λ > 0. For a maximal monotone operator B, we define the mapping JB
λ

: (I +λB)C→C

by JB
λ
= (I +λB)−1 for each λ > 0. Such JB

λ
is called the resolvent of B for λ > 0. One knows

that Fix(JB
λ
) = B−10, which is useful for solving inclusion problems. One refers the readers to

[17,18,19,20,21] and the references therein.

Let Bi : C → H be νi-inverse-strongly monotone mappings for i = 1,2, f : C → C a δ -

contraction and F : C → H a κ-Lipschitzian η-strongly monotone mapping with δ < τ and

0 < ρ < 2η

κ2 , where τ = 1−
√

1−ρ(2η−ρκ2) ∈ (0,1]. Let T : C → C be an asymptoti-

cally nonexpansive mapping with a sequence {θk}, and {Sk}∞
k=0 be a countable family of `-

uniformly Lipschitzian pseudocontractive mappings on C. Let Ω denote the common solution

set of the variational inequality problems (VIPs) for B1 and B2 and the common fixed point

problem (CFPP) for T and {Sk}∞
k=0. Recently, Ceng and Wen [22] suggested the following

hybrid extragradient-like implicit algorithm

uk = βkxk +(1−βk)Skuk,

vk = PC(uk−µ2B2uk),

yk = PC(vk−µ1B1vk),

xk+1 = PC[αk f (xk)+(I−αkρF)T kyk] ∀k ≥ 0,

where µi ∈ (0,2νi) for i = 1,2. Suppose that {αk},{βk} ⊂ (0,1] are such that (i) limk→∞ αk =

0, ∑
∞
k=0 αk = ∞, ∑

∞
k=0 |αk+1 − αk| < ∞; (ii) limk→∞

θk
αk

= 0; (iii) 0 < liminfk→∞ βk ≤

limsupk→∞ βk < 1, ∑
∞
k=0 |βk+1− βk| < ∞; and (iv) ∑

∞
k=0 ‖T k+1yk− T kyk‖ < ∞. They proved

strong convergence of {xk} to x∗ ∈ Ω, which solves the hierarchical variational inequality

(HVI): 〈( f −ρF)x∗,y− x∗〉 ≥ 0, ∀y ∈Ω.

Recently, Takahashi et al. [23] introduced the following Mann-Halpern iterative scheme

for finding a common solution of a fixed point problem (FPP) of a nonexpansive mapping S
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and a variational inclusion (VI) for an α-inverse-strongly monotone mapping A and a maximal

monotone operator B

xk+1 = βkxk +(1−βk)S(αkx+(1−αk)JB
λk
(xk−λkAxk)), ∀k ≥ 1,

where {λk} ⊂ (0,2α) and {αk},{βk} ⊂ (0,1) are such that (i) limk→∞ αk = 0, ∑
∞
k=1 αk = ∞;

(ii) 0 < a ≤ λk ≤ b < 2α, limk→∞(λk−λk+1) = 0; and (iii) 0 < c ≤ βk ≤ d < 1. They proved

that {xk} converges strongly to a point of Fix(S)∩ (A+B)−10.

Motivated and inspired by the above and related results, in this paper, we investigate a vis-

cosity computation method for solving a variational inclusion (VI) for two monotone operators

A,B and a common fixed point problem (CFPP) T and {Sn}∞
n=0. Our results are strong conver-

gence without additional assumptions on spaces and sets. The following six lemmas play an

important role in the proof of our main convergence result.

Let A : C→ H be an α-inverse-strongly monotone mapping and B : C→ 2H be a maximal

monotone operator. In the sequel, we will use the notation Tλ := JB
λ
(I−λA) = (I +λB)−1(I−

λA) ∀λ > 0.

Lemma 1.1. [24] Let C be a nonempty closed convex subset of a Banach space X and

T : C→C be a continuous and strongly pseudocontractive mapping. Then T has a unique fixed

point in C.

Lemma 1.2. [23] Let C be a nonempty closed convex subset of a Hilbert space H. Let

B : C→ 2H be a maximal monotone operator and A an inverse-strongly monotone mapping.

