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Abstract. In physiology, peristalsis is used to transport the biofluid from a region of lower pressure to higher 

pressure in the living body. Most of the biofluids (such as blood) are classified as non-Newtonian fluids. In some 

pathological conditions, the distribution of fatty cholesterol and artery clogging blood clots in the lumen of coronary 

artery can be modeled as fluid flow in a porous tube. In view of this, the peristaltic flow of a conducting non-

Newtonian Williamson fluid in a porous channel with flexible walls under the effects of radiation is investigated. 

The problem is solved applying perturbation method. Velocity distribution and pressure flow characteristics are 

calculated and the effects of various emerging parameters on the flow characteristics are discussed in detail.    
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1. INTRODUCTION 

In mammals, an important mechanism namely, peristalsis is observed by medical doctors 

Bayliss and Starling [1]. Since this phenomenon is necessary for life of humans and animals, 

several investigators are carried out by engineers and mathematicians all over the world [2–14]. 

This biofluid principle is applied by biomedical and mechanical engineers in the design of 

peristaltic pumps and medical devices such as heart lung machine. Preliminary experimental 

study is done by Latham [15]. The theoretical work of Jaffrin and Shapiro [16] made a land mark 



278 

B. REDDAPPA, A. PARANDHAMA, S. SREENADH 

 

in the biological study of peristalsis. The study on peristaltic flow pertaining Newtonian fluid 

with different geometries is thoroughly investigated by researchers like Vajravelu et al [17, 18], 

Subba Reddy et al [19]. As the walls of the biological ducts (for example blood vessel) are 

composed of tissues surrounding the biofluids, the impact of bounded porous medium came into 

existence an according Vajravelu [20, 21, 22] did commendable work to explain the significance 

of the bounding layers.  

Peristaltic motion in a two-dimensional uniform channel with a long wave using 

sinusoidal wave approximation of an incompressible non-Newtonian Carreau fluid through a 

porous medium is studied El Shehawey et al. [23]. The effect of induced magnetic field on 

pulsatile fluid of peristaltic flow through porous medium bounded by a 2-D channel was 

analyzed Afifi and Gad [24] and they are observed that the high permeability parameter and no 

magnetic field ( , 0K M→ → ) our result is in agreement with the existing results.  Mekheimer 

and Arabi [25] analyzed the characteristics of peristaltic transport of electrically conducting 

viscous fluid flow through a porous medium. El Shehawey [26] analyzed the incompressible 

viscous fluid flow of a peristaltic transport through a porous medium with asymmetric channel.  

Navaneeswar Reddy and Viswanatha Reddy [27] have discussed the slip effects on peristaltic 

motion of a williamson fluid through a porous medium in a planar channel. Abdulhadi and 

Ahmed [28] have studied the effect of magnetic field on peristaltic flow of Williamson fluid 

through a porous medium in an inclined tapered asymmetric channel. Mishra and Ramachandra 

Rao [29] studied peristaltic transport of a Newtonian fluid in a two-dimensional asymmetric 

channel under the assumptions of long wavelength and low Reynolds number in a wave frame of 

reference. Ali et al. [30] have investigated peristaltic flow of MHD fluid in a channel with 

variable viscosity under the effect of slip condition. 

      In view of these, we studied the Peristaltic transport of conducting Williamson fluid in a 

planar channel, under the assumptions of low Reynolds number and long wavelength. The 

channel is bounded by permeable layers. The flow is investigated in a wave frame of reference 

moving with velocity of the wave. The perturbation series in the Weissenberg number ( 1We  ) 

was used to obtain explicit forms for velocity field, pressure gradient and friction force per one 

wavelength. The effects of Weissenberg number We , Darcy number Da , amplitude ratio  , 

Hartmann number M and slip parameter  on the pumping characteristics are discussed through 

graphs in detail. 
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2. MATHEMATICAL FORMULATION 

