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Abstract: This paper presents the study of reliability measures of a complex system consisting of two subsystems, 

subsystem-1, and subsystem-2, in a series configuration with switching device. The subsystem-1 has five units that 

are working under 2-out-of-5: G policy and the subsystem-2 has two units that are working under 1-out-of-2: G 

policy. Moreover, the switching device in the system is unreliable, and as long as the switch fails, the whole system 

fails immediately. Failure rates of units of subsystems are constant and assumed to follow the exponential 

distribution. Still, their repair supports two types of distribution, namely general distribution and Gumbel-Hougaard 

family copula distribution. Using the supplementary variable technique, Laplace transformations, and copula 

approach differential equations developed. Important reliability characteristics such as availability of the system, 

reliability of the system, MTTF, profit analysis, and sensitivity analysis for MTTF have computed for fixed values of 

failure and repair rates. Particular cases corresponding to the switching device have also considered. Graphs 

demonstrate results, and consequently, conclusions have done. 

Keywords: k-out-of-n: G system; availability; reliability; MTTF; cost analysis; Gumbel-Hougaard family-copula 

distribution. 
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1. INTRODUCTION 

Complicated systems such as computers, automobiles industry, telephone networks, and various 

electronic networks are becoming a prevalent feature and essential requirements of our society. 

The systems are built with multiple components/ parts to perform specified tasks adequately. It is 

often difficult to assure that the systems will perform particular tasks efficiently for which they 

designed. Due to various causes, it is difficult to anticipate the failure of a component and 

sometimes impossible to prevent the failure of the entire system. Reliability is a vital need for 

proper uses and repair of any engineering system. Achieving a high or required level of reliability 

and availability of the system is often an essential requisite based on system designed structure. 

The importance and utility of a system depend on its successful performance, and its performance 

depends on its design. The availability and reliability of an industrial system may be enhancing 

using a highly reliable structural design of the system or subsystem of higher reliability. The best 

way to improve system reliability is to add redundant components in the design. A constructive 

and common form of redundancy is a k-out-of-n configuration. Many researchers have brought 

their attention to the study of k-out-of-n: G systems and k-out-of-n: F systems. The k-out-of-n: G 

system is good if and only if at least k of its n components is good, while k-out-of-n: F system fails 

if and only if at least k of its n components fails. For example, an airplane with four engines can be 

modeled as a 3-out-of-4: G system. Furthermore, consider a large truck with ten tires is an example 

of 6-out-of-10: G system. Although the system performance may be degraded if less than ten tires 

are operational, rearrangement of the tire configuration will result in adequate performance as long 

as at least six tires are operational. In nuclear power plant system 2-out-of-4:  G; system can 

perform adequate power supply. Conclusively a k-out-of-n system plays a very crucial role in 

system reliability theory to the proper operation of the system.  

 

In the past decade, many researchers have focused on k-out-of-n-type systems mainly because 

such systems are more general than pure parallel or pure series systems, and they frequently come 

across in practice. There is an extensive literature available for reliability analysis of 

k-out-of-n-type systems under various situation such as [10], repairable systems with different 

failure modes [25], three-unit series system under warm standby [15], consecutive k-out-of-n 

system using standby with multiple working vacations [19], generalized block replacement policy 

with respect to a threshold number of failed components and risk costs [13], non-identical 

components subject to repair priorities [1] and non-identical components considering shut-off 

rules using quasi-birth-death process [18] among others. There are some real systems such as 
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satellites, transmission systems, or computer systems where some new equipment groups need to 

add because of the requirement for better output of the system. Realizing this fact, authors like 

Alka and Singh [3] analyzed reliability analysis of a complex repairable system composed of two 

2-out-of-3: G subsystems connected in a parallel configuration. They analyzed the system by using 

the supplementary variable technique and obtain various measures such as mean time to failure, 

steady-state probability, availability, and cost analysis. Yusuf et al. [7] focus on the comparative 

study of 2-out-of-3: G system for the different situations under the concept of general repair 

analyzed using Kolmogorov's forward equations method. The objective of this study is to see the 

effect of preventive maintenance and system design of 2-out-of-3. In addition, Yusuf et al. [8, 9] 

developed an explicit expression for mean time to system failure for a 3-out-of-5 warm standby 

system involving common cause failure and ensured the maximum overall MTSF of the system. 