Then (i) Fix(Tλ ) = (A+B)−10 ∀λ > 0; (ii) ‖y−Tλ y‖ ≤ 2‖y−Try‖ for 0 < λ ≤ r and y ∈C.

Lemma 1.3 [23,25] Let B : C→ 2H be a maximal monotone operator. Then the following

statements hold: (i) the resolvent identity: JB
λ

x = JB
µ (

µ

λ
x+(1− µ

λ
)JB

λ
x) ∀λ ,µ > 0, x ∈H; (ii) if

JB
λ

is a resolvent of B for λ > 0, then JB
λ

is a firmly nonexpansive mapping with Fix(JB
λ
) = B−10,

where B−10 = {x ∈C : 0 ∈ Bx}.

Lemma 1.4. [26] Let λ ∈ (0,1] and the mapping T : C → C be nonexpansive. Let the

mapping T λ : C→ H be defined as T λ x := T x− λ µF(T x) ∀x ∈ C, where F : C→ H is κ-

Lipschitzian and η-strongly monotone. Then T λ is a contraction provided 0 < µ < 2η

κ2 , i.e.,

‖T λ x−T λ y‖ ≤ (1−λτ)‖x− y‖ ∀x ∈C, where τ = 1−
√

1−µ(2η−µκ2) ∈ (0,1].



VISCOSITY METHODS FOR INCLUSION AND FIXED-POINT PROBLEMS 1759

Lemma 1.5. [27] Let X be a Banach space which admits a weakly continuous duality map-

ping, C be a nonempty closed convex subset of X , and T : C→ C be an asymptotically non-

expansive mapping with a fixed point. Then I−T is demiclosed at zero, i.e., if the sequence

{xn} ⊂ C satisfies xn ⇀ x ∈ C and (I− T )xn → 0, then (I− T )x = 0, where I is the identity

mapping of X .

Lemma 1.6. [28] Let {ak} be a sequence in [0,∞) such that ak+1 ≤ (1− sk)ak + skνk ∀k≥ 0,

where {sk} and {νk} satisfy the conditions: (i) {sk} ⊂ [0,1], ∑
∞
k=0 sk = ∞; (ii) limsupn→∞ νk ≤ 0

or ∑
∞
k=0 |skνk|< ∞. Then limk→∞ ak = 0.

2. MAIN RESULTS

Theorem 2.1. Let H be an infinite dimensional real Hilbert space and C its convex and

closed subset. Let T be an asymptotically nonexpansive mapping on C with a sequence {θn}

and {Sn}∞
n=0 a countable family of `-uniformly Lipschitzian pseudocontractive mappings on C.

Let f be a δ -contraction on C and F : C→ H a κ-Lipschitzian η-strongly monotone mapping,

where δ < τ and 0 < ρ < 2η

κ2 and τ = 1−
√

1−ρ(2η−ρκ2) ∈ (0,1]. Let A : C→ H be an

α-inverse-strongly monotone mapping and B : C→ 2H a maximal monotone mapping. Define

a vector sequence {xn} by

un = βnxn +(1−βn)Snun,

yn = JB
λn
(un−λnAun),

zn = JB
λn
(un−λnAyn + rn(yn−un)),

xn+1 = PC[αn f (un)+ γnun +((1− γn)I−αnρF)T nzn] ∀n≥ 0,

where {λn} ⊂ (0,∞) and {αn},{βn},{γn},{rn} ⊂ (0,1) are such that ∑
∞
n=0 αn = ∞,

limn→∞ αn = θn
αn

= 0, 0 < a ≤ βn ≤ b < 1; αn + γn ≤ 1, 0 < c ≤ γn ≤ d < 1, 0 < r ≤ rn and

0 < λ ≤ λn < λn
rn
≤ µ < 2α . Assume Ω :=

⋂
∞
i=0 Fix(Si)∩ (A+B)−10∩Fix(T ) is not empty,

∑
∞
n=1 supx∈D ‖Snx− Sn−1x‖ < ∞ for any bounded set D in set C, and Fix(S) =

⋂
∞
n=0 Fix(Sn),

where S is a mapping on C defined by Sx = limn→∞ Snx, ∀x ∈ C. If T nzn−T n+1zn→ 0, then

xn→ x∗ ∈Ω⇔ xn− xn+1→ 0, where x∗ ∈Ω.

