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Abstract. In this work, we have presented analysis of time fractional order linear and non-linear partial differential
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explained differential equations are related to natural phenomenon, it may be observed under various circumstances

for which the possible outcome may vary. The properties and nature of physical states of these equations have been

emphasised more precisely by taking fractional order. Fractional order homotopy perturbation method has tackled

the approximate solutions in the series form of well known time fractional order linear and non linear differential

equations. Numerical simulations are demonstrated prominently in graphical format by using Matlab.
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1. INTRODUCTION

Fractional order differential equations and fractional integrals are becoming useful tool for

describing the natural phenomenon of science and engineering models as well as to analyse

the theory of complex systems. Models can be better analysed in the form of fractional order

where we apply basic principles of calculus. These models are indeed becoming ubiquitous

with scientists and researchers looking forward to get appropriate and fruitful results. It would

be more appropriate to state that fractional calculus is the generalised form of traditional cal-

culus [1], [2]. Many mathematical models of physical and chemical states are able to analyse

better the form of fractional order [3]. In the recent developments in inter disciplinary fields

of science and technology like Economics and finance [3], Physics [4], Hydraulics, Geology

and fluid dynamics [5], Biology [6], Biomedical and biotechnology [7], Control systems [8],

Signals and systems, Communication theory [9], Image processing [10] and so on, the scientists

have fruitfully utilised fractional calculus to enhance the applications in the day to day human

life. The extensive literature in the field of fractional calculus has created the challenges for

researchers. The solution of fractional differential equations is an emanating area of present

day research owing to its various practical applications. We can freely handle mathematical

model in the form of fractional order of the derivative or integration and their solutions can be

obtained by using various perturbative and non-perturbative mathematical methods. Ji Huan

He [11] proposed homotopy perturbation method [HPM] and successfully applied on Lighthill

equation [12], Duffing equation [13], and Blasius equation [14] to get the approximate series

solutions. HPM has been applied to solve non linear wave equations [15], Initial and boundary

value problems [16], Voltera integro differential equations [17], Lane Emden type differential

equations [18], Emden Fowler type differential equations [19]-[22], Evolution type differential

equations [23], [24], Klein -Gordon type differential [25], [26] and Lane Emden Fowler type

equations [27].

In this paper, we have employed the technique of time fractional order homotopy perturbation

method to assay some of the time dependent fractional order linear and non linear partial dif-

ferential equations particularly Emden-Fowler type time fractional order differential equations,
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evolution type time fractional order differential equation, Klein- Gordon type time fractional or-

der differential equations and analysed them appropriately. The numerical simulation of these

partial differential equations significantly determines the impact of fractional order. The graph-

ical results have been systematically represented by taking various fractional orders.

1.1. Fractional Order Homotopy Perturbation Method. We have briefly described basic

techniques of fractional order homotopy perturbation method which is the extension of

homotopy perturbation method [12], [13]. The present fractional order homotopy perturbation

method has been implemented to solve general linear and non linear non homogeneous time

fractional partial differential equations with boundary value conditions to get the approximate

series solution. We have first defined the given differential equation in the following form

(1) Dα
t [ f (x1,x2, ...,xn t)] = F (x1,x2, ...,xn t)

with boundary conditions

f (x1,x2, ...,xn,0) = h(x1,x2, ...,xn) and ∂

∂ t f (x1,x2, ...,xn,0) = g(x1,x2, ...,xn)

Where ’α’ is a positive real number which represents the fractional order of differential equation

and F (x1,x2, ...,xn, t) is a function of x1,x2, ...,xn be ’n’ number of space co-ordinates and ’t’

be a time domain.

Let’s define the equation as

(2) Dα [ f (x1,x2, ...,xn, t)]− F (x1,x2, ...,xn , t) = 0

By homotopy technique one can construct a homotopy as

(3) H (τ, p) : Ω × [0, 1]→ R

Where p ∈ [0, 1] , p is called as homotopy parameter.

