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1. INTRODUCTION 

          The introduction of BCI – algebra and BCK – algebras by Y. Imai and K. Iseki [1, 2], 

BCK algebras class is a proper sub class of BCI – algebras class. J. Neggers et al [3] introduced 

Q – algebras as a generalization of BCK and BCI algebras. In [4], C. Prabpayak and U. Leerawat 

introduced KU – algebra as a new algebraic structure. They obtained the notion of KU – algebras 

homomorphism. L. A. Zadeh [5] in 1965 gave the concept of a fuzzy subset of a set. This notion 

has been applied to many mathematical branches, such as groups, rings, topology, real and so on. 
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Xi [6] applied this concept to BCK – algebras, and he introduced fuzzy sub algebras notion. 

Mostafa and Abdel Naby [7] introduced fuzzy KU – ideals in KU – algebras. Sithar Selvam and 

Ramachandran [8] introduced the concept of anti Q – fuzzy KU – ideal and sub algebras of KU – 

algebras and investigated some related properties. Atanassov [9, 10] introduced the concept of 

intuitionistic fuzzy subset as generalization of fuzzy set. Mostafa et al [11] introduced 

intuitionistic fuzzy KU ideals and fuzzy intuitionistic image of KU – ideals in KU – algebras.  

On the other hand Massa'deh and Massa'deh et al used the intuitionistic fuzzy concept in more 

than one paper (see [12, 13, 14, 15]).     

In this paper, we introduce the concept of intuitionistic Q –fuzzy KU – ideal in KU – 

algebra and we define upper and lower level cuts of Q – fuzzy sets and discuss some results 

related to this subject.  

 

2. PRELIMINARIES  

Definition 2.1 [4] An algebra system (A, *, 0) for type (2, 0) is said to be KU – algebra if the 

following conditions are satisfied.                                                                           

1. (a * b) *[(b *c) * (a * c)] = 0                                                                               

2. a * 0 = 0                                                                                                               

3. 0 * a = a                                                                                                               

4. If a * b = 0 = b * a then a = b.                                                                             

For all a, b, c  A.                                                                                                      

            In KU – algebra A, we get (0 * 0) * [ (0 * a) * (0* a)] = 0. It follows that a * a = 0 for all 

a  A, and if we put b = 0 in condition.1, we obtain c * (a * c) = 0 for all a, c  A, A subset B of 

a KU – algebra A is called sub algebra of A, if u, v  B then u * v  B.                                                                                                                   

Definition 2.2 [4] If S is a non empty subset of a KU – algebra A, then its said to be KU – sub 

algebra of A, if a, b  S then a  b  S.                                                            

Definition 2.3 [4] A KU – ideal S is non empty subset of KU – algebra A if it satisfied the 

following axioms:                                                                                         

I. 0  S.                                                                                                                         

II. a *(b * c)  S, b  S then a * c  S for all a, b, c  S.                                             

Proposition 2.4 [4] In KU – algebra A, the following statement are holds                     

  1. v  u  u  z  v  z                                                                                             
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  2. z  ( v  u ) = v  ( z  u )                                                                                      

  3. v  [ ( v  u )  u] = 0   u, v, z  A                                                                     

Proof: Straightforward.                                                                                                  

Definition 2.5 [5] Let A be a nonempty set, a fuzzy subset  of a set A is a mapping : A → 

[0,1].                                                                                                                  

Definition 2.6 If A, Q are any two sets, a mapping: A  Q → [0, 1] is called Q – fuzzy set in A.                                                                                                                    

Definition 2.7 [8] A Q – fuzzy set  in A is said to be a Q – fuzzy KU – ideal of A if 

1. ( 0, q )  ( u, q )                                                                                                 

 2. ( u  z, q )  min { ( u  ( v  z ), q ), ( v, q ) }                                                

for all u, v, z  A & q  Q.                                                                                               

Lemma 2.8 [8] Let  be a Q – fuzzy ideal of KU – algebra A                                             

1. If u  v  z , then ( v, q )  min { ( u, q ), ( z, q ) }                                         

2. u  v, then ( v, q )  ( u, q ).                                                                              

Proof: Straightforward.                                                                                                  

Definition 2.9 [8] If  is a Q – fuzzy set on a KU – algebra A, then  is called a Q – fuzzy KU – 

sub algebra of A if ( u  v, q )  min { ( u, q ), ( v, q ) } for all u, v  A & q  Q.    