Proof. Since limn→∞
θn
αn

= 0, we may assume, without loss of generality, that θn ≤ αn(τ−δ )
2 ,

∀n ≥ 0. Moreover, it can be easily seen that, for each n ≥ 0, there is an unique vector un in
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set C with un = (1−βn)Snun +βnxn. In fact, one sets Fnu = (1−βn)Snu+βnxn, ∀u ∈C. Since

Sn : C→C is a continuous pseudocontraction, one concludes

〈Fnu−Fnv,u− v〉= (1−βn)〈Snu−Snv,u− v〉 ≤ (1−βn)‖u− v‖2, ∀u,v ∈C.

It follows that Fn is a continuous strong pseudocontractive mapping. In terms of Lemma 1.1,

one asserts that, for each n ≥ 0, there exists an unique vector un in set C satisfying the above

equality. It is now easy to see that the necessity of the theorem is valid. One next shows the

sufficiency of the theorem. To the aim, we assume limn→∞ ‖xn−xn+1‖= 0 and divide the proof

of the sufficiency into several steps. Taking p∈Ω arbitrarily, one from Lemma 1.2 that Sn p= p,

T p = p and JB
λn
(I−λnA)p = p. Since Sn : C→C is a pseudocontraction, one sees

‖un− p‖2 ≤ βn‖xn− p‖‖un− p‖+(1−βn)‖un− p‖2,

which yields ‖un− p‖ ≤ ‖xn− p‖. One also observes that

p = JB
λn
(p−λnAp) = JB

λn
((1− rn)p+ rn(p− λn

rn
Ap)).

By Lemmas 1.3, one gets

‖yn− p‖2 = ‖JB
λn
(un−λnAun)− JB

λn
(p−λnAp)‖2

≤ ‖un− p‖2−λn(2α−λn)‖Aun−Ap‖2,

which hence yields

‖yn− p‖ ≤ ‖un− p‖.

Further, the convexity of ‖ · ‖2 yields that

‖zn− p‖2

= ‖JB
λn
((1− rn)un + rn(yn− λn

rn
Ayn))− JB

λn
((1− rn)p+ rn(p− λn

rn
Ap))‖2

≤ ‖((1− rn)un + rn(yn− λn
rn

Ayn))− ((1− rn)p+ rn(p− λn
rn

Ap))‖2

≤ (1− rn)‖un− p‖2 + rn‖(yn− λn
rn

Ayn)− (p− λn
rn

Ap)‖2

≤ (1− rn)‖un− p‖2 + rn[‖yn− p‖2− λn
rn
(2α− λn

rn
)‖Ayn−Ap‖2]

≤ (1− rn)‖un− p‖2 + rn[‖un− p‖2−λn(2α−λn)‖Aun−Ap‖2

−λn
rn
(2α− λn

rn
)‖Ayn−Ap‖2]

= ‖un− p‖2− rnλn(2α−λn)‖Aun−Ap‖2−λn(2α− λn
rn
)‖Ayn−Ap‖2,
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which immediately leads to ‖zn− p‖ ≤ ‖un− p‖. Putting

vn := αn f (un)+ γnun +((1− γn)I−αnρF)T nzn,

one has xn+1 = PCvn and

vn− p = αn( f (un)− f (p))+ γn(un− p)+(1− γn)[(I− αn
1−γn

ρF)T nzn− (I− αn
1−γn

ρF)p]

+αn( f −ρF)p.