We guess f0 (x1,x2, ...,xn , t) as an initial approximation for the solution of equation, which

satisfies

H ( f , p) = (1− p) [Dα [ f (x1,x2, ...,xn t)− f0 (x1,x2, ...,xn t)]]

+ p [Dα [ f (x1,x2, ...,xn , t)]−F (x1,x2, ...,xn, t)] = 0(4)
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The above equation must satisfy the given boundary conditions which are defined in the problem

and gives rise to

H ( f , 0) = [Dα f (x1,x2, ...,xn , t)−Dα f0 (x1,x2, ...,xn , t)] = 0

and

H ( f ,1) = [Dα [ f (x1,x2, ...,xn , t)]−F (x1,x2, ...,xn, t)] = 0

Assuming the solution of the equation,

f (x1,x2, ...,xn , t) = f0 (x1,x2, ...,xn , t)+ p f1 (x1,x2, ...,xn , t)+ ....

Taking limit p→ 1, we get the approximate series solution.

(5) f (x1,x2, ...,xn , t) = f0 (x1,x2, ...,xn , t)+ f1 (x1,x2, ...,xn , t)+ ....

It is necessary to note that the major advantage of fractional order homotopy perturbation

method is that perturbation series can freely give the approximate solution and it is convergent

in all sense.

1.2. Basic Definitions And Some Properties Of Fractional Calculus. In this segment, we

have presented some definitions of fractional derivatives and integrals for basic understanding

and further use [1]-[3].

Theorem 1.1. [2] A real function g(t), t > 0 , is said to be in the space Cν , ν ∈ R if there exist

a real number s > ν such that g( t ) = ts g1(t) where g1(t) ∈ C[0,∞) and it is said to be in the

space Cn
ν if and only if gn(t) ∈ Cν , n ∈ N

Definition 1.1. (Riemann-Liouville fractional integral of order α) [2]

Riemann-Liouville fractional integral operator (Jα
t ) of order α ≥ 0 of a function g(t) ∈ Cν ,

ν ≥ −1 is defined as

.aJα
t g(t) =

1
Γα

∫ t

a
(t− τ)α−1.g(τ)dτ

Where t ≥ a ≥ 0 and Γ(.) is a well known Gamma function.
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Some of the properties of Riemann -Liouville fractional integral operator have been

explained.

For g(t) ∈ Cν , ν ∈ R, ν > −1,

a, α, β ≥ 0 and ν ≥ −1

1. .aJα
t g(t) .aJβ

t g(t) = .aJα+β

t g(t)

2. .aJα
t g(t) .aJβ

t g(t) = .aJβ

t g(t) .aJα
t g(t)

3. .aJα
t (t−a)ν = Γν+1

Γα+ν+1(t−a)(α +ν)

4. .aJ0
t g(t) = g(t)

Definition 1.2. (Riemann-Liouville fractional derivative of order α) [2]

If g(t) ∈C[a,b] and a < t < b then

aRL
. Dα

t g(t) =
1

Γ(n−α)

dn

dtn

∫ t

a

g(τ)
(t− τ)α−n+1 dτ

for t ≥ a ≥ 0, is called as Riemann-Liouville fractional derivative of order α .

where n is a positive integer and α is a positive real number such that n−1 < α < n

Definition 1.3. Caputo fractional derivative of order α [2]

Caputo fractional derivative
(
.Ca Dα

t
)

of g(t) ∈C [a,b] and a < t < b is defined as

aC
. Dα

t g(t) =
1

Γ(n−α)

∫ t

a

g(n)(τ)
(t− τ)α−n+1 dτ

For t ≥ a ≥ 0 and n is a positive integer and α is a positive real number such that n− 1 <

α < n.

2. WORKING EXAMPLES:

2.1. Time fractional order Emden-Fowler type differential equations. In view of wide

application of Emden -Fowler type singular differential equation through the concept of thermal

behaviour of a spherical cloud of gas and thermionic currents acting under mutual attraction
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of it’s molecules subject to the laws of thermodynamics [19]- [22]. The model also defines

the diffusion and reaction in a slab. Emden- Fowler type time fractional singular differential

equations with initial conditions have been formulated and solved by fractional order homotopy

perturbation method [FOHPM] [12], [13].

