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Abstract: In this article, we consider a new class of sets which are called p*gp-locally closed sets and obtain some 

of their properties and also their relationships with some other classes of topological spaces. In addition, we found 

P*GPLC continuous function and P*GPLC irresolute function. Moreover, several examples are providing to 

illustrate the behavior of these new classes of sets.  
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1. INTRODUCTION 

Kuratowski and Sierpinski [7] have been studied the notion of a locally closed sets in a 

topological space. Bourbaki [1] defined by locally closed sets in topological spaces. Ganster and 

Reilly [4] used locally closed sets to define LC-continuity and LC-irresoluteness. The concept of 

generalized closed sets was considered by Levine [8] plays a significant role in general topology. 
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Noiri, Maki, and Umehara [10] provided the class of pre generalized closed sets and used them 

to obtain properties of pre-T1/2 spaces. Selvi [11] further investigated pre*closed sets using the  

g-closure operator due to Dunham [2, 3]. The notion of pre open set was discovered by 

Mashhour [9].  This characterization paved a new direction. 

The authors [5, 6] brings out the p*gp-closed sets and p*gp-open sets in topological spaces and 

established their relationships with some generalized sets in topological spaces. The purpose of 

this paper is to discuss about the concept of p*gp-locally closed sets in topological spaces and 

study their basic properties. Also, we provide P*GPLC continuous function, P*GPLC* 

continuous function and P*GPLC** continuous function and discuss P*GPLC irresolute 

function. We obtain many interesting results, to substantiate these result, suitable examples are 

given at the respective places. 

This paper is organized as follows. In the second section, a brief survey of basic concepts and 

results in topological spaces which are essentially needed are given Section 3, we consider the 

properties of p*gp-locally closed sets and some basic results, while section 4, introduces the 

classes of P*GPLC continuous function, P*GPLC* continuous function, P*GPLC** continuous 

function and P*GPLC irresolute function and some of the properties of these functions. Last 

section, we provide a brief summary of work done in this paper. 

 

2. PRELIMINARIES  

Throughout this paper (X, ) represents a topological space on which no separation axiom is 

assumed unless otherwise mentioned. (X, ) will be replaced by X if there are no changes of 

confusion.  For a subset A of a topological space X, cl(A), int(A) and X\A denote the closure of 

A, the interior of A and the complement of A respectively. Further, we denote the collection of 

all locally closed subsets of (X, ) by LC(X, ). We recall the following definitions and results 

which are prerequisites for our present work. 

Definition 2.1. [8] Let (X, ) be a topological space. Then the subset A of X is said to be  

(i)  generalized closed (briefly g-closed) if cl(A)  U whenever A  U and U is an open in  

(X, ).     

(ii) generalized open (briefly g-open) if its complement, X\A is g-closed. 

Definition 2.2. Let (X, ) be a topological space and A   X. The generalized closure of A [2], 

denoted by cl*(A) and is defined by the intersection of all g-closed sets containing A and 



1169 

M. JEYACHITRA, K. BAGEERATHI 

generalized interior of A [3], denoted by int*(A) and is defined by union of all g-open sets 

contained in A. 

Definition 2.3. Let (, ) be a topological space and A  . Then  

(i). A is pre open if A  int(cl(A)) and pre closed if cl(int(A))  A [9]. 

(ii). A is pre*open if   int(cl(A)) and pre*closed if cl*(int(A))  A [11]. 

Definition 2.4. [9] Let (X, ) be a topological space and A  X. The pre closure of A denoted by 

pcl(A) and is defined by the intersection of all pre closed sets containing A. 

Definition 2.5. [5] A subset A of a topological space (X, τ) is said to be pre*generalized pre 

closed set (briefly p*gp-closed) if pcl(A)  U whenever A  U and U is pre*open in (X, τ). The 

collection of all p*gp-closed sets of X is denoted by p*gp-C(X). 

Lemma 2.6. [5] Let (X, τ) be a topological space. Then  

(i). Every closed set is p*gp-closed.  

(ii). Intersection of any two p*gp-closed sets is p*gp-closed. 