Using Lemma 1.4, it follows that

‖xn+1− p‖

≤ αn‖ f (un)− f (p)‖+ γn‖un− p‖+(1− γn)‖(I− αn
1−γn

ρF)T nzn− (I− αn
1−γn

ρF)p‖

+αn‖( f −ρF)p‖

≤ αnδ‖un− p‖+ γn‖un− p‖+(1− γn)(1− αn
1−γn

τ)(1+θn)‖zn− p‖+αn‖( f −ρF)p‖

≤ αnδ‖un− p‖+ γn‖un− p‖+(1− γn−αnτ)(1+θn)‖un− p‖+αn‖( f −ρF)p‖

≤ (1−αn(τ−δ )+θn)‖un− p‖+αn‖( f −ρF)p‖

≤ [1− αn(τ−δ )
2 ]‖xn− p‖+αn‖( f −ρF)p‖

= [1− αn(τ−δ )
2 ]‖xn− p‖+ αn(τ−δ )

2 · 2‖( f−ρF)p‖
τ−δ

.

By induction, one obtains ‖xn− p‖ ≤ {‖x0− p‖, 2‖( f−ρF)p‖
τ−δ

}. Thus, {xn} is bounded, so are

{yn}, {zn}, and {un}. Next, one claims that

Γn+1 ≤ [1− αn(τ−δ )

2
]Γn +δn ∀n≥ 0,

where x∗ = PΩ( f + I− ρF)x∗, Γn = ‖xn− x∗‖2 and δn = 2αn〈( f − ρF)x∗,xn+1− x∗〉. From

Lemma 1.4, we know that PΩ( f + I−ρF) is a contraction operator. The Banach contraction

principle implies that there is unique fixed point of PΩ( f + I−ρF), i.e., x∗ = PΩ( f + I−ρF)x∗.

Since each Sn : C→C is a pseudocontraction, one has

‖un− x∗‖2 ≤ βn〈xn− x∗,un− x∗〉+(1−βn)‖un− x∗‖2

= βn
2 [‖xn− x∗‖2 +‖un− x∗‖2−‖xn−un‖2]+ (1−βn)‖un− x∗‖2,

which leads to ‖un−x∗‖2≤‖xn−x∗‖2−‖xn−un‖2. Since xn+1 = PCvn, where vn := αn f (un)+

γnun+((1−γn)I−αnρF)T nzn, it follows that 〈PCvn−vn,PCvn−x∗〉 ≤ 0, i.e., 〈xn+1−vn,xn+1−
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x∗〉 ≤ 0. Hence,

‖xn+1− x∗‖2 ≤ 〈αn f (un)+ γnun +((1− γn)I−αnρF)T nzn− x∗,xn+1− x∗〉

= αn〈 f (un)− f (x∗),xn+1− x∗〉+ γn〈un− x∗,xn+1− x∗〉+(1

−γn)〈(I− αn
1−γn

ρF)T nzn− (I− αn
1−γn

ρF)x∗,xn+1− x∗〉+αn〈( f −ρF)x∗,xn+1− x∗〉

≤ (αnδ + γn)‖un− x∗‖‖xn+1− x∗‖+(1− γn−αnτ)(1+θn)‖zn− x∗‖‖xn+1− x∗‖

+αn〈( f −ρF)x∗,xn+1− x∗〉

≤ αnδ+γn
2 (‖un− x∗‖2 +‖xn+1− x∗‖2)+ 1−γn−αnτ+θn

2 (‖zn− x∗‖2 +‖xn+1− x∗‖2)

