

Available online at http://scik.org

J. Math. Comput. Sci. 2 (2012), No. 5, 1464-1474

ISSN: 1927-5307

COINCIDENCE POINTS AND COMMON FIXED POINTS IN

CONE BANACH SPACES

RAHUL TIWARI^{1,*} AND D.P. SHUKLA²

¹Department of Mathematical Sciences, A.P.S. University Rewa (M.P.) 486001, India

²Department of Mathematics, Govt. P.G. Science College Rewa (M.P.) 486001, India

Abstract: In this manuscript we obtain coincidence points and common fixed points in cone Banach spaces. Our result generalizes and extends the result of Thabet Ableljwal, Erdal Karapinar and KenanTas [3].

Keywords: Cone normed spaces, Coincidence points, Common fixed points.

2000 AMS Mathematics Subject Classification: 54H25, 47H10.

1. Introduction:

In 2007, Huang and Zhang [5] introduced the concept of cone metric space, replacing the set of real numbers by Banach space ordered by a cone and proved some fixed point theorems for function satisfying contractive conditions in these spaces. In this setting, Bogdan Rzepecki [11] generalized the fixed point theorems of Maia type [9] and Shy-Der Lin [8] considered some results of Khan and Imdad [7] Huang and Zhang [5] also discussed some properties of convergence of sequences and proved the fixed point theorems of contractive mapping for cone metric spaces: Any mapping T of a complete cone metric space X into itself that satisfies, for some $0 \le k < 1$, the inequality

 $d(Tx, Ty) \le k d(x, y)$

*Corresponding author

 $E-mail\ Addresses:\ tiwari.rahul.rewa@gmail.com\ (R.\ Tiwari),\ shukladpmp@gmail.com\ (D.P.\ Shukla)$

Received June14, 2012

for all $x,y \in X$, has a unique fixed point.

Recently, Thabet Abdeljawad et. al. [3] proved some fixed point theorems for self maps satisfying some contraction principles on a cone Banach space. More precisely they proved that for a closed and convex subset C of a cone Banach space with the norm $\|\cdot\|_p$, and letting d: $X \times X \to E$ with $d(x,y) = \|\cdot x - y\|_p$, if there exist a,b,c,s and T: $C \to C$ satisfies the conditions $0 \le \frac{s + a - 2b - c}{2(a + b)} < 1$ and $a \cdot d(Tx, Ty) + b(d(x, Tx) + d(y, Ty)) + c \cdot d(y, Tx) \le s \cdot d(x,y)$ for all $x,y \in C$, then T has at least one fixed point.

Here we will give some generalization of this theorem

2. Preliminaries:

Let E be a real Banach space. A subset P of E is said to be a cone if and only if

- i. P is closed, nonempty and $P \neq \{0\}$.
- ii. $ax+by \in P$ for all $x,y \in P$ and non-negative real numbers a,b.
- iii. $P \cap (-P) = \{0\}.$

For a given cone $P \subseteq E$, me can define a partial ordering \leq with respect to P by $x \leq y$ if and only if $y-x \in P$. x < y will stand for $x \leq y$ and $x \neq y$, while x << y will stand for $y-x \in P$, where int P denotes the interior of P.

The cone P is called normal if there is a number M>0 such that for all $x,y\in E$,

$$0 \le x \le y$$
 implies $||x|| \le M ||y||$.

The least positive number satisfying the above is called the normal constant of P.

The cone P is called regular if every increasing sequence which is bounded from above is convergent. That is , if $\{x_n\}$, is a sequence such that $x_1 \le x_2 \le \dots \le y$ for some $y \in E$, then there is $x \in E$ such that $||x_n-x|| \to 0$ as $n \to \infty$. Equivalently the cone P is regular if and only if every decreasing sequence which is bounded from below is convergent.

Lemma 2.1 [4, 10] (i) Every regular cone is normal.