    We consider the peristaltic motion of a conducting Williamson fluid through a porous medium 

in a two-dimensional symmetric channel of width 2a . The flow is generated by sinusoidal wave 

trains propagating with constant speed c  along the channel walls. A rectangular co-ordinate 

system (X,Y)  is chosen such that X -axis lies along the centre line of the channel in the 

direction of wave propagation and Y -axis transverse to it. The fluid flow in the channel is 

bounded by permeable layers. In the permeable layers the flow is governed by Darcy’s law. Fig.1 

depicts the physical model of the problem. The wall deformation is given by

2
( , ) sin (X ct)Y H X t a b




=  =   −                                                                 (1) 

where b  is the wave amplitude,   is the wave length, and X , Y are the rectangular co-ordinates 

with X measured along the channel and Y perpendicular to c  is the velocity of propagation and 

x  is the direction of wave propagation X . 

 

Fig.1. The Physical Model 

A uniform magnetic field of strength  is applied in the transverse direction to the flow. The 

induced magnetic field is neglected by assuming small magnetic Reynolds number. The electric 

field is taken zero. Under the assumptions that the channel length is an integral multiple of the 

wave length  and the pressure difference across the ends of the channel is a constant, the flow 

becomes unsteady in the laboratory frame (X,Y) . However, in a co-ordinate system moving with 

the propagation velocity c (wave frame ( , )x y ), the boundary shape is stationary. The 

transformation from fixed frame to wave frame is given by 

, , , , ( ) P( , )x X ct y Y u U c v V p x X t= − = = − = =                                                                  (2) 

where  and are velocity components in the laboratory frame and  and  are velocity 

components in the wave frame, p  and P  are the pressures in wave and fixed frames of reference 

respectively. 

0B



U V u v
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The equations governing the flow in a wave frame are 

0
u v

x y

 
+ =

 
                                                                                                                                   (3)

2

0
( )

yxxx
u v p

B u c
x y x x y


 

    
+ = − − − − + 

     
                                                                             (4) 

where  is the density, p  is the pressure and  is the electrical conductivity.  

Introducing the non-dimensional quantities 

2

0 0

, , , , , , , , ,
xx xx

x y u v a pa H ct
x y u v p h t

a c c c a c


  

      
= = = = = = = = =  

0

0 0 0

, e , , ,
yx yx

a ac c q
R We q M aB

c a ac

 
 

  


= = = = =                                                             (5) 

Using the above non-dimensional quantities and the resulting equations in terms of velocity 

function can be written as  

0
u v

x y

 
+ =

 
                                                                                                                                   (6) 

2 2e ( 1)
yxxx

u u p
R u v M u

x y x x y


 

    
+ = − − − − + 

     
                                                                (7) 

where  , e, ,R We M  represent the wave, Reynolds, Weissenberg and Hartmann numbers 

respectively. Under the assumption of long wave length and low Reynolds number, neglecting 

the terms of order  and eR , we get 

21 ( 1)
p u u

We M u
x y y y

      
= + − +   

       

                                                                                      (8) 

Here  is a function of  only. So that Eq. (8) can be rewritten as 

2
2

2

2
( 1)

dp u u
We M u

dx y y y

    
= + − +  
     

                                                                                       (9) 

The corresponding dimensionless boundary conditions are 

0 at =0
u

y
y


=


                                                                                                                          (10) 

1 at =
Da u

u y h
y


= − −


                                                                                                        (11) 

p x
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The non dimensional volume flow rate  in a wave frame of reference is given by  

0

h

q u dy=                                                                                                                                 (12)

0 0

( , ) ( 1)
H h

Q X t U dy u dy q h= = + = +                                                                                            (13)  

The time averaged flux over one period of the peristaltic wave is  

                                                                                          (14) 

 

3. SOLUTION 

    We seek for a regular perturbation in terms of small parameter We  as follows  

2

0 1
( )u u We u O We= + +                                                                                                       (15) 

20 1 ( )
dpdp dp

We O We
dx dx dx

= + +                                                                                                       (16) 