+αn〈( f −ρF)x∗,xn+1− x∗〉

≤ αnδ+γn
2 (‖un− x∗‖2 +‖xn+1− x∗‖2)+ 1−γn−αnτ+θn

2 {‖un− x∗‖2

−rnλn(2α−λn)‖Aun−Ax∗‖2−λn(2α− λn
rn
)‖Ayn−Ax∗‖2

+‖xn+1− x∗‖2}+αn〈( f −ρF)x∗,xn+1− x∗〉

≤ 1
2‖xn+1− x∗‖2 + 1−αn(τ−δ )+θn

2 ‖un− x∗‖2− 1−γn−αnτ+θn
2 [rnλn(2α−λn)‖Aun−Ax∗‖2

+λn(2α− λn
rn
)‖Ayn−Ax∗‖2]+αn〈( f −ρF)x∗,xn+1− x∗〉

≤ 1
2‖xn+1− x∗‖2 + 1−αn(τ−δ )+θn

2 (‖xn− x∗‖2−‖xn−un‖2)− 1−γn−αnτ+θn
2 [rnλn(2α

−λn)‖Aun−Ax∗‖2 +λn(2α− λn
rn
)‖Ayn−Ax∗‖2]+αn〈( f −ρF)x∗,xn+1− x∗〉

≤ 1
2‖xn+1− x∗‖2 + 1−αn(τ−δ )+θn

2 ‖xn− x∗‖2− 1−γn−αnτ+θn
2 [rnλn(2α−λn)‖Aun−Ax∗‖2

+λn(2α− λn
rn
)‖Ayn−Ax∗‖2 +‖xn−un‖2]+αn〈( f −ρF)x∗,xn+1− x∗〉

≤ 1
2‖xn+1− x∗‖2 +

1−αn(τ−δ )
2

2 ‖xn− x∗‖2− 1−γn−αnτ+θn
2 [rnλn(2α−λn)‖Aun−Ax∗‖2

+λn(2α− λn
rn
)‖Ayn−Ax∗‖2 +‖xn−un‖2]+αn〈( f −ρF)x∗,xn+1− x∗〉.

For each n≥ 0, one next puts εn =
αn(τ−δ )

2 , Γn = ‖xn− x∗‖2, δn = 2αn〈( f −ρF)x∗,xn+1− x∗〉

and

ηn = (1− γn−αnτ +θn)[rnλn(2α−λn)‖Aun−Ax∗‖2

+λn(2α− λn
rn
)‖Ayn−Ax∗‖2 +‖xn−un‖2].

So it follows from (3.8) that Γn+1 ≤ (1− εn)Γn + δn. On the other hand, from the assumption

xn− xn+1→ 0, one obtains Γn−Γn+1 ≤ (‖xn− x∗‖+‖xn+1− x∗‖)‖xn− xn+1‖→ 0 as n→ ∞).

That is, Γn−Γn+1→ 0. From Γn+1 ≤ (1− εn)Γn−ηn +δn, one gets

0≤ ηn ≤ Γn−Γn+1 +δn− εnΓn.



VISCOSITY METHODS FOR INCLUSION AND FIXED-POINT PROBLEMS 1763

Since εn→ 0, δn→ 0 and Γn−Γn+1→ 0, we have ηn→ 0. This immediately implies that

lim
n→∞
‖Aun−Ax∗‖= lim

n→∞
‖Ayn−Ax∗‖= 0 = lim

n→∞
‖xn−un‖= 0.

Since JB
λn

is firmly nonexpansive, one sees

‖yn− x∗‖2 = ‖JB
λn
(un−λnAun)− JB

λn
(x∗−λnAx∗)‖2

≤ 〈(un−λnAun)− (x∗−λnAx∗),yn− x∗〉

= 1
2 [‖(un−λnAun)− (x∗−λnAx∗)‖2 +‖yn− x∗‖2−‖un−λn(Aun−Ax∗)− yn‖2],

which yields

‖yn− x∗‖2 ≤ ‖(un−λnAun)− (x∗−λnAx∗)‖2−‖un−λn(Aun−Ax∗)− yn‖2

≤ ‖un− x∗‖2−‖un−λn(Aun−Ax∗)− yn‖2.

It follows that

‖xn+1− x∗‖2

≤ αnδ+γn
2 (‖un− x∗‖2 +‖xn+1− x∗‖2)+ 1−γn−αnτ+θn

2 (‖zn− x∗‖2 +‖xn+1− x∗‖2)

