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1. Introduction: 

In 2007, Huang and Zhang [5] introduced the concept of cone metric space, 

replacing the set of real numbers by Banach space ordered by a cone and proved 

some fixed point theorems for function satisfying contractive conditions in these 

spaces. In this setting, Bogdan Rzepecki [11] generalized the fixed point theorems 

of Maia type [9] and Shy-Der Lin [8] considered some results of Khan and Imdad 

[7] Huang and Zhang [5] also discussed some properties of convergence of 

sequences and proved the fixed point theorems of contractive mapping for cone 

metric spaces: Any mapping T of a complete cone metric space X into itself that 

satisfies, for some 0 ≤  k< 1, the inequality 

d(Tx, Ty) ≤ k d(x, y) 
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for all x,y∈ X, has a unique fixed point. 

Recently, Thabet Abdeljawad  et. al. [3] proved some fixed point theorems for self 

maps satisfying some contraction principles on a cone Banach space. More precisely 

they proved that for a closed and convex subset  C of a cone Banach space with the 

norm || ||p , and letting d: X xX→ E with d(x,y) = || x-y||p , if there exist a,b,c,s and T: 

C→ C satisfies the conditions 0 ≤ 
   -  - 

      
 < 1 and     a d(Tx, Ty)  + b(d(x, Tx) + d(y, 

Ty) )+ c d(y, Tx) ≤ s d(x,y) for all x,y∈ C, then T has at least one fixed point. 

Here we will give some generalization of this theorem 

2. Preliminaries: 

Let E be a real Banach space. A subset P of E is said to be a cone if and only if 

i. P is closed, nonempty and P ≠ {0}. 

ii. ax+by∈ P for all x,y∈ P and non-negative real numbers a,b. 

iii. P∩(-P) = {0}. 

 

For a given cone P ⊆ E, me can define a partial ordering ≤ with respect to P by x ≤ 

y if and only if y-x ∈ P. x< y will stand for x≤y and x≠y, while x<<y will stand for y-

x ∈int P, where int P denotes the interior of P. 

The cone P is called normal if there is a number M > 0 such that for all x,y∈ 

E, 

0 ≤ x ≤ y implies ||x|| ≤ M ||y||. 

The least positive number satisfying the above is called the normal constant of P. 

The cone P is called regular if every increasing sequence which is bounded from 

above is convergent. That is , if {xn}, is a sequence such that x1 ≤  x2  ≤……≤ y for 

some y ∈ E, then there is x ∈ E such that ||xn-x||→ 0 as n→ ∞. Equivalently the cone 

P is regular if and only if every decreasing sequence which is bounded from below is 

convergent. 
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Lemma 2.1 [4, 10]  (i)   Every regular cone is normal. 

   (ii)  For each k > 1, there is a normal cone with normal constant 

K > k 

 

Definition 2.2 [5] Let X be a nonempty set. Then any map d: X xX→ E is said to be 

cone metric on X if for all x,y,z∈ X, d satisfies. 

i. d(x,y) ≥ 0 and d(x,y) = 0 if and only if x = y. 

ii. d(x,y) = d(y,x) 

iii. d(x,y) ≤ d(x,z) + d(z,y). 

Pair (X,d) is called as cone metric space (CMS). 

We denote set of all reals by R 

Example 2.3 Let E = R
2
, P = {(x,y) ∈ E : x,y ≥ 0} and X = R. 

 Define d : X xX→ E by d(x,y) = (α|x-y| , β|x-y|) ,  

where α,β are positive constants. Then (X,d) is a CMS. 

It is quite natural to consider cone normed spaces (CNS). 

 

Defintion2.4  [1, 16] Let X be a linear space over R and || . ||p: X→ E be a map which 

satisfies 

i. ||x||p > 0 for all x ∈ X, 

ii. ||x||p = 0 if and only if x = 0, 

iii. ||x + y||p ≤ ||x||p + ||y||p for all x,y∈ X, 

iv. ||kx||p = |k| ||x||p for all k ∈ R, 
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Then || . ||p is called cone norm on X, and pair (X, ||.||p) is called cone normed space 

(CNS). 