 

Considering one type of repair/general repair to a totally failed system may cause a massive loss 

due to the non-operation of the system, and the industry/organization may drop its market 

reputation. Several authors, including El-Said and EL-Sherbeny [11], Bulama et al. [12], Gupta et 

al. [16, 17] and Malik et al. [20] examined the reliability characteristics under the presumption that 

the failed unit can be repaired by employing only one type of repair. There are many situations in 

real life where more than one repair is possible between two adjacent transition states for quick 

repair of the failed system. When such type of possibility exists, the system is repaired using the 

Gumbel-Hougaard family copula; it couples the two distributions, namely general distribution and 

exponential distribution. Therefore, in contrast to this, authors have considered models in which 

they tried to address a problem where two different repair facilities are available between adjacent 

states, i.e., the initial state and totally failed state. Ram and Singh [14] have studied availability and 

cost analysis of a parallel redundant complex system with two types of failure under preemptive- 

resume repair discipline using the Gumbel-Hougaard family copula in repair. Singh et al. [21] 

have studied cost analysis of an engineering system involving two subsystems in a series 

configuration with controllers and human failure under the concept of k-out-of-n: G policy using 

Gumbel-Hougaard family copula distribution. Also, in [22, 23], Singh et al. have studied the 

performance analysis of the complex system in the series configuration under different failure and 

repair disciplines using copula and controllers. Bona et al. [5] have discussed the reliability 

allocation based integrated factor method (IFM) approach to the aerospace system. The 

consequence of the study of reliability allocation method Di, Bona, Forcina, A, and Silvestri, A, 

[6] have proposed a new reliability allocation method as a critical flow method (CFM) for the 
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thermonuclear system. Recently Lado et al. [2] analyzed two subsystems connected in a series 

configuration and operated by a human operator. In this study, they concluded that copula repair is 

more reliable compared to general repair. Also, Babu et al. [4] studied a δ-shock maintenance 

model for a deteriorating system with an imperfect delayed repair under partial process. In 

addition, Singh and Poonia [24] studied two units parallel system with correlated lifetime under 

inspection using regenerative point technique. 

 

Authors who studied k-out-of-n systems have put attention toward the operation of units in 

parallel/series configuration or in a circular arrangement with catastrophic failure and preventive 

maintenance but did not consider transfer switch and its failure. Therefore, realizing the fact and 

necessity of such type of configuration, we in the present analyzing a complex system having 

two subsystems viz. subsystem-1 and subsystem-2 under k-out-of-n: G configuration. Both 

subsystems connected in series, and each linked with a switching device for the proper 

functioning of the system, which may be perfect or imperfect at the time of need. The 

subsystem-1 follows 2-out-of-5: good configuration, and subsystem-2 follows 1-out-of-2: good 

configuration. All the units in both the subsystems are in a parallel configuration. The system has 

three possible transition states: Good, partially failed and complete failed. The system may move 

to the failed state as per the following options: 

(i) More than three units of subsystem-1 fail, but both units of subsystem-2 are in good 

working condition. 

(ii) Both of the units of the subsystem-2 fail. 

(iii) The switching device of the subsystem-1 / subsystem-2 fails. 

 

In addition to this, the system will be in a partially failed state in the following situations:  

(i) At least one and maximum up to 3 units of subsystem-1 failed, and all the units of 

subsystem-2 are good. 

(ii) All units of subsystem-1 are good, and anyone unit of subsystem-2 fails. 

 

To carry out performance analysis, the authors have evaluated the expressions for the availability 

of the system, reliability of the system, MTTF, profit analysis, and sensitivity analysis 

corresponding to MTTF using the supplementary variable technique. All the results analyzed in 

the model using mapple17. This paper is planned in various sections. Section 1 describes the 

brief introduction of the paper, which focuses on the relevant literature reviewed for the study of 
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the proposed design. Section 2 to 6 covers the state description, assumptions, nomenclature of 

notation used for the study of a mathematical model, and transition diagram. Section 7 and 8 

cover the analytical part of the paper in which some particular cases are taken for discussion and 

elaboration. Section 8 describes the conclusion of the study with results. 

 

2. STATE DESCRIPTION 

The description of the various possible state of the model after failing the units in both the 

subsystems, including transfer switch failure, is given in Table 1. The states {S0, S1, S2, S3, and S5} 

are operative states, and {S4, S6, S7, and S8} are inoperative states of the system.  

 

Table 1 State Description of the model 

State State description 

S0 This is a perfect state, and all units of subsystem-1 and subsystem-2 are in good working condition. 

S1 

The indicated state represents that the system is degraded but is in operational mode after the failure 

of any one unit in subsystem-1, but both units of subsystem-2 are in a good operational state. The 

system is under repair. 

S2 

The indicated state represents that the system is degraded but is in operational mode after the failure 

of any two units in subsystem-1, but both units of subsystem-2 are in a good operational state. The 

system is under repair. 

S3 

The indicated state represents that the system is degraded but is in operational mode after the failure 

of any three units in subsystem-1. Still, both units of subsystem-2 are in a good operational state. The 

system is under repair. 