+αn〈( f −ρF)x∗,xn+1− x∗〉

≤ αnδ+γn
2 (‖un− x∗‖2 +‖xn+1− x∗‖2)+ 1−γn−αnτ+θn

2 [(1− rn)‖un− x∗‖2 + rn‖yn− x∗‖2

+‖xn+1− x∗‖2]+αn〈( f −ρF)x∗,xn+1− x∗〉

≤ αnδ+γn
2 (‖un− x∗‖2 +‖xn+1− x∗‖2)+ 1−γn−αnτ+θn

2 [(1− rn)‖un− x∗‖2 + rn(‖un− x∗‖2

−‖un−λn(Aun−Ax∗)− yn‖2)+‖xn+1− x∗‖2]+αn〈( f −ρF)x∗,xn+1− x∗〉

≤ 1
2‖xn+1− x∗‖2 + 1

2‖un− x∗‖2− (1−γn−αnτ+θn)rn
2 ‖un−λn(Aun−Ax∗)− yn‖2

+αn〈( f −ρF)x∗,J(xn+1− x∗)〉

≤ 1
2‖xn+1− x∗‖2 + 1

2‖xn− x∗‖2− (1−γn−αnτ+θn)rn
2 ‖un−λn(Aun−Ax∗)− yn‖2

+αn‖( f −ρF)x∗‖M0,

where supn≥0 ‖xn− x∗‖ ≤M0 for some M0 > 0. This immediately implies that

(1− γn−αnτ +θn)rn

2
‖un−λn(Aun−Ax∗)− yn‖2 ≤ 1

2
(Γn−Γn+1)+αn‖( f −ρF)x∗‖M0.
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Since αn→ 0, θn→ 0 and Γn−Γn+1→ 0, one has limn→∞ ‖un−yn‖= 0. In a similar way, one

gets

‖zn− x∗‖2 = ‖JB
λn
(un−λnAyn + rn(yn−un))− JB

λn
(x∗−λnAx∗)‖2

≤ 〈(un−λnAyn + rn(yn−un))− (x∗−λnAx∗),zn− x∗〉

= 1
2 [‖(un−λnAyn + rn(yn−un))− (x∗−λnAx∗)‖2 +‖zn− x∗‖2

−‖un + rn(yn−un)−λn(Ayn−Ax∗)− zn‖2].

So,

‖zn− x∗‖2 ≤ ‖(un−λnAyn + rn(yn−un))− (x∗−λnAx∗)‖2

−‖un + rn(yn−un)−λn(Ayn−Ax∗)− zn‖2

≤ ‖un− x∗‖2−‖un + rn(yn−un)−λn(Ayn−Ax∗)− zn‖2

and

‖xn+1− x∗‖2 ≤ αnδ+γn
2 (‖un− x∗‖2 +‖xn+1− x∗‖2)+ 1−γn−αnτ+θn

2 (‖zn− x∗‖2

+‖xn+1− x∗‖2)+αn〈( f −ρF)x∗,xn+1− x∗〉

≤ αnδ+γn
2 (‖un− x∗‖2 +‖xn+1− x∗‖2)+ 1−γn−αnτ+θn

2 [‖un− x∗‖2

−‖un + rn(yn−un)−λn(Ayn−Ax∗)− zn‖2 +‖xn+1− x∗‖2]

+αn〈( f −ρF)x∗,xn+1− x∗〉

≤ 1
2‖xn+1− x∗‖2 + 1

2‖un− x∗‖2 +αn〈( f −ρF)x∗,xn+1− x∗〉

−1−γn−αnτ+θn
2 ‖un + rn(yn−un)−λn(Ayn−Ax∗)− zn‖2

≤ 1
2‖xn+1− x∗‖2 + 1

2‖xn− x∗‖2 +αn〈( f −ρF)x∗,xn+1− x∗〉

−1−γn−αnτ+θn
2 ‖un + rn(yn−un)−λn(Ayn−Ax∗)− zn‖2,

which immediately attains

1− γn−αnτ +θn

2
‖un+rn(yn−un)−λn(Ayn−Ax∗)−zn‖2≤ 1

2
(Γn−Γn+1)+αn‖( f−ρF)x∗‖M0.