  

3. INTUITIONISTIC Q – FUZZY KU – IDEAL IN KU – ALGEBRA 

Definition 3.1 [8] Let A, Q are arbitrary non empty sets. An intuitionistic Q - fuzzy subset μ in a 

set A  Q is defined as an object of the form μ = { < (a,q); δμ (a, q), λμ (a, q) > ; a  A  q  Q}, 

where δμ : A  Q → [0,1] and λμ: A  Q → [0,1] define the degree of membership and the degree 

of non membership of the element (a,q)  A  Q respectively and for every a A, q  Q 

satisfying 0 ≤ δμ (a, q) + λμ (a, q) ≤ 1. 

We shall use the symbol  = (δμ , λμ) for intuitionistic Q – fuzzy set μ = {< (a,q); δμ (a, q), 

λμ (a, q) > ; a  A  q  Q}.                                                                    

Definition 3.2 An intuitionistic Q – fuzzy set  = (δμ , λμ) in a KU – algebra A is said to be an 

intuitionistic Q – fuzzy KU – sub algebra of A. If it satisfies the following conditions.                                                                                                                         

1. λμ( u  v, q )  min { λμ( u, q ), λμ( v, q ) }                                                                 

2. μ( u  v, q )  max { μ( u, q ), μ( v, q ) }                                                                

For all u, v  A  q  Q.                                                                                                 
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Lemma 3.3 If  = (δμ , λμ) is an intuitionistic Q – fuzzy sub algebra of A, then . λμ( 0, q )  λμ( u, 

q ) and μ( 0, q )  μ( u, q ) for  all u  A  q  Q.                                     

Proof:                                                                                                                                

λμ(u  u, q )  min { λμ( u, q ), λμ( u, q ) } = λμ( u, q ) =  λμ( 0, q ) 

and μ( 0, q ) = μ( u  v, q )  max { μ( u, q ), μ( u, q ) } = μ( u, q ).                          

Definition 3.4 An intuitionistic Q – fuzzy set  = (δμ , λμ) in a KU – algebra A is said to be an 

intuitionistic Q – fuzzy ideal of A, if it satisfy the following conditions             

1. λμ( 0, q )  λμ( u, q ) and μ( 0, q )  μ( u, q )                                                         

2. λμ( u  z, q )  min { λμ( u (v  z), q ), λμ( v, q ) }                                                 

3. μ( u  z, q )  max { μ( u (v  z), q ), μ( v, q ) }                                                

For all u, v, z  A  q  Q.                                                                                             

Theorem 3.5 Let   be an intuitionistic Q – fuzzy KU – ideal of KU – algebra A such that u  v 

 z, then                                                                                                             

1. λμ(v, q )  min { λμ( u, q ), λμ( v, q ) }                                                                 

2. μ(v, q )  max { μ( u, q ), μ( v, q ) }                                                                

For all u, v  A  q  Q.                                                                                               

Proof:                                                                                                                                

We know u  v  z for all u, v, z  A thus z (u  v) = 0. Now                            

1. λμ( v, q ) = λμ( 0 v, q )                                                                                                 

 min {λμ( 0 ( u  v ), q ), λμ( u, q ) }                                                         

= min {λμ ( u  v , q ), λμ( u, q ) }                                                                 

 min {min { λμ( u ( z  v ), q ), λμ( z, q ) }, λμ( u, q ) }                            

= min {min { λμ( z ( u  v ), q ), λμ( z, q ) }, λμ( u, q ) }                            

= min {min { λμ( 0, q ), λμ( v, q ) }, λμ( u, q ) }                                           

= min {λμ( u, q ), λμ( v, q ) }                                                                  

Therefore λμ(v, q )  min { λμ( u, q ), λμ( v, q ) }.                                                            

2. μ( v, q ) = μ( 0 v, q )                                                                                                 

 max {μ( 0 ( u  v ), q ), μ( u, q ) }                                                         

= max {μ ( u  v , q ), μ( u, q ) }                                                                 

  max {max { μ( u ( z  v ), q ), μ( z, q ) }, μ( u, q ) }                           
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= max {max { μ( z ( u  v ), q ), μ( z, q ) }, μ( u, q ) }                            

= max {max { μ( 0, q ), μ( v, q ) }, μ( u, q ) }                                           

= max {μ( u, q ), μ( v, q ) }                                                                         

Therefore μ( v, q )  max { μ( u, q ), μ( v, q ) }.                                                        