Definition 2.7. [6] A subset A of a topological space (X, τ) is said to be p*gp-open if \A is 

p*gp-closed. The collection of all p*gp-open sets of X is denoted by p*gp-O(X). 

Lemma 2.8. [6] Let (X, τ) be a topological space. Then  

(i). Every open set is p*gp-open. 

(ii). Union of any two p*gp-open sets is p*gp-open.  

Definition 2.9. A subset A of a topological space (X, τ) is called a locally closed (briefly lc) set 

[4] if A = U∩V where U is open and V is closed in (X, τ). 

Definition 2.10. A function f : (X, ) → (Y, ) is called LC-continuous [4] if f -1(F) is locally 

closed set in (X, ) for each closed set F of (Y, ). 

Definition 2.11. A function f : (X, ) → (Y, ) is called LC-irresolute [4] if f -1(F) is locally 

closed set in (X, ) for locally closed set F of (Y, ). 

 

3. PRE*GENERALIZED PRE LOCALLY CLOSED SETS 

In this section, p*gp-locally closed sets are introduced to obtain some of their properties and 

their relationships with other existing sets.  

Definition 3.1. A subset A of a topological space (X, τ) is said to be a p*gp-locally closed 

(briefly p*gplc) set if A=V∩F where V is p*gp-open and F is p*gp-closed. 
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The class of all p*gp-locally closed sets in (X, τ) is denoted by P*GPLC(X, τ). 

Definition 3.2. A subset A of a topological space (X, τ) is said to be p*gplc* if there exist a 

p*gp-open set V and a closed set F of (X, τ) such that A = V∩F. 

The class of all p*gplc* sets in (X, τ) is denoted by P*GPLC*(X, τ). 

Definition 3.3. A subset A of a topological space (X, τ) is said to be p*gplc** if there exist an 

open set V and a p*gp-closed set F of (X, τ) such that A=V∩F.  

The class of all p*gplc** sets in (X, τ) is denoted by P*GPLC**(X, τ). 

Theorem 3.4. If a subset A of (X, τ) is locally closed then it is a p*gplc set, p*gplc* set and 

p*gplc** set. 

Proof. Let A be a locally closed subset of X. Then A=V∩F, where V is open and F is closed in 

(X, τ). By Lemma 2.8 and Lemma 2.6, A is a p*gplc set, p*gplc* set and p*gplc** set. 

Remark 3.5. The converse of the above theorem need not be true as seen from the following 

example. 

Example 3.6. Let  = {a, b, c} and  = {, {c}, }. Then the locally closed sets are {, {c},  

{a, b}, X}, P*GPLC(X, τ) = P*GPLC*(X, τ) = {, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, X}and 

P*GPLC**(X, τ) = {, {a}, {b}, {c},{a, b}, X}. Here, {𝑎} is p*gplc, p*gplc* and p*gplc** but 

not locally closed. 

Theorem 3.7. If a subset A of (X, τ) is p*gplc** then it is a p*gplc set.  

Proof. Let A be a p*gplc** set. Then by Definition 3.3, A=V∩F, where V is an open set in  

(X, τ) and F is a p*gp-closed set in (X, τ). By Lemma 2.8, A is p*gplc set. 

Remark 3.8. The converse of the above theorem need not be true as shown in the following 

example. 

Example 3.9. Let  = {a, b, c} and  = {, {a}, {a, b}, }.  Let A = {a, c}. Then {a, c} is p*gplc 

set but not p*gplc** set. 

Theorem 3.10. If A ∈ P*GPLC(X, ) and B is p*gp-closed in (X, ), then  

A∩B ∈ P*GPLC(X, ). 

Proof. Since A ∈ P*GPLC(X, ), there exist a p*gp-open set V and a p*gp-closed set F such that 

A = V∩F. Now A∩B = (V∩F)∩B = V∩(F∩B). Since V is p*gp-open and F∩B is                  

p*gp-closed, A∩B ∈ P*GPLC(X, ). 

Theorem 3.11. If A ∈ P*GPLC*(X, ) and B is closed in (X, ), then A∩B ∈ P*GPLC*(X, ). 
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Proof. Since A ∈ P*GPLC*(X, ), there exist a p*gp-open set V and a closed set F such that  

A = V∩F. Since B is a closed set, we have A∩B = (V∩F)∩B = V∩(F∩B). Since V is p*gp-open 

and F∩B is closed, A∩B ∈ P*GPLC*(X, ). 