(ii) For each k > 1, there is a normal cone with normal constant

K > k

Definition 2.2 [5] Let X be a nonempty set. Then any map d: $X \times X \to E$ is said to be cone metric on X if for all $x,y,z \in X$, d satisfies.

- i. $d(x,y) \ge 0$ and d(x,y) = 0 if and only if x = y.
- ii. d(x,y) = d(y,x)
- iii. $d(x,y) \le d(x,z) + d(z,y)$.

Pair (X,d) is called as cone metric space (CMS).

We denote set of all reals by R

Example 2.3 Let
$$E = R^2$$
, $P = \{(x,y) \in E : x,y \ge 0\}$ and $X = R$.

Define d :
$$X \times X \rightarrow E$$
 by $d(x,y) = (\alpha |x-y|, \beta |x-y|)$,

where α,β are positive constants. Then (X,d) is a CMS.

It is quite natural to consider cone normed spaces (CNS).

Defintion2.4 [1, 16] Let X be a linear space over R and $\| . \|_p$: X \rightarrow E be a map which satisfies

- i. $||\mathbf{x}||_p > 0$ for all $\mathbf{x} \in \mathbf{X}$,
- ii. $||\mathbf{x}||_p = 0$ if and only if $\mathbf{x} = 0$,
- iii. $||x + y||_p \le ||x||_{p+} ||y||_p$ for all $x,y \in X$,
- iv. $||\mathbf{k}\mathbf{x}||_p = |\mathbf{k}| \, ||\mathbf{x}||_p$ for all $\mathbf{k} \in \mathbf{R}$,

Then $\| . \|_p$ is called cone norm on X, and pair $(X, \| . \|_p)$ is called cone normed space (CNS).

Note that each CNS is CMS. Indeed, $d(x,y) = ||x-y||_p$.

Definition 2.5 Let $\{x_n\}_{n\geq 1}$ be a sequence in CNS $(X, \|.\|_p)$. Then

- i. It is said to be a convergent sequence if for every $c \in E$ with $c \ge 0$ there is a natural number N such that for all $n \ge N$, $||x_n x||_p \le c$ for some fixed $x \in X$.
- ii. It is said to be a Cauchy sequence if for every $c \in E$ with $c \ge 0$ there is a natural number N such that for all $n,m \ge N$, $||x_n x_m||_p \le c$.
- iii. CNS $(X, \|.\|_p)$ is said to be complete if every Cauchy sequence in X is convergent.

Lemma 2.6 [6] Let $(X, \|.\|_p)$ be a CNS and P be a normal cone with normal constant K. If $\{x_n\}$ is a sequence in X, then

- i. $\{x_n\}$ converges to x if and only if $||x_n x||_p \to 0$, as $n \to \infty$
- ii. $\{x_n\}$ is a Cauchy sequence if and only if $||x_n x_m||_p \to 0$ as n, $m \to \infty$.
- iii. $\{x_n\}$ converges to x and sequence $\{y_n\}$ converges to y, then $||x_n-y_n||_p \rightarrow ||x-y||_p$.

Lemma 2.7 [14, 15, 6] Let $(X, \|.\|_p)$ be a CNS over a cone P in E. Then

- i. $Int(P) + Int(P) \subseteq Int(P)$ and $\lambda Int(P) \subseteq Int(P)$, $\lambda > 0$.
- ii. If c >> 0 then there exists $\delta > 0$ such that $||b|| < \delta$ implies b << c.
- iii. For any given c >> 0 and $c_o >> 0$ there exists a natural number n_o such that $c_o/n_o << c.$
- iv. If a_n , b_n are sequences in E such that $a_n \rightarrow a$, $b_n \rightarrow b$ and $a_n \le b_n$, for all n, then a $\le b$.

Definition2.8 [4] Cone P is called minihedral cone if $\sup\{x,y\}$ exists for all $x,y \in E$ and strongly minihedral if every subset of E which is bounded from above has a supremum.