Theorem 3.6 If  is an intuitionistic Q – fuzzy KU – ideal of KU – algebra A, then for all  

u, v  A & q  Q, we have  λμ( u ( u  v ), q )  λμ( v, q ) and μ( u ( u  v ), q )  μ( v, q ).                                                                                                                         

Proof:                                                                                                                                

Let u, v  A & q  Q. Then                                                                                    

λμ( u ( u  v ), q )  min { λμ( u ( u  v ), q ), λμ( v, q )}                                              

= min { λμ( u ( u ( v  v )), q ), λμ( v, q )}                                      

= min { λμ( u ( u  0 ), q ), λμ( v, q )}                                               

= min { λμ( u  0 ), q ), λμ( v, q )}                                                      

= min { λμ( 0, q ), λμ( v, q )}                                                              

= λμ( v, q )                                                                                          

Hence λμ( u ( u  v ), q )  λμ( v, q ).                                                                               

On the other hand                                                                                                              

   μ( u ( u  v ), q )  max { μ( u ( u  v ), q ), μ( v, q )}                                          

    = max { μ( u ( u ( v  v )), q ), μ( v, q )}                                  

= max { μ( u ( u  0 ), q ), μ( v, q )}                                          

= max { μ( u  0 ), q ), μ( v, q )}                                                  

= max { μ( 0, q ), μ( v, q )}                                                          

= μ( v, q )                                                                                      

Hence μ( u ( u  v ), q )  μ( v, q ).                                                                               

Definition 3.7 For any α, β [ 0, 1 ] and a Q – fuzzy set  in a non empty set A, the set α = {u 

 A, q  Q; (u, q)  α} is called an upper α – level cut of  and β = {u  A, q  Q; (u, q)  

β} is called a lower β – level cut of .                                           

Theorem 3.8 If  is an intuitionistic Q – fuzzy KU – ideal of KU – algebra A, then α
 , β  

are a KU – ideal of A for every α, β  [0, 1].                                               

Proof:                                                                                                                                

Hence  is an intuitionistic Q – fuzzy KU – ideal of A                                            
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1. Let u  α
 this  means that λμ(u, q)  α ,                                                                    

λμ( 0, q ) = λμ( v  0 ), q )                                                                  

 min { λμ( v ( u  0 ), q ), λμ( u, q )}                              

= min { λμ(( v  0 ), q ), λμ( u, q )}                                    

= min { λμ( 0, q ), λμ( u, q )}                                             

= λμ( u, q )                                                                         

 α                                                                                     

Thus 0  α
.                                                                                                                   

2. Let u ( v  z ) α
 and v α

 for all u, v, z  A & q  Q, u ( v  z )  α
 and v  α

 

for all u, v, z A this implies that λμ( u ( v  z ), q )  α and λμ( v, q )  α. λμ(( v  z ), q )  

min{ λμ( u ( v  z ), q ) , λμ( v, q )}  min{α, α} = α, thus  v  z  α
 and we get  α

 an KU – 

ideal of A for every α [0, 1].                                         

  On the other hand                                                                                                            

1. Let u  β this means that μ(u, q)  β ,                                                                    

μ ( 0, q ) = μ ( v  0 ), q )                                                                 

 max { μ ( v ( u  0 ), q ), μ ( u, q )}                            

= max { μ (( v  0 ), q ), μ ( u, q )}                                 

= max { μ ( 0, q ), μ ( u, q )}                                           

= μ ( u, q )                                                                        

 β                                                                                     

Thus 0  β.                                                                                                                   

2. Let u ( v  z ) β and v β for all u, v, z  A & q  Q, u ( v  z )  β and v  β 

for all u, v, z A this implies that μ ( u ( v  z ), q )  β  and μ ( v, q )  β. μ (( v  z ), q )  

max{ μ ( u ( v  z ), q ) , μ ( v, q )}  max{β, β} = β, thus  v  z  β and we get  β an KU 

– ideal of A for every β [0, 1].                                