S5 

The indicated state represents that the system is degraded but is in operational mode after the failure 

of anyone unit in subsystem-2, but all the units of subsystem-1 are in a good operational state. The 

system is under repair. 

S4 

 

The states represent that the system is in totally failed mode after failing more than three units in the 

subsystem 1.  The system is under repair using the Gumbel-Hougaard family copula distribution. 

 S6 

 

The states represent that the system is in a complete failed state after failing both units in subsystem 

2.  The system is under repair using employing copula distribution. 

   S7 It is a complete failed state due to switch failure in the subsystem-1. 

S8 The state S8 represents a complete failed state by failing switch device in subsystem-2. 
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3. ASSUMPTIONS 

The following assumptions have been made throughout the study of the model: 

1. Initially, the system is in the state 0S , and all the units of subsystem-1 and subsystem-2 are in 

good working conditions. 

2. The subsystem-1 works successfully until three or more than three units are in good working 

condition, i.e., 2-out-of-5:G policy. 

3. The subsystem-2 works successfully if one or both units are in good working condition, i.e., 

1-out-of-2:G policy. 

4. Both the subsystems having switching devices, which may be unreliable at the time as long 

as the switch fails, the whole system fails immediately. 

5. The units in both the subsystems are in parallel mode and hot standby and ready to start 

within a negligible time after the failure of any unit in the subsystems. 

6. Repairperson is available to full time with the system and maybe called as soon as the system 

reaches to partially or totally failed state. 

7. All failure rates are constant and follow the exponential distribution. 

8. The complete failed system needs repair immediately. For this, copula can be employed to 

restore the system. 

9. No damage reported due to the repair of the system. 

10. As soon as the failed unit repaired, it is ready to perform the task as good as new.  
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4. NOTATIONS 

 

 t , s    Time scale and Laplace transform variable 

 
1 2/     The failure rate of each unit in the subsystem-1/subsystem-2. 

1 2
/s s     The failure rate of the switching devices between the units for subsystem-    

              1/subsystem-2.  

( ) ( )1 1/x y   The Repair rate of each unit in the subsystem-1/subsystem-2. 

( )0 z     Repair rate of the switching device for both the subsystems.  

( )0P t    The state transition probability that the system is in state iS  at an instant 0i = . 

( )P s    Laplace transformation of the state transition probability ( )P t . 

( ),iP x t   The probability that the system is in the state iS  for 1 to 8i = and the system is 

under repair with elapsed repair time is ,x t . x  is repaired variable and t  is 

time variable. 

( )pE t  Expected profit in the interval. [0, t) 

1 2,K K      Revenue generated and service cost per unit time, respectively.  

( )0 x  An expression of the joint probability from failed state Si to good state S0 

according to Gumbel-Hougaard family copula, is given 

( ) ( ) 
1

0 exp logx x x
   = +

  
where ( ) ( )1u x x=  and ( )2

xu x e= . Here  is 

the parameter1   . 

 

5. SYSTEM CONFIGURATION AND STATE TRANSITION DIAGRAM 

System configuration is shown in Fig 1 (a) while the transition diagram in Fig 1 (b). In transition 

diagram, S0 is perfect state, S1, S2, S3, and S5 partial failed/degraded and S4, S6, S7, and S8 are 

complete failed states. Due to failure in any unit in the subsystem-1 and in subsystem-2, the 

transitions approach to partially failed states S1, S2, S3, and S5, respectively. The state S4 and S6 

are complete failed states due to the failure of units in both the subsystems. The states S7 and S8 

are complete failed states due to transfer switch failure. 
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Figure 1 (a) System configuration 

 

Figure 1 (b) State transition diagram of the model 
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6. FORMULATION OF THE MODEL 

By a probability of considerations and continuity arguments, we can obtain the following set of 

difference-differential equations associated with the present mathematical model: 

 ( ) ( ) ( ) ( ) ( )
1 21 2 0 1 1 2 5

0 0

5 2 , ,s s P t x P x t dx y P y t dy
t

     
   

+ + + + = +   
    

( ) ( ) ( ) ( )0 4 0 6

0 0

, ,x P x t dx y P y t dy 
 

+ +   

( ) ( ) ( ) ( ) 
1 20 0

0 0

, ,s sz P z t dz z P z t dz 
 

+ +      (1) 

 ( ) ( )
1 21 1 14 , 0s s x P x t

t x
   

  
+ + + + + =   

          (2)

 

 ( ) ( )
1 21 1 23 , 0s s x P x t

t x
   

  
+ + + + + =   

          (3) 

 ( ) ( )
1 21 1 32 , 0s s x P x t

t x
   

  
+ + + + + =   

          (4) 

 ( )  ( )
1

4exp log , 0x x P x t
t x

  
    + + + =     

         (5) 