Note that each CNS is CMS. Indeed, d(x,y) = ||x-y||p. 

 

Definition 2.5  Let {xn}n≥1 be a sequence in CNS (X, ||.||p) . Then 

i. It is said to be a convergent sequence if for every c ∈ E with c ≥ 0 there is a 

natural number N such that for all n ≥ N, || xn- x ||p ≤ c  for some fixed x ∈ X. 

ii. It is said to be a Cauchy sequence if for every c ∈ E with c ≥ 0 there is a 

natural number N such that for all n,m ≥ N, ||xn - xm||p ≤ c. 

iii. CNS (X, ||.||p) is said to be complete if every Cauchy sequence in X is 

convergent. 

Lemma 2.6  [6 ] Let (X, ||.||p) be a CNS and P be a normal cone with normal 

constant K. If {xn} is a sequence in X, then 

i. {xn} converges to x if and only if ||xn - x||p→ 0, as n→∞ 

ii. {xn} is a Cauchy sequence if and only if ||xn - xm||p→0 as n , m→∞. 

iii. {xn} converges to x and sequence {yn} converges to y, then ||xn - yn||p→||x - 

y||p. 

Lemma 2.7  [14, 15, 6 ] Let (X, ||.||p) be a CNS over a cone P in E. Then  

i. Int(P) + Int(P) ⊆Int(P) and λ Int(P)⊆Int(P), λ > 0. 

ii. If c >> 0 then there exists δ > 0 such that ||b|| < δ implies b << c. 

iii. For any given c >> 0 and co>> 0 there exists a natural number no such that 

co/no<< c. 

iv. If an ,bn are sequences in E such that an→a, bn→b and an ≤ bn , for all n, then a 

≤  b. 
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Definition2.8  [4 ] Cone P is called minihedral cone if sup{x,y} exists for all x,y∈ E 

and strongly minihedral if every subset of E which is bounded from above has a 

supremum. 

Lemma 2.9 [2] Every strongly minihedral normal cone is regular 

For T : X→X, the set of fixed points of T is denoted by F(T) = {z ∈ X : Tz = z} 

Definition 2.10  [13] Let C be a closed and convex subset of a cone Banach space 

with the norm      || x||p = d(x,0) and T : C→C a map. Then T is called non expansive if  

   ||Tx - Tz||p ≤ ||x - z||p   for all  x,z ∈ C  

and T is called quasi-nonexpansive if 

  ||Tx - z||p ≤ ||x - z||p for all  x∈ C,  z ∈ F(T) 

3. Main Results :  

Theorem 3.1 

Let C be a closed convex subset of a cone Banach space X with norm ||x||p. Suppose  

E = (E || . ||) is a real Banach space and let d : X x X→E be a mapping such that   

d(x,y) = ||x - y ||p. 

If there exist a,b,c,e and T : C→C satisfying the conditions 

 0 ≤ 
   -  - 

       
 < 1, a+b+c ≠ 0 ,a+b+c> 0 and e ≥ 0   (3.1) 

 a d(Tx , Ty) + b{d(x,Tx) + d(y,Ty)} + c{d(y,Tx) + d(x,Ty)} ≤ e d(x,y) 

 (3.2) 

 hold for all x,y∈ C. Then T has at least one fixed point. 

Proof : 

 Pick xo∈C and define a sequence {xn} in the following way : 

 xn+1  =  xn + Txn  , n = 0, 1, 2,……      (3.3) 

        2 

 Notice that 
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 xn - Txn = 2(xn – (xn + Txn )) = 2(xn – xn+1)    (3.4) 

    2 

 which yields that 

 d(xn , Txn) = || xn - Txn ||p = 2||xn – xn+1||p = 2 d(xn , xn+1)  (3.5) 

 for n = 0, 1, 2,…. Analogously, for n = 0,1,2,3…, one can get  

d(xn-1 , Txn-1) = 2d(xn-1 , xn), and 

 d(xn, Txn-1) = 
 

 
 d(xn-1, Txn-1) = d(xn-1, xn),     (3.6) 

and by the triangle inequality 

 d(xn, Txn) - d(xn, Txn-1) ≤ d(Txn-1, Txn).    (3.7) 