Theorem 3.9 Let  be an intuitionistic Q – fuzzy set of KU – algebra A. If for each α, β  [0, 1], 

and α
 , βis a KU – ideal of A, then  is an intuitionistic Q – fuzzy KU – ideal of A.                                                                                                                       

Proof: Straightforward.                                                                                                     
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Theorem 3.10 An intuitionistic Q – fuzzy set  = (δμ , λμ) is an intuitionistic Q – fuzzy KU – 

ideal of A if and only if for all α, β  [0, 1], the set α
 and β are either empty or KU – ideal 

of A.                                                                                                 

Proof:                                                                                                                                

 Let  = (δμ , λμ) is an intuitionistic Q – fuzzy KU – ideal of A and α
    β. Since λμ( 0, 

q )  α and μ ( 0, q )  β, let u, v, z  A be such that u ( v  z )  α
, v  α

. Then λμ( u ( 

v  z ), q )  α and λμ( v, q )  α, it follows that  λμ( u  z  ), q )  min { λμ( u ( v  z ), q ), λμ( v, 

q )}  α thus u  z  α
. Therefore α

 is an KU – ideal of A.                                                                                                           

On the other hand, if u, v, z  A such that  u ( v  z )  β, then μ( u ( v  z ), q )   β and 

μ( v, q )   β thus μ( u  z  ), q )   max { μ( u ( v  z ), q ), μ( v, q )}   β thus u  z  β. 

Therefore β is an KU – ideal of A.                                                   

 Suppose that for each α, β  [0, 1], the sets α
 and β are either empty or KU – ideal of A. 

For any u  A, let λμ( u, q ) = α and μ( u, q ) =  β, then u  α
   β  and α

    β. 

Since α
 and β  are KU – ideal of A, therefore 0  α

   β hence λμ( 0, q )  α = λμ( u , 

q )  and μ ( 0, q )  β = μ ( u, q ) for all u  A. If there exist d, e, f  A be such that λμ( d  f, q ) 

 min { λμ(d ( e  f ), q ), λμ( e, q )} by taking α0 = ½ { λμ( d  f, q ) + min { λμ(d ( e  f ), q ), 

λμ( e, q )}} we get  λμ( d  f, q ) <  α0  < min { λμ(d ( e  f ), q ), λμ( e, q )}and hence d  e 

α0
, d ( e  f )  α0

 and e  α0
, this means that α0

 is not an KU – ideal of A and this 

is contradiction. Now, assume that there exist u, v, z  A such that   μ(( u  z  ), q )  max { μ( 

u ( v  z ), q ), μ( v, q )} by taking β0 = ½ { μ( u  z, q ) + max { μ(u ( v  z ), q ), μ( v, q )}} 

we get max { μ(u ( v  z ), q ), μ( v, q )}} <  β0 < μ( u  z, q ) thus u (v  z)  β0  and v   

β0 while ( x  z ) β0 which is contradiction and this complete proof.                                                                                                           

Definition 3.11 Let A be an KU – algebra and a, b  A, we can define a set U(a, b) = { a  A; a 

(b a) = 0}. It easy to see that 0, a, b  U(a, b) for all a, b  A.                   

Theorem 3.12 Let  be an intuitionistic Q – fuzzy set in KU – algebra A. Then  is an 

intuitionistic Q – fuzzy KU – ideal of A if and only if  satisfies the following condition. For all 

a, b  A; α, β [0, 1], (a, b)  α
 thus U(a, b)  α

 and (a, b)  β thus U(a, b)  β.                                                                                                    

Proof: 
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 Suppose that  is an intuitionistic Q – fuzzy KU – ideal of A, now let u, v α
 . Then λμ(u, 

q)  α and  λμ(v, q)  α let a  U(u, v). Then u (v  a) = 0, now     λμ( a, q ) = λμ( a  0, q )                                                                               

 min { λμ(0 ( v  a ), q ), λμ( v, q )}                                          

= min { λμ(v  a ), q ), λμ( v, q )}                                                 

 min { min{λμ(v ( u  a ), q ), λμ( u, q )}, λμ( v, q )}               

= min { min{λμ(u ( v  a ), q ), λμ( u, q )}, λμ( v, q )}               

= min { min{λμ(0 , q ), λμ( u, q )}, λμ( v, q )}                             

= min{λμ(u , q ), λμ( v, q )}                                                         

= min {α, α}                                                                                

= α.                                                                                              

Thus λμ( a, q )  α. And hence a α
 therefore U(a, b)  α

                                                         

And let u, v β . Then μ(u, q)  β and  μ(v, q)  β let a  U(u, v). Then u (v  a) = 0, now     