Lemma 2.9 [2] Every strongly minihedral normal cone is regular

For T: $X \rightarrow X$, the set of fixed points of T is denoted by $F(T) = \{z \in X : Tz = z\}$

Definition 2.10 [13] Let C be a closed and convex subset of a cone Banach space with the norm $\|x\|_p = d(x,0)$ and T: C \rightarrow C a map. Then T is called non expansive if

$$||Tx - Tz||_p \le ||x - z||_p$$
 for all $x,z \in C$

and T is called quasi-nonexpansive if

$$||Tx - z||_p \le ||x - z||_p$$
 for all $x \in C$, $z \in F(T)$

3. Main Results:

Theorem 3.1

Let C be a closed convex subset of a cone Banach space X with norm $||x||_p$. Suppose $E = (E \parallel . \parallel)$ is a real Banach space and let $d : X \times X \to E$ be a mapping such that $d(x,y) = ||x - y||_p$.

If there exist a,b,c,e and $T: C \rightarrow C$ satisfying the conditions

$$0 \le \frac{e+a-2b-c}{2a+2b+c} < 1, a+b+c \ne 0, a+b+c > 0 \text{ and } e \ge 0$$
 (3.1)

a
$$d(Tx, Ty) + b\{d(x,Tx) + d(y,Ty)\} + c\{d(y,Tx) + d(x,Ty)\} \le e d(x,y)$$
(3.2)

hold for all $x,y \in C$. Then T has at least one fixed point.

Proof:

Pick $x_0 \in C$ and define a sequence $\{x_n\}$ in the following way:

$$x_{n+1} = \underline{x_n + Tx_n}_{2}, n = 0, 1, 2, \dots$$
 (3.3)

Notice that

$$x_n - Tx_n = 2(x_n - (\underline{x_n + Tx_n}_2)) = 2(x_n - x_{n+1})$$
 (3.4)

which yields that

$$d(x_n, Tx_n) = ||x_n - Tx_n||_p = 2||x_n - x_{n+1}||_p = 2 d(x_n, x_{n+1})$$
(3.5)

for $n = 0, 1, 2, \dots$ Analogously, for $n = 0, 1, 2, 3, \dots$ one can get

$$d(x_{n-1}, Tx_{n-1}) = 2d(x_{n-1}, x_n)$$
, and

$$d(x_n, Tx_{n-1}) = \frac{1}{2} d(x_{n-1}, Tx_{n-1}) = d(x_{n-1}, x_n), \tag{3.6}$$

and by the triangle inequality

$$d(x_n, Tx_n) - d(x_n, Tx_{n-1}) \le d(Tx_{n-1}, Tx_n). \tag{3.7}$$

We put $x = x_{n-1}$ and $y = x_n$ in inequality (3.2),

$$a \ d(Tx_{n-1}, Tx_n) + b[d(x_{n-1}, Tx_{n-1}) + d(x_n, Tx_n)] + c[d(x_n, Tx_{n-1}) + d(x_{n-1}, Tx_n)] \le e$$

$$d(x_{n-1}, x_n). \tag{3.8}$$

for all a,b,c,e that satisfy (3.1). Taking into account (3.5) and (3.6) one can observe.

$$a \ d(Tx_{n\text{-}1}, \ Tx_n) + b[2d(x_{n\text{-}1}, \ x_n) + 2d(x_n, \ x_{n+1})] + c[d(x_{n\text{-}1}, \ x_n) + d(x_n, \ x_{n+1})] \le e$$

$$d(x_{n\text{-}1}, \ x_n). \tag{3.9}$$

which is equivalent to

$$a \ d(Tx_{n-1}, Tx_n) \le e \ d(x_{n-1}, x_n) - 2b[d(x_{n-1}, x_n) + d(x_n, x_{n+1})] - c[d(x_{n-1}, x_n) + d(x_n, x_{n+1})]. \eqno(3.10)$$