2

0 1
( )q q We q O We= + +                                                                                                               (17) 

    Substituting these equations into the equations (9), (10) and (11), we get 

3.1. SYSTEM OF ORDER ZERO 

2

20 0

02
( 1)

dp u
M u

dx y


= − +


                                                                                                              (18) 

with the boundary conditions  

0 0 at 0
u

y
y


= =


                                                                                                                        (19) 

0

0
1 at

uDa
u y h

y


= − − =


                                                                                                     (20) 

3.2. SYSTEM OF ORDER ONE 

2
2

201 1

12

udp u
M u

dx y y y

   
= + −  
     

                                                                                                (21) 

with the boundary conditions  

q

( )T
c

=

( )
1

0 0

1
1

T

Q Qdt q h dx q
T

= = + = + 
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1 0 at 0
u

y
y


= =


                                                                                                                         (22) 

1

1
at

Da u
u y h

y


= − =


                                                                                                           (23) 

3.3. SOLUTION OF ORDER ZERO 

       Solving Eq. (18) using the boundary conditions (19) and (20), we get  

0

0 2 2

1

cosh 1
1

dp My
u

dx M A M

  
= − −  
   

                                                                                                  (24) 

The volume flow rate 
0

q  is given by 

0

0 3 2

1

sinhdp Mh h
q h

dx M A M

  
= − −  
   

                                                                                                  (25) 

From Eq. (25), we have 0 0

10

dp q h

dx A

+
=                                                                                          (26) 

3.4. SOLUTION OF ORDER ONE 

       Substituting Eq. (24) in Eq. (21) and solving it using the boundary conditions (22) and (23),   

       we get 

2

1 2

1 11 12 2

1
cosh sinh sinh 2

3

dp A
u A My A My My

M dx
= + − −                                                               (27) 

The volume flow rate 
1

q is given by 

21

1 10 2 7

dp
q A A A

dx

 
= + 

 
                                                                                                                   (28) 

From Equations (28) and (26) we have 

2

1 2 71

10

q A Adp

dx A

−
=                                                                                                                            (29) 

2

0 7

3 4 2

10 10 1

( )( ) q h Adp q h
We

dx A A M A

++
= −                                                                                                      (30) 

The dimensionless pressure rise per one wavelength in the wave frame is defined as 

1

0

dp
p dx

dx
 =                                                                                                                                  (31) 
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APPENDIX: 

1
cosh sinh

Da
A Mh M Mh


= + ,     

( )
0

2 2

1

1dp
A

dx M A

  
=   
    

, 

21

2 72

11

1

1 dp
A A

M dx
A

A

  
+  

  = ,

2

2

12

2

3

A
A =

( )3
sinh 2 2sinh 2 cosh cosh 2

Da
A Mh Mh M Mh Mh


= − − − ,     

4 1
sinhA A Mh= ,  4

5

1

A
A

A
= , 

6

cosh 2
2cosh 3

2

Mh
A Mh= − + + ,    

( )5 6

7
3

A A
A

M

+
= ,    

8 3

1

sinh
A

Mh

M A
= ,    

9 2

h
A

M
= ,   

10 8 9
A A A= − . 

4. RESULTS AND DISCUSSION 

In order to obtain the physical insight of the problem, the variation of pressure gradient, 

pressure rise are computed numerically for different values of the emerging parameters, viz., 

Weissenberg number We , Darcy number Da , Hartmann number  using MATLAB package 

and are presented in Figures 2-11. 