Ex 2.1.1. Consider time fractional order Emden-Fowler type non-linear differential equation

(6) Dα
t f (x, t) = fxx(x, t)+

2
x

fx(x, t)−
(
4+4x2) f (x, t)

where 0 ≤ α ≤ 1

with initial condition f (x,0) = ex2

and boundary conditions f (0, t) = 1 and fx(0, t) = 0.

Solution: By applying fractional order homotopy perturbation method [FOHPM], we may

construct homotopy for above boundary value problem as

H ( f , p) = (1− p)Dα [ f (x, t)+ f0(x, t)]

+ p
(

Dα
t f (x, t)− fxx(x, t)−

2
x

fx(x, t)+
(
4+4x2) f (x, t)

)
= 0(7)

where p ∈ [0, 1]

Taking initial guess

fo(x, t) = ex2

Equating coefficients of ’p’ in equation 7 and by putting in equation 5, the approximate solution

in the form of series is given by putting p = 1 as

f (x, t) = ex2
+2ex2 tα

Γα +1
+22ex2 t2α

Γ2α +1
+23ex2 t3α

Γ3α +1
+ ...

= ex2
[

1+2
tα

Γα +1
+22 t2α

Γ2α +1
+23 t3α

Γ3α +1
+ ...

]
(8)

It gives exact solution for integer order by putting α = 1, which yields

f (x, t) = ex2
e2t
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The analysis for various fractional order have been represented graphically as 1(a) and 1(b).
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FIGURE 1. Numerical simulation for time fractional order Emden -Fowler type

differential equation,in problem 2.1.1

Ex 2.1.2. Let’s take another form of time fractional order Emden-Fowler type non-linear dif-

ferential equation

(9) Dα
t f (x, t) = fxx(x, t)+

2
x

fx(x, t)−
(
5+4x2) f (x, t)−

(
6−5x2−4x4)

where 0 ≤ α ≤ 1

with initial condition f (x,0) = x2 + ex2

and boundary conditions f (0, t) = 1 and fx(0, t) = 0.

Solution: By applying fractional order homotopy perturbation method [FOHPM], we may

construct homotopy for above boundary value problem as

H ( f , p) = (1− p)Dα [ f (x, t)+ f0(x, t)]

+ p
(

Dα
t f (x, t)− fxx(x, t)−

2
x

fx(x, t)+
(
5+4x2) f (x, t)+

(
6−5x2−4x4))= 0(10)

where p ∈ [0, 1]

Taking initial guess f0(x, t) = x2 + ex2
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Equating coefficients of ’p’ in equation 10 and by putting in the equation 5, the approxi-

mate solution in the form of series is given by putting p = 1 as

f (x, t) = x2 + ex2
+ ex2 tα

Γα +1
+ ex2 t2α

Γ2α +1
+ ex2 t3α

Γ3α +1
+ ...

= x2 + ex2
[

1+
tα

Γα +1
+

t2α

Γ2α +1
+

t3α

Γ3α +1
+ ...

]
(11)

It gives exact solution by putting α = 1, which yields

f (x, t) = x2 + ex2
et

The analysis for various fractional order have been represented graphically as 2(a) and 2(b).
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FIGURE 2. Numerical simulation for time fractional order Emden -Fowler type

differential equation in problem 2.1.2

2.2. Time fractional order Evolution type differential equations. A wide range of phe-

nomenon in classical mechanics can be formulated in the form of evolution type differential

equations. The concept of evolution type of differential equations also handles various financial

aspects like risk, prices of commodities, inflation etc [23], [24]. In this section, some time frac-

tional evolution type differential equations with initial conditions have been solved. Some of

the time fractional order evolution type differential equations have been solved by taking initial

conditions as a initial guess.
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Ex 2.2.1. Let’s take time fractional order evolution type differential equation with initial con-

ditions as

Dα
t f (x, t) = fxxt(x, t)−

(
f 2(x, t)

)
x

2

where 0 ≤ α ≤ 1

with initial condition f (x,0) = x the boundary conditions f (0, t) = 0 and fx(0, t) = 1.