By using (3.7), the statement (3.10) turns into

$$a \left[d(x_n, Tx_n) - d(x_n, Tx_{n-1}) \right] \le e \ d(x_{n-1}, x_n) - 2b [d(x_{n-1}, x_n) + d(x_n, x_{n+1})] - c [d(x_{n-1}, x_n) + d(x_n, x_{n+1})].$$
 (3.11)

Regarding (3.5) and (3.6), in (3.11),

$$\begin{aligned} &2a\ d(x_n,\,x_{n+1})-a\ d(x_{n-1},\,x_n)\leq e\ d(x_{n-1},\,x_n)-2b\ d(x_{n-1},\,x_n)-2b\ d(x_n,\,x_{n+1})-c\\ &d(x_{n-1},\,x_n)-\ c\ d(x_n,\,x_{n+1}). \end{aligned}$$

$$\Rightarrow$$
 $(2a+2b+c) d(x_n, x_{n+1}) \le (e+a-2b-c) d(x_{n-1}, x_n)$

Since $a+b+c \neq 0$, we get $d(x_n, x_{n+1}) \leq \frac{e+a-2b-c}{2a+2b+c} d(x_{n-1}, x_n)$.

$$\Rightarrow$$
 d(x_n, x_{n+1}) \leq K d(x_{n-1}, x_n), where K = $\frac{e+a-2b-c}{2a+2b+c}$

Thus the sequence $\{x_n\}$ is a Cauchy sequence that converges to some element of C, say z. We claim that z is a fixed point of T. When we substitute x = z and $y = x_n$ in (3.2).

$$a d(Tz, Tx_n) + b\{d(z, Tz) + d(x_n, Tx_n)\} + c\{d(x_n, Tz) + d(z, Tx_n)\} \le e d(z, x_n)$$

Due to the equation (3.3) and $x_n \rightarrow z$, we have $Tx_n \rightarrow z$

$$\Rightarrow$$
 a d(Tz, z) + b d(z, Tz) + c d(z, Tz) \leq 0 as n $\rightarrow\infty$

$$\Rightarrow$$
 (a+b+c) d(z, Tz) < 0

$$\Rightarrow$$
 Tz = z as a+b+c> 0.

Definition 3.2 Let (X, d) be a complete metric space and S, T be self maps on X. A point $z \in X$ is said to be a coincidence point of S, T if Sz = Tz and it is called common fixed point of S, T if Sz = Tz = z.

More over a pair (S,T) of self maps is called weakly compatible on X if they commute at their coincidence points i.e. $z \in X$, Sz = Tz implies STz = TSz

Theorem 3.3 Let C be a closed convex subset of a cone Banach space X with norm $\| \|_p$ and let $d : X \times X \to E$ with $d(x,y) = \|x-y\|_p$. If T and S are self maps on C that satisfy the conditions.

$$(3.31)$$
 T(C) \subseteq S(C)

(3.32) S(C) is a complete subspace

(3.33) a
$$d(Tx, Ty) + b\{d(Sx, Tx) + d(Sy, Ty)\} + c\{d(Sy, Tx) + d(Sx, Ty)\} \le r d(Sx, Sy)$$
.

for
$$a+b+c \neq 0$$
, $0 \le r < a+2b$, $r < b$, $a \ne r$.

hold for all $x,y \in C$, then S and T have a common coincidence point. Moreover if S and T are weakly compatible, then they have a unique common fixed point in C.

Proof : Pick $x_o \in C$. By (3.31) we can find a point in C, say x_1 , such that $T(x_o) = Sx_1$. Since S, T are self maps, there exists $y_o \in C$ such that $y_o = Tx_o = Sx_1$.