 ( ) ( )
1 22 2 5 , 0s s y P y t

t y
   

  
+ + + + + = 

  
          (6) 

 ( )  ( )
1

6exp log , 0y y P y t
t y

  
    + + + =     

         (7) 

 ( )  ( )
1

1

exp log , 0sz z P z t
t z

  
    + + + =     

         (8) 

 ( )  ( )
2

1

exp log , 0sz z P z t
t z

  
    + + + =     

         (9) 

Boundary conditions 

 ( ) ( )1 1 00, 5P t P t=                 (10) 



368 

VIJAY VIR SINGH, PRAVEEN KUMAR POONIA AND AMEER HASSAN ADBULLAHI 

 ( ) ( ) ( )2

2 1 1 1 00, 4 0, 20P t P t P t = =              (11) 

 ( ) ( ) ( )3

3 1 2 1 00, 3 0, 60P t P t P t = =              (12) 

 ( ) ( ) ( )4

4 1 3 1 00, 2 0, 120P t P t P t = =              (13) 

 ( ) ( )5 2 00, 2P t P t=                 (14) 

 ( ) ( ) ( )2

6 2 5 2 00, 0, 2P t P t P t = =              (15)  

 ( ) ( ) ( ) ( ) ( ) ( )
1 1 0 1 2 3 50, 0, 0, 0, 0,s sP t P t P t P t P t P t  = + + + +         (16) 

 ( ) ( ) ( ) ( ) ( ) ( )
2 2 0 1 2 3 50, 0, 0, 0, 0,s sP t P t P t P t P t P t  = + + + +         (17) 

Initials conditions 

 ( )0 0 1P = , and other state probabilities are zero at 0t =         (18) 

Solution of the model  

Taking Laplace transformation of equations (1) to (17) and using equation (18), we obtain 

 ( ) ( ) ( ) ( ) ( )
1 21 2 0 1 1 2 5

0 0

5 2 1 , ,s ss P s x P x s dx y P y s dy     
 

 + + + + = + +      

 ( ) ( ) ( ) ( )0 4 0 6

0 0

, ,x P x s dx y P y s dy 
 

+ +   

 ( ) ( ) ( ) ( ) 
1 20 0

0 0

, ,s sz P z s dz z P z s dz 
 

+ +      (19) 

where ( ) ( )
0

, ,st

i iP x s e P x t dt


−=   

( ) ( )
1 21 1 14 , 0s ss x P x s

x
   

 
+ + + + + =  

          (20)

 

 ( ) ( )
1 21 1 23 , 0s ss x P x s

x
   

 
+ + + + + =  

          (21) 

 ( ) ( )
1 21 1 32 , 0s ss x P x s

x
   

 
+ + + + + =  

          (22) 
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 ( )  ( )
1

4exp log , 0s x x P x s
x

  
   + + + =    

          (23) 

 ( ) ( )
1 22 2 5 , 0s ss y P y s

y
   

 
+ + + + + = 
 

           (24) 

 ( )  ( )
1

6exp log , 0s y y P y s
y

  
   + + + =    

          (25) 

 ( )  ( )
1

1

exp log , 0ss z z P z s
z

  
   + + + =    

          (26) 

 ( )  ( )
2

1

exp log , 0ss z z P z s
z

  
   + + + =    

          (27) 

( ) ( )1 1 00, 5P s P s=                (28) 

 ( ) ( ) ( )2

2 1 1 1 00, 4 0, 20P s P s P s = =              (29) 

 ( ) ( ) ( )3

3 1 2 1 00, 3 0, 60P s P s P s = =              (30) 

 ( ) ( ) ( )4

4 1 3 1 00, 2 0, 120P s P s P s = =             (31) 

 ( ) ( )5 2 00, 2P s P s=                 (32) 

 ( ) ( ) ( )2

6 2 5 2 00, 0, 2P s P s P s = =              (33) 

( ) ( ) ( ) ( ) ( ) ( )
1 1 0 1 2 3 50, 0, 0, 0, 0,s sP s P s P s P s P s P s  = + + + +         

( ) ( )
1

2 3

1 1 1 2 01 5 20 60 2s P s    = + + + +           (34) 

 ( ) ( ) ( ) ( ) ( ) ( )
2 2 0 1 2 3 50, 0, 0, 0, 0,s sP s P s P s P s P s P s  = + + + +       

          ( ) ( )
2

2 3

1 1 1 2 01 5 20 60 2s P s    = + + + +           (35)  

Laplace transformation of boundary conditions after repair 

( ) ( ) ( ) ( )1 1 0 1 2

0

0, 5 ,P s P s x P x s dx 


= +  ( ) ( )
( ) ( )