Since αn → 0, θn → 0 and Γn−Γn+1 → 0, one arrives at limn→∞ ‖un− zn‖ = 0. Next, one

shows that xn−Snxn→ 0, xn−T xn→ 0 and xn−Tλ xn→ 0, where Tλ = JB
λ
(I−λA). Observe

‖Snun− un‖ ≤ b
1−b‖xn− un‖ → 0 as n→ ∞. Since {Sn}∞

n=0 is `-uniformly Lipschitzian on C,

one obtains ‖Snxn− xn‖ ≤ (`+1)‖xn−un‖+‖Snun−un‖→ 0 as n→ ∞. Note that

‖xn+1−T nzn‖ ≤ ‖αn f (un)+ γnun +((1− γn)I−αnρF)T nzn−T nzn‖

≤ αn‖ f (un)−ρFT nzn‖+ γn(‖un− xn+1‖+‖xn+1−T nzn‖),
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which yields

‖xn+1−T nzn‖ ≤ αn
1−γn
‖ f (un)−ρFT nzn‖+ γn

1−γn
‖un− xn+1‖

≤ αn
1−d‖ f (un)−ρFT nzn‖+ d

1−d (‖un− xn‖+‖xn− xn+1‖).

So it follows that

‖zn−T nzn‖ ≤ ‖zn−un‖+
d

1−d
(‖un− xn‖+‖xn− xn+1‖)+

αn

1−d
‖ f (un)−ρFT nzn‖.

Thanks to αn→ 0 and xn− xn+1→ 0, one has limn→∞ ‖zn−T nzn‖= 0. Also, note that

‖zn−T zn‖ ≤ ‖zn−T nzn‖+‖T nzn−T n+1zn‖+‖T n+1zn−T zn‖.

By the assumption T nzn−T n+1zn→ 0, the uniform continuity of T sends us to limn→∞ ‖zn−

T zn‖= 0. By virtu of

‖xn−T xn‖ ≤ ‖xn−un‖+‖un− zn‖+‖zn−T zn‖+‖T zn−Tun‖+‖Tun−T xn‖,

one has limn→∞ ‖xn−T xn‖ = 0. In addition, for each n ≥ 0, we put Tλn := JB
λn
(I−λnA). Then

limn→∞ ‖un−Tλnun‖= 0. Since 0 < λ ≤ λn, we have

‖xn−Tλ xn‖ ≤ 2‖xn−Tλnxn‖

≤ 2(‖xn−un‖+‖un−Tλnun‖+‖Tλnun−Tλnxn‖)

≤ 2(2‖xn−un‖+‖un−Tλnun‖)→ 0 (n→ ∞).

That is, limn→∞ ‖xn−Tλ xn‖ = 0. One next proves that xm− S̃xm→ 0, where S̃ := (2I− S)−1.

Indeed, one first shows that S : C→C is pseudocontractive `-Lipschitzian with xm−Sxm→ 0,

where Sx = limm→∞ Smx, ∀x ∈ C. It is clear that Smu→ Su and Smv→ Sv for each u,v ∈ C.

So, 〈Su− Sv,u− v〉 = limm→∞〈Smu− Smv,u− v〉 ≤ ‖u− v‖2. Hence, S is a pseudocontraction.

Since {Sm}∞
m=0 is `-uniformly Lipschitzian on C, one gets ‖Su−Sv‖= limm→∞ ‖Smu−Smv‖ ≤

`‖u− v‖. Thus, S is `-Lipschitzian. Set D = conv{xm : m ≥ 0}. Because of the boundedness

of the set {xm : m ≥ 0}, we know from the assumption that ∑
∞
m=1 supy∈D ‖Smy− Sm−1y‖ < ∞.

Consequently,

lim
m→∞
‖Smxm−Sxm‖= 0. (3.22)

So it follows from (3.16) and (3.22) that ‖xm− Sxm‖ ≤ ‖xm− Smxm‖+ ‖Smxm− Sxm‖ → 0 as

m→ ∞. That is, limm→∞ ‖xm− Sxm‖ = 0. Putting S̃ := (2I − S)−1, we have that S̃ : C → C
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is nonexpansive, Fix(S̃) = Fix(S) =
⋂

∞
m=0 Fix(Sm) and limm→∞ ‖xm− S̃xm‖ = 0. In fact, set

S̃ := (2I− S)−1, where I is the identity operator of H. Then we know that S̃ is nonexpansive

and Fix(S̃) = Fix(S) =
⋂

∞
m=0 Fix(Sm) as a consequence of [?, Theorem 6]. It follows that

‖xm− S̃xm‖= ‖S̃S̃−1xm− S̃xm‖ ≤ ‖S̃−1xm− xm‖= ‖xm−Sxm‖→ 0 (m→ ∞).