Theorem 3.12. If A ∈ P*GPLC**(X, ) and B is p*gp-closed (resp. open) in (X, ), then  

A∩B ∈ P*GPLC**(X, ). 

Proof. Since A ∈ P* GPLC**(X, ), there exist an open set V and a p*gp-closed set F such that 

A = V∩F. Now A∩B = (V∩F)∩B = V∩(F∩B). Since V is open and F∩B is p*gp-closed,  

A∩B ∈ P*GPLC**(X, ). 

In this case B being an open set, we have A∩B = (V∩F)∩B = (V∩B)∩F. Since V∩B is open and 

F is p*gp-closed, A∩B ∈ P*GPLC**(X, ). 

Theorem 3.13. Let (X, ) and (Y, ) be topological spaces. Then 

(i)    If A ∈ P*GPLC(X, ) and B ∈ P*GPLC(Y, ), then  

        A×B ∈ P*GPLC(X×Y, ×). 

(ii)   If A ∈ P*GPLC*(X, ) and B ∈ P*GPLC*(Y, ), then 

        A×B ∈ P*GPLC*(X×Y,  ×). 

(iii)  If A ∈ P*GPLC**(X, ) and B ∈ P*GPLC**(Y, ), then  

        A×B ∈ P*GPLC**(X ×Y,  ×). 

Proof. Let A ∈ P*GPLC(X, ) and B ∈ P*GPLC(Y, ). Then there exist p*gp-open sets V and 

V1 of (X, ) and (Y, ) and p*gp-closed sets F and F1 of X and Y respectively such that A = V∩F 

and B = V1∩F1.Then A×B = (V× V1)∩(F×F1) holds. Hence A×B ∈ P*GPLC(X×Y, ×). This 

proves (i). 

Let A ∈ P*GPLC*(X, ) and B ∈ P*GPLC*(Y, ). Then there exist p*gp-open sets V and V1 of 

(X, ) and (Y, ) and closed sets F and F1  of (X, ) and (Y, ) respectively such that A = V∩F 

and B = V1∩F1. Then A×B = (V×V1)∩(F×F1) holds. Hence A×B ∈ P*GPLC*(X×Y, ×). This 

proves (ii). 

Let A ∈ P*GPLC**(X, ) and B ∈ P*GPLC**(Y, ). Then there exist open sets V and V1 of  

(X, ) and (Y, ) and p*gp-closed sets F and F1 of (X, )and (Y, ) respectively such that A = 

V∩F and B = V1∩F1. Then A×B = (V×V1)∩(F×F1) holds. Hence A×B ∈ P*GPLC**(X×Y,  

×). This proves (iii). 

 



1172 

ON p*gp-LOCALLY CLOSED SETS IN TOPOLOGICAL SPACES 

4. FUNCTIONS VIA PRE*GENERALIZED PRE LOCALLY CLOSED SETS 

In this section, we introduce the concept of P*GPLC continuous function, P*GPLC* continuous 

function and P*GPLC** continuous function in topological spaces and study some of their 

properties. Also, we describe P*GPLC irresolute function, P*GPLC* irresolute function and 

P*GPLC** irresolute function in topological spaces and study some of their properties. 

Definition 4.1. A function f : (X, )→(Y, ) is said to be P*GLC continuous (resp. P*GPLC* 

continuous, P*GPLC** continuous) if f -1(V) ∈ P*GPLC(X, )  (resp.  f -1(V) ∈ P*GPLC* (X, ), 

f -1(V) ∈ P*GPLC**(X, )) for each closed set V of (Y, ). 

Example 4.2. Let X = Y = {a, b, c},  = {, {c}, X} and   = {, {a}, {b}, {a, b}, Y}. Define  

f : (X, τ)→ (Y, ) by the identity function. Then, f is P*GPLC continuous, P*GPLC* continuous 

and P*GPLC** continuous. 