( )
1 11 2

0

3

1 0 1 2

0

5 0,

x

s ss x x dx

P s x e P s dx
   

 
− + + + −

 
 = +

 
 
 

  
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   ( ) ( ) ( )
1 1 21 0 1 25 3 0,s sP s S s P s   = + + + +     

   ( ) ( ) ( )
1 1 21 0 1 1 15 3 4 0,s sP s S s P s    = + + + +  

( )
( )

( )
1 1 2

1
1 0

1 1

5
0,

1 4 3 s s

P s P s
S s



   
=

− + + +
          (36) 

Similarly 

( )
( )

( )
1 1 2

2

1
2 0

1 1

20
0,

1 3 2 s s

P s P s
S s



   
=

− + + +
          (37) 

( ) ( )
( )

( )
1 1 2

3

1
3 1 2 0

1 1

60
0, 3 0,

1 3 2 s s

P s P s P s
S s




   
= =

− + + +
       (38) 

( ) ( )
( )

( )
1 1 2

4

1
4 1 3 0

1 1

120
0, 2 0,

1 3 2 s s

P s P s P s
S s




   
= =

− + + +
       (39) 

( ) ( )5 2 00, 2P s P s=                 (40) 

( ) ( ) ( )2

6 2 5 2 00, 0, 2P s P s P s = =              (41) 

( ) ( ) ( )
1 1

2 3

1 1 1 2 00, 1 5 20 60 2s sP s P s    = + + + +            (42) 

 ( ) ( ) ( )
2 2

2 3

1 1 1 2 00, 1 5 20 60 2s sP s P s    = + + + +          (43) 

Now solving all the equations with the boundary conditions, one may get 

( )
( )0

1
P s

D s
=                  (44) 

( )
( )

( ) 
( ) ( ) 

1 1 2

1 2 1 1 2

1
1

1

1 1 1

1 45

4 1 4 3

s s

s s s s

S s
P s

D s s S s





  

      

− + + +
=

+ + + − + + +
      (45) 

( )
( )

( ) 
( ) ( ) 

1 1 2

1 2 1 1 2

2
1

1
2

1 1 1

1 320

3 1 3 2

s s

s s s s

S s
P s

D s s S s





  

      

− + + +
=

+ + + − + + +
      (46) 

( )
( )

( ) 
( ) ( ) 

1 1 2

1 2 1 1 2

3
1

1
3

1 1 1

1 260

2 1 3 2

s s

s s s s

S s
P s

D s s S s





  

      

− + + +
=

+ + + − + + +
      (47) 
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( )
( )

( ) 
( ) 

0

1 1 2

4

1
4

1 1

1120

1 3 2 s s

S s
P s

D s s S s







   

−
=

− + + +
          (48) 

( )
( )

( ) 
( )

2 1 2

1 2

2
2

5

2

12 s s

s s

S s
P s

D s s

   

  

− + + +
=

+ + +
           (49)

 ( )
( )

( ) 
0

2

2
6

12 S s
P s

D s s

 −
=               (50) 

( )
( )

( )

( ) 
01

1

2 3

1 1 1 2
11 5 20 60 2s

s

S s
P s

D s s

     −+ + + +
=         (51) 

( )
( )

( )

( ) 
02

2

2 3

1 1 1 2
11 5 20 60 2s

s

S s
P s

D s s

     −+ + + +
=         (52) 

where ( )
1 2

4
21 1

1 2 2 2

1 1

5 120
5 2 2 2

1 4 1 3
s s

P T
D s s S T

Q R

 
     

 
= + + + + − − − −

− −
 

      ( )( )
1 2

2 3

1 1 1 21 5 20 60 2s s T     − + + + + +  

and ( )
1 1 2

1 2

1
1

1 1

4
4

s s

s s

P S s
s




  

   
= + + + =

+ + + +
 

( )
1 1 2

1 2

1
1

1 1

3
3

s s

s s

Q S s
s




  

   
= + + + =

+ + + +
 

( )
1 1 2

1 2

1
1

1 1

2
2

s s

s s

R S s
s




  

   
= + + + =

+ + + +
 

( )
2 1 2

1 2

2
2

2 2

s s

s s

S S s
s




  

   
= + + + =

+ + + +
 

( )
0

0

0

T S s
s






= =

+
 

Sum of Laplace transformations of the state transitions, where the system is in operational mode 

and failed state at any time, is as follows. 