Fig. 2 shows the variation of pressure gradient 
dp

dx
 for different values We  with 

0.5, 0.1,Da = = 1, 1and 0.3M q = = − = . It is observed that the variation of axial pressure 

gradient 
dp

dx
 enhances with rising We . Fig. 3 depicts the variation of pressure gradient 

dp

dx
 for 

different values Da  with 0.5, 0.01,We = =  M 1, 1and 0.3q = = − = . It is noted that the 

variation of axial pressure gradient 
dp

dx
 diminishes with rising Da .  Fig. 4 shows the variation of 

axial pressure gradient 
dp

dx
 for different values of   with 0.01, 0.1,We Da= =

1, 1and 0.3M q = = − = . It is found that the variation of axial pressure gradient 
dp

dx
 enhances 

with rising  except at the end of the channel.  Fig. 5 shows the variation of pressure gradient 

dp

dx
 for different values M  with 0.01, 0.1,We Da= = 0.5, 1and 0.3q = = − = . It is observed 

that the variation of axial pressure gradient 
dp

dx
 enhances with rising M . Fig. 6 shows the 

variation of pressure gradient 
dp

dx
 for different values   with. 0.01, 0.1,We Da= =

0.5, 1and 1q M = = − = . It is observed that the variation of axial pressure gradient 
dp

dx
 

enhances with rising  . 

M
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Fig. 7 presents the variation of pressure rise p  with Q  for different values of We  with 

0.01, 0.5, 1We M= = = and =0.1 .  It is observed that the average volume flow rate Q  

enhances with an rising in  We  in all the three regions; viz., pumping ( p > 0), free-pumping      

( p = 0) and co-pumping ( p < 0) regions. Fig. 8 shows the variation of pressure rise p with Q  

for different values of Darcy number Da  with 0.01, 0.5, 1We M= = = and =0.1 . It is found 

that any two curves intersecting in first quadrant to the left of the point of intersection, the Q  

diminishes with rising Da  whereas to the right of this point of intersection Q  enhances with 

rising Da . Fig. 9 presents the variation of pressure rise p  with Q  for different values of 

amplitude ratio   with 0.01, 0.1, 1We Da M= = = and =0.1 . It is observed that the Q  

enhances with increasing   both in the pumping and free-pumping regions, whereas it 

diminishes with rising   in the co-pumping region for chosen ( p < 0).  The variation of 

pressure rise p  with Q  for different values of Hartmann number M  with

0.01, 0.1, 0.5We Da = = = and =0.1  is shown in Fig. 10. It is noted that, any two pumping 

curves intersect in the first quadrant. To the left of this point, the Q  enhances and to the right of 

this point it diminishes with rising Hartmann number M . Fig. 11 illustrates the variation of 

pressure rise p  with Q  for different values of slip parameter   with 

0.01, 0.1, 0.5We Da = = = and 1M =  It is found that the Q  enhances with rising  in both the 

pumping region and free pumping region. An interesting observation is that in the co-pumping 

region, as   enhances Q  diminishes in the co-pumping region for chosen ( p < 0). 

 

5. CONCLUSIONS 

     In peristaltic transport of a Williamson liquid, the impact of pertinent physical parameters 

occurred in the problem is studied on the pumping characteristics. Some of the interesting 

pumping characteristics are given below: 

• The pressure gradient in the flow and the average flux diminishes with rising Darcy number. 

• The pressure gradient in the flow and the average flux enhances with rising Hartmann number. 

• The pressure gradient in the flow and the average flux enhances with rising slip parameter. 

• The pressure gradient in the flow and the average flux enhances with rising Amplitude ratio. 
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Fig. 2. The variation of axial pressure gradient 
dp

dx
for 

different values of We . 

 

Fig. 3. The variation of axial pressure gradient 
dp

dx
for 

different values of Da . 

 

Fig. 4. The variation of axial pressure gradient 
dp

dx
for 

different values of  . 

 

Fig. 5. The variation of axial pressure gradient 
dp

dx
for 

different values of M . 

 

Fig. 6. The variation of axial pressure gradient 
dp

dx
for 

different values of  . 

 

Fig. 7. The variation of pressure rise p  for different 

values of We . 
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Fig. 8. The variation of pressure rise p  for different 

values of Da . 

 

Fig. 9. The variation of pressure rise p  for different 

values of  . 

 

Fig. 10. The variation of pressure rise p  for different 

values of M . 

 

Fig. 11. The variation of pressure rise p  for different 

values of  . 
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