Inductively we can define a sequence $\{y_n\}$ and sequence $\{x_n\}$ in C such that

(3.34)
$$y_n = Sx_{n+1} = Tx_n, n = 0,1,2,...$$

We put $x = x_n$ and $y = x_{n+1}$ in inequality (3.33), it implies that

$$\begin{split} &a\ d(Tx_n,\ Tx_{n+1}) + b\{d(Sx_n,\ Tx_n) + d(Sx_{n+1},\ Tx_{n+1})\} + c\{\ d(Sx_{n+1},\ Tx_n) + d(Sx_n,\ Tx_{n+1})\} \leq r\ d(Sx_n,\ Sx_{n+1}) \end{split}$$

$$\Rightarrow \ a \ d(y_n, \ y_{n+1}) + b\{ \ d(y_{n-1}, \ y_n) + d(y_n, \ y_{n+1})\} + c\{ \ d(y_n, \ y_n) + d(y_{n-1}, \ y_{n+1})\} \leq r$$

$$d(y_{n-1}, \ y_n)$$

By using triangle inequality and suitable choices of a,b,c, it implies,

$$(a+b) d(y_n, y_{n+1}) + b d(y_{n-1}, y_n) + c d(y_{n-1}, y_n) + c d(y_n, y_{n+1}) \le r d(y_{n-1}, y_n)$$

$$\Rightarrow d(y_n, y_{n+1}) \le \frac{r - b - c}{a + b + c} d(y_{n-1}, y_n) = k d(y_{n-1}, y_n)$$

where
$$\mathbf{k}=\frac{r-b-c}{a+b+c}$$
 . Similarly $d(y_{n\text{-}1},\,y_n) \leq k \; d(y_{n\text{-}2},\,y_{n\text{-}1})$

Since
$$0 \le r < a+2b$$
, $r < b$, then $0 \le k < 1$.

By routine calculations,

$$(3.35) \ d(y_n, y_{n+1}) \le k^n d(y_o, y_1).$$

We claim that $\{y_n\}$ is a Cauchy sequence. Let n > m,

Then by (3.35) and the triangle inequality.

$$\begin{split} d(y_n,\,y_m) & \leq d(y_n,\,y_{n\text{-}1}) + d(y_{n\text{-}1},\,y_{n\text{-}2}) + \ldots \ldots + d(y_{m\text{+}1},\,y_m). \\ \\ & \leq k^{n\text{-}1} d(y_o,\,y_1) + k^{n\text{-}2} \, d(y_o,\,y_1) + \ldots \ldots + k^m \, d(y_o,\,y_1). \\ \\ & \leq k^m \quad d(y_o,\,y_1) \end{split}$$

 $\overline{(1-k)}$

Therefore $\{y_n\}$ is a Cauchy sequence. Since S(C) is complete, then $\{y_n = Sx_{n+1} = Tx_n\}$ converges to some point in S(C), say z

Now by replacing x with p and y with x_{n+1} in (3.33), we get

$$\begin{split} &a\;d(Tp,\,Tx_{n+1})+b\{Sp,\,Tp)+d(Sx_{n+1},\,Tx_{n+1})\}+c\{d(Sx_{n+1},\,Tp)+d(Sp,\,Tx_{n+1})\}\\ &\leq r\;d(Sp,\,Sx_{n+1}). \end{split}$$

$$\Rightarrow \ a \ d(Tp, y_{n+1}) + b\{d(z, Tp) + d(y_n, y_{n+1})\} + c\{\ d(y_n, Tp) + d(z, y_{n+1})\} \le r \ d(z, y_n)$$

As $n \rightarrow \infty$, it becomes

a
$$d(Tp, z) + b d(z, Tp) + c d(z, Tp) \le 0$$
.

Since $a+b+c \neq 0$, then Tp = z. Hence Tp = z = Sp.

i.e. p is a coincidence point of S and T.

If S and T are weakly compatible, then they commute at a coincidence point. Therefore $T_p = z = S_p = S_p = T_p = T_p$

Substitute x = p and y = Tp = z in (3.33), to give

$$\begin{array}{l} a\;d(Tp,\,TTp)+b\{d(Sp,\,Tp)+d(STp,\,TTp)\}+c\;\{d(STp,\,Tp)+d(Sp,\,TTp)\}\leq\\ r\;d(Sp,\,STp). \end{array}$$

which is equivalent to

$$a d(z, Tz) + b \{ d(z, z) + d(Sz, Tz) \} + c \{ d(Sz, z) + d(z, Tz) \} \le r d(z, Sz).$$

$$\Rightarrow$$
 $(a + 2c - r) d(z, Tz) < 0$.