μ( a, q ) = μ( a  0, q )                                                                               

 max { μ(0 ( v  a ), q ), μ( v, q )}                                          

= max { μ(v  a ), q ), μ( v, q )}                                                 

 max { max{μ(v ( u  a ), q ), μ( u, q )}, μ( v, q )}               

= max { max{μ(u ( v  a ), q ), μ( u, q )}, μ( v, q )}               

= max { max{μ(0 , q ), μ( u, q )}, μ( v, q )}                             

= max{μ(u , q ), μ( v, q )}                                                          

= min {β, β}                                                                                 

= β.                                                                                               

Thus μ( a, q )  β. And hence a β therefore U(a, b)  β                                                        

 Assume that U(a, b)  α
, its clear that 0  U(a, b)  α

 for all a, b  A 

Now, let u, v, z  A such that u ( v  z)  α
 and v  α

 since (u ( v  z))  (v ( u  z)) =  

(v ( u  z))  (u ( v  z)) = 0 and we have u  z  U(u ( v  z), v)  β. Thus α
 is an KU 

– ideal of A.                                                                               

And, suppose that U(a, b)  β its clear that 0  U(a, b)  β for all a, b  A 

Now, let u, v, z  A such that u ( v  z)  β and v  β since (u ( v  z))  (v ( u  z)) =  

(v ( u  z))  (u ( v  z)) = 0 and we have u  z  U(u ( v  z), v)  β. Thus β is an KU 

– ideal of A.                                                                               
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 Therefore, by Theorem 3.9  is an intuitionistic Q – fuzzy KU – ideal of A. 

Definition 3.13 An intuitionistic Q – fuzzy set  in KU- algebra A is said to be intuitionistic Q – 

fuzzy sub algebra of A if                                                                       

1. λμ( a  b, q)  min{  λμ(a, q),  λμ(b, q)}                                                                  

2. μ(a  b, q )  max { μ(a, q ), μ( b, q )}                                                               

For all a, b  A & q  Q.                                                                                                  

Theorem 3.14 Let  be an intuitionistic Q – fuzzy sub algebra of a KU – algebra A then.                                                                                                                                   

1. λμ( 0 , q)  λμ( a , q)                                                                                                

2. μ( 0, q )  μ(a , q )                                                                                                

For all a  A & q  Q.                                                                                                      

Proof:                                                                                                                                

We know a  a = 0 for any a  A, then                                                       

1.  λμ( 0 , q) = λμ(a  a , q)                                                          

 min{  λμ(a, q),  λμ(a, q)}                                     

= λμ(a, q)                                                               

And we get λμ( 0 , q)  λμ( a , q).                                                                                      

            2. μ( 0, q ) =  μ(a  a , q )                                                                   

 max { μ(a, q ), μ( a, q )}                                              

= μ(a, q )                                                                          

Hence μ( 0, q )  μ(a , q ).                                                                                              

Corollary 3.15 If A is a KU – algebra, then an intuitionistic Q – fuzzy set  is an intuitionistic Q 

– fuzzy sub algebra if and only if for every α, β  [0, 1], α
 and β are either empty or KU – 

sub algebra of A.                                                                      

Proof:                                                                                                                                

 Assume that is an intuitionistic Q – fuzzy sub algebra and α
    β      

for any u, v  α
 and q Q , we have λμ( u  v, q)  min{  λμ(u, q),  λμ(v, q)}  α then u  v 

α
 and hence  α

 is a KU – sub algebra of A. On the other hand u, v  β and q Q , we 

have μ(u  v, q )  max {μ(u, q ), μ( v, q )}  β then u  v β and hence  β is a KU – sub 

algebra of A.                                                                      
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 Suppose that α
 and β are KU – sub algebra of A, for any u, v  α

 then u  v α
 take 

α = min{  λμ(u, q),  λμ(v, q)}therefore λμ( u  v, q)  α = min{  λμ(u, q),  λμ(v, q)} and for any u, v 

 β then u  v β take β = max {μ(u, q ), μ( v, q )} thus μ(u  v, q )  β = max {μ(u, q ), 

μ( v, q )}and hence  is an intuitionistic Q – fuzzy sub algebra of A. 

 

4. CONCLUSION  

In this research, we have studied intuitionistic Q – fuzzy KU – sub algebra, KU – ideal and its 

level cuts. These notions can further be generalized.  
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