( ) ( ) ( ) ( ) ( ) ( )0 1 2 3 5upP s P s P s P s P s P s= + + + +  
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( )

( ) 
( ) ( ) 

( ) 
( ) ( ) 

( ) 
( ) ( ) 

( ) 

1 1 2

1 2 1 1 2

1 1 2

1 2 1 1 2

1 1 2

1 2 1 1 2

2 1 2

1 1

1 1 1

2

1 1

1 1 1

3

1 1

1 1 1

2 2

5 1 4
1

4 1 4 3

20 1 3

3 1 3 21

60 1 2

2 1 3 2

2 1

s s

s s s s

s s

s s s s

s s

s s s s

s s

S s

s S s

S s

s S s

D s S s

s S s

S s

s















   

      

   

      

   

      

   

− + + +
+

+ + + − + + +

− + + +
+

+ + + − + + +
=

− + + +
+

+ + + − + + +

− + + +
+

+( )
1 22 s s  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+ + 
 

     (53) 

( ) ( )1down upP s P s= −                 (54) 

  

7. ANALYTICAL STUDY 

7.1 Availability Analysis 

When repair follows general and Gumbel-Hougaard family copula distribution, we have 

( )
( ) 

( )
( ) 

( ) 
1

0

1

1
exp log

exp log

exp log
x x

x x
S s S s

s x x
 

 


  




 +
  

 +
  = =

 + +
  

 

setting  ( ) , 1,2
i

i

i

S s i
s






= =

+
and ( )S s

s





=

+
 

Here we have considered the following three cases on switching device for the availability of the 

system: 

Case I: When both the subsystems have switching device, the availability of the system by 

taking the values of different parameters as 

1 21 20.03, 0.02, 0.025, 0.022, 1, 1,s s     = = = = = = 1, 1, 1,x y z= = = ( )1 1,2i i = = , in (53), 

then taking the inverse Laplace to transform, we obtain, 

1.1370 2.7829 1.3118 1.0638

0.01070 1.1070 1.0670

( ) 0.003240 0.022538 0.035199 0.098452

           1.012130 0.000578 0.094103

up

t t t t

t t t

P t e e e e

e e e

− − − −

− − −

= − + − +

+ − −
  (55) 

Case II: When subsystem-2 does not have switching device, then the availability of the system 

by taking the values of different parameters as
1 21 20.03, 0.02, 0.025, 0, 1, 1,s s     = = = = = =
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1, 1, 1,x y z= = = ( )1 1,2i i = = , in (53), then taking the inverse Laplace to transform, we obtain, 

1.1150 1.0850 2.7532 1.2960

1.0421 0.0119 1.0450

( ) 0.003268 0.0005880 +0.012383 0.031792

           0.109886 +1.018479 0.105102

up

t t t t

t t t

P t e e e e

e e e

− − − −

− − −

= −− −

+ −
  (56) 

Case III: When subsystem-1 and two both do not have switching device, the availability of the 

system by taking the values of different parameters as 

1 21 20.03, 0.02, 0, 0, 1, 1, 1, 1,s s x y     = = = = = = = = ( )1, 1 1,2iz i= = = , in (53), then taking 

the inverse Laplace to transform, we obtain, 

2.7193 1.2785 1.0175 0.0131

1.0900 1.0200 1.0600

( ) 0.000365 0.027264 0.125983 1.025501

           0.003298 0.1206870 0.000598

up

t t t t

t t t

P t e e e e

e e e

− − − −

− − −

= − + +

− − −
   (57) 

For 0,10,20,30,40,50,60,70,80,90 and 100t = units of time, one may get different values 

( )upP t with the help of (55-57), as shown in table-2 and figure-2. 

 

Table 2 Variation of availability with respect to time in various cases 

 

          Time (t)   Case-I   Case-II   Case-III 

0   1.0000   1.0000   1.0000 

10   0.9094   0.9045   0.8999 

20   0.8171   0.8032   0.7897 

30   0.7342   0.7133   0.6930 

40   0.6597   0.6335   0.6082 

50   0.5927   0.5626   0.5337 

60   0.5326   0.4996   0.4683 

70   0.4785   0.4437   0.4110 

80   0.4300   0.3941   0.3607 

90   0.3863   0.3500   0.3165 

100   0.3471   0.3108   0.2777 
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Figure 2 Availability as a function of time 

7.2 Reliability Analysis  

In order to obtain system reliability, consider repair rates equal to zero. Like availability, the 

same three cases are discussed here. 