Since
$$a + 2c - r \neq 0$$
, then $z = Tz = Sz$.

To prove uniqueness, suppose the contrary, that w is another common fixed point of S and T. Put x by z and y by w in the inequality (3.33), one can get.

$$a \ d(Tz, Tw) + b\{ \ d(Sz, Tz) + d(Sw, Tw)\} + c\{d(Sw, Tz) + d(Sz, Tw)\} \leq r \ d(Sz, Sw).$$
 Sw).

$$\Rightarrow$$
 a d(z, w) + 2c d(z, w) \leq r d(z, w)

$$\Leftrightarrow$$
 $(a + 2c - r) d(z, w) \leq 0$.

which is a contradiction since $a + 2c - r \neq 0$. Hence the common fixed point of S and T is unique.

Acknowledgment:

The authors express their gratitude to the referees for constructive and useful remarks and suggestions.

REFERENCES

- [1] Abdeljawad, T. Completion of cone metric spaces, Hacettepe J. Math. Stat. 39 (1), 67-74, 2010
- [2] Abdeljawad, T. and Karapinar, E. Quasi-cone metric spaces and generalizations of Caristi Kirk's theorem, Fixed Point Theory Appl., 2009 doi: 10.1155/2009/574387.
- [3] Abdeljawad, T. and Karapinar, E. and Tas, K. Common Fixed Point theorems in cone Banach spaces, Hacettepe J. Math. Stat. Vol. 40 (2) (2011), 211 217.
- [4] Deimling, K. Nonlinear Functional Analysis (Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1985).
- [5] Huang, L. –G. and Zhang, X. Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal.Appl. 332, 1468 1476, 2007.
- [6] Karapinar, E. Fixed point theorems in cone Banach spaces, Fixed Point Theory Appl. 2009 Article ID 609281, 9 pages, 2009, doi: 10.115/2009/609281.
- [7] Khan, M.S. and Imdad, M.A. A common fixed point theorem for a class of mappings, Indian J. Pure Appl. Math. 14, 1220- 1227, 1983.
- [8] Lin, S. –D. A common fixed point theorem in abstract spaces, Indian J. Pure Appl. Math. 18 (8), 685-690, 1987.
- [9] Maia, M.G. Un' Osservazione sulle contrazioni metriche, Ren. Sem. Mat. Univ. Padova 40, 139-143, 1968.
- [10] Rezapour, Sh. And Hamlbarani, R. Some notes on the paper "Cone metric spaces and fixed point theorems of contractive mappings", J. Math. Anal.Appl. 347, 719-724, 2008.
- [11] Rzepecki, B. On fixed point theorems of Maia type, Publications De L'institut Mathematique 28, 179-186, 1980.
- [12] Sahin, I. and Telci, M. Fixed points of contractive mappings on complete cone metric spaces, Hacettepe J. Math. Stat. 38(1), 59-67, 2009.
- [13] Suzuki, T., Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, Journal of Mathematical Analysis and Applications Vol. 340, no. 2, 1088-1095, 2008.

- [14] Turkoglu, D. and Abuloha, M. Cone metric spaces and fixed point theorems in diametrically contractive mappings, Acta Mathematica Sinica, English Series 26 (3), 489-496. 2010.
- [15] Turkoglu, D., Abuloha, M. and Abdeljawad, T. KKM mappings in cone metric spaces and some fixed point theorems, Nonlinear Analysis: Theory, Methods and Applications 72 (1), 348-353, 2010.
- [16] Turkoglu, D., Abuloha, M. and Abdeljawad, T. Some theorems and examples of cone Banach spaces, J. Comput. Anal.Appl. 12 (4), 739-753, 2010.