 We put x = xn-1 and y = xn in inequality (3.2), 

 a d(Txn-1, Txn) + b[d(xn-1, Txn-1) + d(xn, Txn)] + c[d(xn, Txn-1) +d(xn-1, Txn)] ≤ e 

d(xn-1, xn).          (3.8) 

 for all a,b,c,e that satisfy (3.1). Taking into account (3.5) and (3.6) one can 

observe. 

 a d(Txn-1, Txn) + b[2d(xn-1, xn) + 2d(xn, xn+1)] + c[d(xn-1, xn) + d(xn, xn+1)] ≤ e 

d(xn-1, xn).         (3.9) 

 which is equivalent to 

 a d(Txn-1, Txn) ≤ e d(xn-1, xn) – 2b[d(xn-1, xn) + d(xn, xn+1)] – c[d(xn-1, xn) + d(xn, 

xn+1)].          (3.10) 

 By using (3.7), the statement (3.10) turns into 

 a [d(xn,Txn) – d(xn, Txn-1)] ≤ e d(xn-1, xn) – 2b[d(xn-1, xn) + d(xn, xn+1)] –  

c[d(xn-1, xn) +     d(xn, xn+1)].       (3.11) 

 Regarding (3.5) and (3.6), in (3.11), 

2a d(xn, xn+1) – a d(xn-1, xn) ≤ e d(xn-1, xn) – 2b d(xn-1, xn) – 2b d(xn, xn+1) – c 

d(xn-1, xn) –    c d(xn, xn+1). 

 (2a+2b+c) d(xn, xn+1) ≤ (e+a–2b –c) d(xn-1, xn) 
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Since a+b+c ≠ 0, we get d(xn, xn+1) ≤ 
   -  - 

       
 d(xn-1, xn). 

 d(xn, xn+1) ≤ K d(xn-1, xn), where K = 
        

       
 

Thus the sequence {xn} is a Cauchy sequence that converges to some element of C, 

say z. We claim that z is a fixed point of T. When we substitute x= z and y = xn in 

(3.2). 

a d(Tz, Txn) + b{d(z, Tz) + d(xn, Txn)} + c{d(xn, Tz) + d(z, Txn)} ≤  e d(z, xn) 

Due to the equation (3.3) and xn→z, we have Txn→z 

 a d(Tz, z) + b d(z, Tz) + c d(z, Tz) ≤ 0 as n→∞ 

 (a+b+c)  d(z, Tz) ≤ 0 

 Tz = z as a+b+c> 0. 

Definition 3.2 Let (X, d) be a complete metric space and S, T be self maps on X. A 

point z ∈ X is said to be a coincidence point of S, T if Sz = Tz and it is called 

common fixed point of S,T if    Sz = Tz = z. 

More over a pair (S,T) of self maps is called weakly compatible on X if they commute 

at their coincidence points i.e. z ∈ X, Sz = Tz implies STz = TSz 

 Theorem 3.3 Let C be a closed convex subset of a cone Banach space X with norm  

|| ||p and let   d : X x X→E with d(x,y) = ||x-y||p. If  T and S are self maps on C that 

satisfy the conditions. 

(3.31) T(C) ⊆ S(C) 

(3.32) S(C) is a complete subspace 

(3.33) a d(Tx, Ty) + b{d(Sx, Tx) + d(Sy, Ty)} + c{ d(Sy, Tx) + d(Sx, Ty)} ≤             

r d(Sx, Sy). 

 for  a+b+c ≠ 0, 0 ≤ r < a+2b, r < b, a ≠ r. 
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hold for all x,y∈  C, then S and T have a common coincidence point. 

Moreover if S and T are weakly compatible, then they have a unique common fixed 

point in C. 

Proof : Pick xo∈ C. By (3.31) we can find a point in C, say x1, such that T(xo) = Sx1. 

Since S, T are self maps, there exists yo∈ C such that yo = Txo = Sx1. 