Solution: By applying fractional order homotopy perturbation method [FOHPM], we may

construct homotopy for above boundary value problem as

H( f , p) = (1− p)Dα
t [ f (x, t)+ f0(x, t)]+ p

(
Dα

t f (x, t)− fxxt(x, t)+

(
f 2(x, t)

)
x

2

)
= 0(12)

where p ∈ [0, 1 ]

Taking initial guess f0(x, t) = x

Equating coefficients of ’p’ in equation 12 and by putting in the equation 5,the approximate

solution in the form of series is given by putting p = 1 as

f (x, t) = x

(
1− tα

Γα +1
+

Γ2α +1
(Γα +1)2

t3α

Γ3α +1
−
(

Γ2α +1
(Γα +1)2.Γ3α +1

)2
Γ(6α +1) t7α

Γ7α +1
+ ...

)(13)

It gives exact solution of integer order evolution type differential equations by putting α = 1.

The analysis for fractional orders have been represented graphically as 3(a) and 3(b).
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FIGURE 3. Numerical simulation for time fractional order evolution type differ-

ential equation of problem 2.2.1

Ex 2.2.2. Let us take time fractional order evolution type differential equation with initial con-

ditions as

(14) Dα
t f (x, t) = fxxt(x, t)− fx(x, t)

where 0 ≤ α ≤ 1

with initial condition f (x,0) = e−x

Solution: By applying fractional order homotopy perturbation method [FOHPM], we may

construct homotopy for above boundary value problem as

H ( f , p) = (1− p)Dα
t [ f (x, t)+ f0(x, t)]+ p(Dα

t f (x, t)− fxxt(x, t)+ fx(x, t)) = 0(15)

where p ∈ [0, 1]

Let’s take initial guess as f0(x, t) = te−x

Equating coefficients of ’p’ in equation 15 and by putting in the equation 5, the approximate
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solution in the form of series is given by putting p = 1 as

f (x, t) =e−xt + e−x
[

tα

Γα +1
+

tα+1

Γα +2

]
+ e−x

[
t2α+1

Γ2α +2
+

2t2α

Γ2α +1
+

t2α−1

Γ2α

]
+ e−x

[
t3α−2

Γ3α−1
+3

t3α−1

Γ3α
+3

t3α

Γ3α +1
+

t3α+1

Γ3α +2

]
+

[
t4α−3

Γ4α−2
+4

t4α−2

Γ4α−1
+6

t4α−1

Γ4α
+4

t4α

Γ4α +1
+

t4α+1

Γ4α +2

]
e−x + ...(16)

The analysis for various fractional order have been represented graphically as 4(a) and 4(b).
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FIGURE 4. Numerical simulation for time fractional order evolution type differ-

ential equation in problem 2.2.2

Ex 2.2.3. Let’s take another type of time fractional order linear Evolution type differential

equation

(17) Dα
t u( f , t) =− fxxxx(x, t)

Where 0≤ α ≤ 1.

with initial condition f (x,0) = sin x .

Solution: By applying fractional order homotopy perturbation method [FOHPM], we may

construct homotopy for above boundary value problem as

H ( f , p) = (1− p)Dα
t [ f (x, t)− f0(x, t)]+ p(Dα

t f (x, t)+ fxxxx(x, t)) = 0(18)
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where p ∈ [0, 1]

Taking initial guess f0(x,0) = sin x

Equating coefficients of ’p’ in equation 18 and by putting in the equation 5,the approxi-

mate solution in the form of series is given by putting p = 1 as

f (x, t) = sin x
[

1− tα

Γα +1
+

t2α

Γ2α +1
− t3α

Γ3α +1
+ ...