Now, one proves that xm → x∗, where x∗ = PΩ( f + I − ρF)x∗. Indeed, limsupm→∞〈( f −

ρF)x∗,xm+1−x∗〉 ≤ 0, where x∗ = PΩ( f + I−ρF)x∗. As a matter of fact, it has a subsequence

{xml} ⊂ {xm} with

limsup
m→∞

〈( f −ρF)x∗,xm− x∗〉= lim
l→∞
〈( f −ρF)x∗,xml − x∗〉.

Thanks to the framework of the space and the boundedness of the sequence, one supposes

that xml ⇀ x̂ ∈ C. Note that Tλ and S̃ both are nonexpansive and that T is asymptotically

nonexpansive. Since (I−Tλ )xm→ 0 and (I− S̃)xm→ 0, using Lemma 1.5, one concludes that

x̂ ∈ Fix(Tλ ) = (A+B)−10 and x̂ ∈ Fix(S̃) = Fix(S) =
⋂

∞
m=0 Fix(Sm) and xml − T xml → 0 for

{xml} ⊂ {xm}. Lemma 1.5 yields that x̂ ∈ Fix(T ). Consequently, x̂ ∈Ω. So, xm−xm+1→ 0 and

xml ⇀ x̂ and

limsup
m→∞

〈( f −ρF)x∗,xm+1− x∗〉= limsup
m→∞

〈( f −ρF)x∗,xm− x∗〉

= 〈( f −ρF)x∗, x̃− x∗〉 ≤ 0.

Observe that

‖xm+1− x∗‖2

≤ 1
2‖xm+1− x∗‖2 + 1−αm(τ−δ )+θm

2 ‖xm− x∗‖2 +αm〈( f −ρF)x∗,xm+1− x∗〉

≤ 1−αm(τ−δ )
2 ‖xm− x∗‖2 + 1

2‖xm+1− x∗‖2 + θm
2 M2

0 +αm〈( f −ρF)x∗,xm+1− x∗〉,

which immediately leads to

‖xm+1− x∗‖2 ≤ (1−αm(τ−δ ))‖xm− x∗‖2 +αm(τ−δ )2〈( f−ρF)x∗,xm+1−x∗〉
τ−δ

+αm(τ−δ ) · θmM2
0

αm(τ−δ ) .

By using Lemma 1.6, one obtains xm→ x∗. This complete the proof.

Remark 2.1. Compared with the corresponding results in Ceng and Wen [22] and Takahashi,

Takahashi and Toyoda [23], our results improve and extend them in the following aspects. The
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problem of solving the VIPs for two monotone operators A,B with the CFPP constraint of an

asymptotically nonexpansive mapping T and countably many uniformly Lipschitzian pseudo-

contractions {Sn}∞
n=0 in [22, Theorem 3.1] is extended to develop our problem of solving the

VI for two monotone operators A,B with the CFPP constraint of an asymptotically nonexpan-

sive mapping T and countably many uniformly Lipschitzian pseudocontractions {Sn}∞
n=0. The

hybrid extragradient-like implicit rule in [22, Theorem 3.1] is extended to develop our hybrid

implicit extragradient method. The problem of solving the VI for two monotone operators

A,B with the FPP constraint of a nonexpansive mapping S in [23, Theorem 3.1] is extended

to develop our problem of solving the VI for two monotone operators A,B with the CFPP

constraint of an asymptotically nonexpansive mapping T and countably many uniformly Lips-

chitzian pseudocontractions {Sn}∞
n=0. The Mann-type Halpern iterative scheme in [23, Theorem

3.1] are extended to develop our hybrid implicit extragradient method.
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