Theorem 4.3. Let f : (X, )→(Y, ) be a function. Then we have the following: 

(i)  If f is LC continuous, then f  is P*GPLC continuous, P*GPLC* continuous and 

P*GPLC** continuous. 

(ii) If f  is P*GPLC** continuous function, then f  is P*GPLC continuous. 

Proof. Suppose that f : (X, )→(Y, ) is LC continuous. Let V be a closed set of (X, ). Then 

f -1(V) is a locally closed set in (X, ). By Theorem 3.4, it follows that f is P*GPLC continuous 

(resp. P*GPLC* continuous and P*GPLC** continuous). This proves (i). 

Let f : (X, )→(Y, ) be a P*GPLC** continuous function. Let V be a closed set of (X, ). Then 

f -1(V) is p*gplc** set in (X, ).  By Theorem 3.7, it follows that f  is P*GPLC** continuous is 

P*GPLC continuous. This proves (ii). 

Remark 4.4. The converse of the above theorem need not be true as seen from the following 

example. 

Example 4.5. Let X = Y = {a, b, c}, τ = {, {a}, {a, b}, X} and  = {, {a}, {b}, {a, b}, 

Y}.Define f : (X, τ)→ (Y, ) by f (a) = b, f (b) = c and f (c) = a. Then, f is P*GPLC continuous, 

P*GPLC* continuous and P*GPLC** continuous. It can be proved that, f -1({a, b}) = {a, c} is 

not a locally closed set in X. Hence f is not LC continuous. 

Example 4.6. Let X = Y = {a, b, c}, τ = {, {a}, {a, b}, X} and  = {, {c}, {a, b}, Y}. Define  

f : (X, τ)→ (Y, ) by f(a) = a, f(b) = c and f(c) = b. Then, f is P*GPLC continuous. It can be 

found that, f -1({a, b}) = {a, c} is not p*gplc** set in X. Hence f is not P*GPLC** continuous. 
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Theorem 4.7. If f: (X, )→(Y, ) and g: (Y, )→ (Z, ) are any two functions. Then 

(i)   g∘f is P*GPLC continuous if f  is P*GPLC continuous and g is continuous. 

(ii)  g∘f is P*GPLC* continuous if f is P*GPLC* continuous and g is continuous. 

(iii) g∘f is P*GPLC** continuous if f is P*GPLC** continuous and g iscontinuous. 

Proof. Let F be a closed set in (Z, ). Since g is continuous, g-1(F) is closed set in (Y, ). Again, 

since f is P*GPLC continuous, f -1(g-1(F)) is p*gplc in (X, ). Thus g∘f  is P*GPLC continuous 

function. This proves (i). 

Let F be a closed set in (Z, ). Since g is continuous, g-1(F) is closed in (Y, ). Since f is 

P*GPLC* continuous, f -1(g-1(F)) is p*gplc* in (X, ). Thus g∘f is P*GPLC* continuous function. 

This proves (ii). 

Let F be a closed set in (Z, ). Since g is continuous, g-1(F) is closed in (Y, ). Since f is 

P*GPLC** continuous, f -1(g-1(F)) is p*gplc** in (X, ). Thus g∘f is P*GPLC** continuous 

function. This proves (iii). 

Definition 4.8. A function f : (X, )→(Y, ) is said to be P*GPLC irresolute                         

(resp. P*GPLC* irresolute, P*GPLC** irresolute) if f -1(V) ∈ P*GPLC(X, )  

(resp. f -1(V) ∈ P*GPLC*(X, ), f -1(V) ∈ P*GPLC**(X, )) for each V ∈ P*GPLC (Y, ) 

(resp. V ∈ P*GPLC*(Y, ), V ∈ P*GPLC** (Y, )). 

Example 4.9. Let X = Y = {a, b, c}, τ = {, {a}, {a, b}, X} and  = {, {c}, {a, b}, Y}. Define  

f : (X, τ)→ (Y, ) by f (a) = b, f (b) = a and f (c) = c. Then, f is P*GPLC irresolute, P*GPLC* 

irresolute and P*GPLC** irresolute. 

Theorem 4.10. If a function f :(X, )→(Y, ) is LC irresolute, then f is P*GPLC irresolute (resp. 

P*GPLC* irresolute and P*GPLC** irresolute). 