Case I: When both the subsystems have a switching device, the reliability of the system by 

taking the values of different parameters as 
1 21 20.03, 0.02, 0.025, 0.022s s   = = = = in (53), 

we obtain, 

0.1070 0.2370 0.1370 0.1670

0.0670

( )

          0.235294

0.012465 1.570613 0.180000 2.142857t t t t

t

R t e e e e

e

− − − −

−

=

+

− + +
     (58) 

Case II: When subsystem-2 does not have a switching device, the availability of the system by 

taking the values of different parameters as 
1 21 20.03, 0.02, 0.025, 0s s   = = = = in (53), we 

obtain, 

0.2150 0.1150 0.1450 0.0450

0.0850

( ) 1.570613

          0.012462

0.180000 2.142857 0.235294t t t t

t

R t e e e e

e

− − − −

−

= −

+

+ + +
     (59) 

Case III: When subsystem-1, as well as the subsystem-2, do not have a switching device, the 

availability of the system by taking the values of different parameters as 

1 21 20.03, 0.02, 0, 0s s   = = = = in (53), we obtain, 
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0.1900 0.1200 0.0900 0.0600

0.0200

( ) 1.570613 2.142857

          0.235294

0.180000 0.012462t t t t

t

R t e e e e

e

− − − −

−

= − +

+

+ +
    (60) 

For 0,10,20,30,40,50,60,70,80,90 and 100t = units of time, one may get different values ( )R t

with the help of (58-60), as shown in table-3 and figure-3. 

Table 3 Computed values of reliability corresponding to the different cases 

 

          Time (t)   Case-I   Case-II   Case-III 

0   1.0000   1.0000   1.0000 

10   0.4269   0.5320   0.6831 

20   0.1369   0.2125   0.3504 

30   0.0479   0.0928   0.1965 

40   0.0196   0.0473   0.1286 

50   0.0090   0.0270   0.0943 

60   0.0044   0.0164   0.0736 

70   0.0022   0.0102   0.0590 

80   0.0011   0.0065   0.0478 

90   0.0005   0.0041   0.0390 

100   0.0002   0.0026   0.0319 

 

 

Figure 3 Reliability as a function of time 
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7.3 Mean Time to Failure (MTTF) 

Taking all repair rate to zero and the limit as s tends to zero in (53) for the exponential 

distribution; we can obtain the MTTF as: 

 
2 3

1 1 1 2

1 1 1 2

5 20 60 21
1

4 3 2
MTTF

   

        

 
= + + + + 

+ + + + 
        (61) 

where 
1 21 25 2 s s    = + + + and

1 2s s  = +  

Now taking the values of different parameters as 
1 21 20.03, 0.02, 0.025 and 0.022s s   = = = =

and varying
1 21 2, ,  and s s     one by one respectively as 0.01,0.02,0.03,0.04,0.05,0.06,0.07,

0.08,0.09,0.10  in (61), the variation of MTTF, with respect to failure rates, can be obtained in 

table-4 and figure-4. 

 

Table 4 Computation of MTTF corresponding to the failure rates 

 

Failure  MTTF   MTTF   MTTF   MTTF 

   Rate     1      2        
1s

        
2s  

0.01  16.0481   11.0396   13.1586   12.6936 

0.02  13.1802   11.1466   11.7385   11.3754 

0.03  11.1466   10.9881   10.6151   10.3212 

0.04  9.7040   10.7013   9.6971   9.4528 

0.05  8.6468   10.3557   8.9290   8.7221 

0.06  7.8477   9.9880   8.2749   8.0970 

0.07  7.2282   9.6181   7.7101   7.5552 

0.08  6.7378   9.2565   7.2167   7.0806 

0.09  6.3433   8.9087   6.7818   6.6611 

0.10  6.0219   8.5775   6.3952   6.2875 
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Figure 4 MTTF as a function of failure rates 

 

7.4 Cost Analysis 

Let the service facility be always available, then expected profit during )0, t is 

( ) ( )1 2

0

t

p upE t K P t dt K t= −                (62) 

For the same set of parameters defined in (53), one can obtain (63). Therefore, 

1.1370 2.7829 1.3119 1.0638
1

0.0107 1.1070 1.0670
2

( )

94.57792

{0.002850 0.008099 0.026831 0.092545

           94.595676 0.000523 0.088194 }

p

t t t t

t t t

E t K e e e e

e e e K t

− − − −

− −

=

+

− + −

− + + −
   (63) 

Setting 1 1K = 2 0.6,0.5,0.4,0.3,0.2 and 0.1K = respectively, and varying 0,10,20,30,40,t =  

50,60,70,80,90 and 100units of time, the results for expected profit can be obtained as per 

table-5 and figure-5. 
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Table 5 Profit computation for different values of time 

 

Time ( )t    2 0.6K =  2 0.5K =  2 0.4K =   2 0.3K =      2 0.2K =      2 0.1K =  

   0  0.0000     0.0000     0.0000       0.0000      0.0000     0.0000 

  10  3.5808     4.5808     5.5808       6.5809      7.5809     8.5809 

  20  6.2056     8.2056     10.2056   12.2056     14.2056    16.2051 

  30  7.9551    10.9551     13.9551   16.9551     19.9551       22.9551 

  40  8.9182    12.9182     16.9182   20.9182     24.9182    28.9182 

  50  9.1748    14.1748     19.1748   24.1748     29.1748    34.1748 

  60  8.7966    14.7966     20.7966   26.7966     32.7986    38.7966 

  70  7.8479    14.8479     21.8479   28.8479     35.8479       42.8479 

  80  6.3867    14.3867     22.3867   30.3867     38.3867     46.3867 

  90  4.4649    13.4649     22.4649   31.4649     40.4649       49.4649 

 100  2.1293    12.1293     22.1293   32.1293     42.1293     52.1293 

 