Inductively we can define a sequence {yn} and sequence {xn} in C such that 

(3.34) yn = Sxn+1 = Txn, n = 0,1,2,…. 

 We put x= xn and y = xn+1 in inequality (3.33), it implies that 

a d(Txn, Txn+1) + b{d(Sxn, Txn) + d(Sxn+1, Txn+1)} + c{ d(Sxn+1, Txn) + d(Sxn, 

Txn+1)} ≤ r d(Sxn, Sxn+1) 

 a d(yn, yn+1) + b{ d(yn-1, yn) + d(yn, yn+1)} + c{ d(yn, yn) + d(yn-1, yn+1)} ≤ r 

d(yn-1, yn) 

By using triangle inequality and suitable choices of a,b,c, it implies, 

(a+b) d(yn, yn+1) + b d(yn-1, yn) + c d(yn-1, yn) + c d(yn, yn+1) ≤ r d(yn-1, yn) 

 d(yn, yn+1) ≤ 
 - - 

     
  d(yn-1, yn) = k d(yn-1, yn) 

where k = 
     

     
 . Similarly d(yn-1, yn) ≤ k d(yn-2, yn-1) 

Since 0 ≤ r < a+2b, r < b, then 0≤ k < 1. 

By routine calculations, 

(3.35) d(yn, yn+1) ≤ k
n
 d(yo, y1). 

We claim that {yn} is a Cauchy sequence. Let n > m,  

Then by (3.35) and the triangle inequality. 

d(yn, ym) ≤ d(yn, yn-1) + d(yn-1, yn-2) +…….+ d(ym+1, ym). 

 ≤ k
n-1

d(yo, y1) + k
n-2

 d(yo, y1) +…….+ k
m

 d(yo, y1). 

 ≤    k
m

    d(yo, y1) 
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    (1-k) 

Therefore {yn} is a Cauchy sequence. Since S(C) is complete, then {yn = Sxn+1 

= Txn} converges to some point in S(C) , say z 

Now by replacing x with p and y with xn+1 in (3.33), we get 

a d(Tp, Txn+1) + b{Sp, Tp) + d(Sxn+1, Txn+1)} + c{d(Sxn+1, Tp) + d(Sp, Txn+1)} 

≤ r d(Sp, Sxn+1). 

 a d(Tp, yn+1) + b{d(z, Tp) + d(yn, yn+1)} + c{ d(yn, Tp) + d(z, yn+1)} ≤ r d(z, yn) 

As n→∞ , it becomes 

a d(Tp, z) + b d(z, Tp) + c d(z, Tp) ≤ 0. 

Since a+b+c ≠ 0, then Tp = z. Hence Tp = z = Sp. 

i.e. p is a coincidence point of S and T. 

If S and T are weakly compatible, then they commute at a coincidence point. 

Therefore ,Tp = z = Sp ==>STp = TSp for some p ∈ C, which implies Tz = Sz. We 

claim that z is a common fixed point of S and T.  

Substitute x = p and y = Tp = z in (3.33), to give  

a d(Tp, TTp) + b{d(Sp, Tp) + d(STp, TTp)} + c {d(STp, Tp) + d(Sp, TTp)} ≤ 

r  d(Sp, STp). 

which is equivalent to 

a d(z, Tz) + b{ d(z, z) + d(Sz, Tz)} + c{ d(Sz, z) + d(z, Tz)} ≤ r d(z, Sz). 

 (a + 2c – r) d(z, Tz) ≤ 0. 

Since  a + 2c – r ≠ 0, then z = Tz = Sz. 

To prove uniqueness, suppose the contrary, that w is another common fixed 

point of S and T. Put x by z and y by w in the inequality (3.33), one can get. 

 a d(Tz, Tw) + b{ d(Sz, Tz) + d(Sw, Tw)} + c{d(Sw, Tz) + d(Sz, Tw)} ≤ r d(Sz, 

Sw). 
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 a d(z, w) + 2c d(z, w) ≤ r d(z, w) 

 (a + 2c – r) d(z, w) ≤ 0. 

which is a contradiction since a + 2c – r ≠ 0. Hence the common fixed point of 

S and T is unique. 
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