Proof. Suppose that f is LC irresolute. Let V be a locally closed set of (X, ). Then f -1(V) is a 

locally closed set in (X, ). By Theorem 3.4, it follows that f is P*GPLC irresolute (resp. 

P*GPLC* irresolute and P*GPLC** irresolute). 

Remark 4.11. The converse of the above theorem need not be true as seen from the following 

example. 

Example 4.12. Let X = Y = {a, b, c}, τ = {, {c}, X} and  = {, {c}, {a, b}, Y}. Define                    

f : (X, τ) → (Y, ) by f (a) = c, f (b) = b and f (c) = a. Then, f is P*GPLC irresolute, P*GPLC* 
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irresolute and P*GPLC** irresolute. It can be verified that, f -1({a, c}) = {a, c} is not locally 

closed in X. Hence f  is not LC irresolute. 

Theorem 4.13. Let f : (X, )→ (Y, )and g:(Y, )→ (Z, ) be any two functions. Then 

(i) g∘f : (X, )→(Z, ) is P*GPLC irresolute if g is P*GPLC irresolute and  f  is P*GPLC 

irresolute. 

(ii) g∘f : (X, )→(Z, ) is P*GPLC continuous if g is P*GPLC continuous and f  is P*GPLC 

irresolute. 

Proof. Let F ∈ P*GPLC(Z, ). Since g is P*GPLC irresolute, g-1(F) is p*gplc in (Y, ). As f is 

P*GPLC irresolute, f -1(g-1(F)) is p*gplc in (X, ). That is (g∘f)-1(F) ∈ P* GPLC(X, ). Thus g∘f is 

P*GPLC irresolute. This proves (i). 

Let F be a closed set in (Z, ). Since g is P*GPLC continuous, g-1(F) is p*gplc in (Y, ). Again, 

since f is P*GPLC irresolute, f-1(g-1(F)) is p*gplc in (X, ). Thus g∘f is P*GPLC continuous. This 

proves (ii). 

Theorem 4.14. Let f : (X, )→ (Y, )and g:(Y, )→ (Z, ) be any two functions. Then 

(i)     g∘f is P*GPLC* irresolute if f and g are P*GPLC* irresolute. 

(ii)    g∘f is P*GPLC** irresolute if f and g are P*GPLC** irresolute. 

(iii)   g∘f is P*GPLC* continuous if f is P*GPLC* irresolute and g is P*GPLC* continuous. 

(iv)   g∘f is P*GPLC** continuous if f  is P*GPLC** irresolute and g is P*GPLC** 

continuous. 

Proof. Let F∈P*GPLC*(Z, ). Since g is P*GPLC* irresolute, g-1(F) is p*gplc* in (Y, ). As f is 

P*GPLC* irresolute, f-1(g-1(F)) is p*gplc* in (X, ). That is (g∘f)-1 (F) ∈ P*GPLC*(X, ). Thus 

g∘f is P*GPLC* irresolute. This proves (i). 

Let F ∈ P*GPLC**(Z, ). Since g is P*GPLC** irresolute, g-1(F) is p*gplc** in (Y, ). As f is 

P*GPLC** irresolute, f-1(g-1(F)) is p*gplc** in (X, ). That is (g∘f)-1 (F) ∈ P*GPLC**(X, ). 

Thus g∘f is P*GPLC** irresolute. This proves (ii). 

Let F be a closed set in (Z, ). Since g is P*GPLC* continuous, g-1(F) is p*gplc* in (Y, ). 

Again, since f is P*GPLC* irresolute, f-1(g-1(F)) is p*gplc* in (X, ). Thus g∘f is P*GPLC* 

continuous. This proves (iii). 
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Let F be a closed set in (Z, ). Since g is P*GPLC** continuous, g-1(F) is p*gplc** in (Y, ). 

Since f is P*GPLC** irresolute, f-1(g-1(F)) is p*gplc** in (X, ). Thus g∘f is P*GPLC** 

continuous. This proves (iv). 

 

5. CONCLUSION 

In this paper, p*gp-locally closed sets in topological spaces are projected. Also P*GPLC 

continuous function and P*GPLC irresolute function are found.  
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