 

Figure 5 Expected profit as a function of time 

 

7.5 Sensitivity Analysis corresponding to MTTF 

The sensitivity in MTTF of the system can be studied through the partial differentiation of MTTF 

with respect to the failure rates of the system. By applying the set of parameters as 
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11 20.3, 0.2, 0.25s  = = = and 
2

0.22s = in the partial differentiation of MTTF, one can 

calculate MTTF sensitivity, as shown in table-6 and figure-6. 

 

Table 6 MTTF sensitivity as a function of failure rates 

Failure Rate  
( )

1

MTTF






  

( )

2

MTTF






  

( )

1s

MTTF






  

( )

2s

MTTF






 

0.01   -326.7760  31.5790   -161.4625  -148.8523 

0.02   -241.9781  -5.7094   -125.2098  -116.9666 

0.03   -169.5936  -23.8210  -100.9229  -95.1384 

0.04   -122.3188  -32.4317  -83.5807  -79.3132 

0.05   -91.1812  -36.0978  -70.6214  -67.3551 

0.06   -69.9076  -37.1163  -60.6048  -58.0337 

0.07   -54.8285  -36.7045  -52.6592  -50.5901 

0.08   -43.7890  -35.5322  -46.2253  -44.5304 

0.09   -35.4802  -33.9767  -40.9280  -39.5191 

0.10   -29.0776  -32.2544  -36.5055  -35.3198 

 

 

Figure 6 MTTF sensitivity as a function of failure rates 
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8. CONCLUSION 

In this paper, the reliability analysis of a complex system consisting of two subsystems, 

subsystem-1 and subsystem-2 in a series configuration with the switching device, is studied. The 

subsystems have five and two units, respectively. Furthermore, the switching device in the 

system is unreliable, and the function of the switch is: "as long as the switch fails, the whole 

system fails immediately." Using the supplementary variable technique and the Laplace 

transform various measures like availability of the system, reliability of the system, MTTF, profit 

analysis, and sensitivity analysis for MTTF are derived in this model. 

Table-2 and corresponding figure-2 give the analysis of availability in three different cases on the 

switching device. In case I, 
1 2

0.025, 0.022s s = = i.e., both subsystems have a switching device, 

in case II,
1 2

0.025, 0s s = = i.e., only the first subsystem has switching device, while in case III,

1 2
0, 0s s = = i.e., no subsystem have switching device. It reveals from the graph that availability 

constantly decreases as time increases in all the three cases. The reliability of the system is 

evaluated in three different cases, like availability and shown in table-3 and figure-3. It 

concludes that reliability decreases significantly in the beginning, and thereafter it decreases 

approximately in a constant manner. Thus, both the availability and reliability decrease with an 

increase in time. Investigation through figure 2 and figure 3 concludes that availability values are 

greater than reliability for the same values of failure rates. Thus, one can understand the need for 

repair for repairable systems for better performance.   

Table-4 and figure-4 yield the MTTF of the system with respect to variation in failure rate

1 21 2, ,  and s s    , respectively, when other parameters have been kept constant. MTTF of the 

system is decreasing concerning different failure rates. MTTF of the system is highest for the 

failure rate of subsystem-1 and is lowest concerning the failure rate of subsystem-2. The MTTF 

of switching devices and subsystem-1 are almost the same on failure rate variation value after 

0.03.  

When revenue cost per unit time fixed at 1 1K = and service costs at 2 0.6,0.5,0.4,0.3,K =  

0.2 and 0.1, the expected profit has been calculated (Table 5), and the results are demonstrated 

by the graph (Figure 5). It reveals that expected profit increased as time increased for lower 

values of 2K while it is decreased for higher values of service cost. Thus, for low service costs, 



381 

PERFORMANCE ANALYSIS OF A COMPLEX REPAIRABLE SYSTEM 

the profit is higher as compared to the high service cost. The sensitivities of the system MTTF 

concerning the system parameter
1 21 2, ,  and s s    s shown in table-6 and figure-6. The sensitivity 

of MTTF for system parameters becomes constant for higher values. Thus, in general, with the 

study, the behavior of such systems can be analyzed and prognosticate in advance. This paper 

may be important to engineers, maintenance managers, and plant management for proper 

maintenance analysis, decision, and for the safety of the system as a whole. 
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