]
(19)

It gives exact solution by putting α = 1, which yields

f (x, t) = sin xe−t

The analysis for various fractional order have been represented graphically as 5(a) and 5(b).
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2.3. Time fractional order Klein- Gordon type differential equations. Klein -Gordon type

differential equation is known to be a relativistic wave equation in complex quantum mechanics.

Einstein’s energy equation where the energy and momentum terms are replaced with quantum

mechanical parameters derives Klein -Gordon type differential equation [25], [26]. we have

two cases of Klein -Gordon type fractional order differential equations which have been solved
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by using fractional order homotopy perturbation method (FOHPM) and they have given the

approximate solution. Here we are solving time fractional Klein -Gordon differential equations

by taking the initial guess properly to get better approximations.

Ex 2.3.1. Let us take time fractional order Klein -Gordon type differential equation

Dα
t f (x, t) = fxx(x, t)+ f (x, t)

Where 0≤ α ≤ 2.

with initial condition u(x,0) = 1+ sin x and ut(x,0) = 0.

Solution: By applying fractional order homotopy perturbation method [FOHPM], we may

construct homotopy for above boundary value problem as

H ( f , p) = (1− p)Dα
t [ f (x, t)− f0(x, t)]+ p(Dα

t f (x, t)− fxx(x, t)− f (x, t)) = 0(20)

where p ∈ [0, 1]

Taking initial guess

f0(x, t) = 1+ sin x

Equating coefficients of ’p’ in equation 20 and by putting in the equation 5, the approxi-

mate solution in the form of series is given by putting p = 1 as

f (x, t) = sin x+
[

1+
tα

Γα +1
+

t2α

Γ2α +1
+

t3α

Γ3α +1
+ ...

]
(21)

It gives exact solution by putting α = 2, which yields

f (x, t) = sin x+ cosh t

The analysis for various fractional order have been represented graphically as 6(a) and 6(b).
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FIGURE 6. Numerical simulation for time fractional order Klein-Gordon type

differential equation of problem 2.3.1

Ex 2.3.2. Let us take time fractional order non linear Klein -Gordon type differential equation

[23]

Dα
t f (x, t) = f 2

x (x, t)+ f 2(x, t)

Where 0≤ α ≤ 2.

with initial condition f (x,0) = 1+ sin x and ft(x,0) = 0.

Solution: By applying fractional order homotopy perturbation method [FOHPM], we may

construct homotopy for above boundary value problem as

H ( f , p) = (1− p)Dα
t [ f (x, t)− f0(x, t)]+ p

(
Dα

t f (x, t)− f 2
x (x, t)− f 2(x, t)

)
= 0(22)

where p ∈ [0, 1]

Taking initial guess f0(x, t) = 1+ sin x
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Equating coefficients of ’p’ in equation 22 and by putting in the equation 5, the approxi-

mate solution in the form of series is given by putting p = 1 as

f (x, t) = (1+ sin x)+2(1+ sin x)
[

tα

Γα +1

]
+23 (1+ sin x)

[
t2α

Γ2α +1

]
+

27 (1+ sin x)
[

t3α

Γ3α +1

]
+ ...(23)

The analysis for various fractional order have been represented graphically as 7(a) and 7(b).
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(a) 2D plot of f (x, t) verses t at α = 2, α =
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FIGURE 7. Numerical simulation for time fractional order Klein Gordon type

differential equation of problem 2.3.2

3. CONCLUSIONS

In this paper, we have proposed few guidelines to analyse the solutions of some types of time

fractional differential equations. Fractional differential equations express the more generalised

results of the physical models. Subsequently graphical representation deals with the results

for various fractional orders of differential equations which emphasizes the possible outcomes.

Fractional order homotopy perturbation method [FOHPM] has been applied to get the solution

of the time fractional differential equations and the solution matches suitably to the exact solu-

tion. It is necessary to state that the series solution obtained by homotopy perturbation method

precisely converges. We conclude that fractional order differential equations show significant

changes and memory effects as compared to integer order differentiation.
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