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Abstract. In this paper, we proved some common fixed point theorem for rational contractions in partial b metric

space. As a consequence, the obtained result is extended to an integral type class of mappings. Our result is an

extension of some well known results in the literature.
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1. INTRODUCTION

Fixed point theory is a major tool in mathematical analysis due to its applications in different

areas of engineering and sciences. In the 1920s, Banach[3] proposed and proved the famous

Banach Contraction Principle. Many scholars have proposed a series of new concepts of con-

traction mapping and new fixed point theorems. S.G.Matthews (in 1994) introduced the concept

of partial metric space and proved the Banach Contraction Principle in the partial metric space

[10].

∗Corresponding author

E-mail address: bhatt.venkatesh@gmail.com

Received March 30, 2020
1298



RATIONAL CONTRACTION IN PARTIAL b-METRIC SPACE 1299

In 1993, Bakthin [2] and Czerwik([7], [8]) introduced the concept of b-metric space which

is a generalisation of metric space. He proved the Banach contraction principle in the b-metric

space. Recently, many researchers have focused on b-metric, partial metric spaces and obtained

many useful fixed point results in these spaces ([1], [5], [6], [9], [12], [14], [15]).

2. PRELIMINARIES

Definition 2.1. [7] Let X be a non empty set and s ≥ 1 be a given real number. A function

d : X×X → [0,∞] is called a b-metric if ∀x,y,z ∈ X the following conditions are satisfied

(1) d(x,y) = 0 iff x = y.

(2) d(x,y) = d(y,x).

(3) d(x,y)≤ s[d(x,z)+d(z,y)].

The pair (X ,d) is called b-metric space.The number s≥ 1 is called the coefficient of (X ,d).

Definition 2.2. [10] A partial metric on non empty set X is a function p : X ×X → [0,∞] is

called a b-metric if ∀x,y,z ∈ X the following conditions are satisfied

(1) x = y iff p(x,y) = p(x,x) = p(y,y),

(2) p(x,x)≤ p(x,y)

(3) p(x,y) = p(y,x)

(4) p(x,y)≤ [p(x,z)+ p(z,y)]− p(z,z).

The pair (X , p) is called partial metric space and p is partial metric on X.

Definition 2.3. [13] Let X be a non empty set and s≥ 1 be a given real number. A function pb :

X×X → [0,∞] is called a partial b-metric if ∀x,y,z ∈ X the following conditions are satisfied

(1) x = y iff pb(x,y) = pb(x,x) = pb(y,y),

(2) pb(x,x)≤ pb(x,y)

(3) pb(x,y) = pb(y,x)

(4) pb(x,y)≤ s[pb(x,z)+ pb(z,y)]− pb(z,z).

The pair (X , pb) is called partial-b- metric space and the number s≥ 1 is called the coefficient

of (X , pb).
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Definition 2.4. [11] A sequence {xn}in partial-b-metric space (X , pb) is said to be

(1) convergent to a fixed point x ∈ X if pb(x,x) = limn→∞ pb(x,xn).

(2) Cauchy sequence if limn→∞ pb(xn,xm) exists and finite.

A partial b-metric space(X , pb)is said to be complete if every pb-Cauchy sequence in X

converges to a point x ∈ X , such that pb(x,x) = limn→∞ pb(x,xn) = limn,m→∞ pb(xn,xm).

3. MAIN RESULTS

Theorem 3.1. Let(X , pb) be a complete partial b metric space with s > 1.Suppose that the

mappings S,T : X → X satisfy

(1) pb(Sx,Ty)≤ k[
pb(x,Sx)pb(x,Ty)+ [pb(x,y)]2 + pb(x,Sx)p(x,y)

pb(x,Sx)+ pb(x,y)+ pb(x,Ty)
]

∀x,y ∈ X,0 < k < 1 with sk < 1 and pb(x,Sx)+ pb(x,y)+ pb(x,Ty) 6= 0. Then S and T have a

unique common fixed point in X.

Proof. Let x0 ∈ X be arbitrary point,define a sequence {xn} in X by

Sx2n = x2n+1 and T x2n+1 = x2n+2,n=0,1,2,...

Let pb(x,Sx)+ pb(x,y)+ pb(x,Ty) 6= 0. Then from (1) we have

pb(x2n+1,x2n+2) = pb(Sx2n,T x2n+1)

≤ k[
pb(x2n,Sx2n)pb(x2n,T x2n+1)+ [pb(x2n,x2n+1)]

2 + pb(x2n,Sx2n)pb(x2n,x2n+1)

pb(x2n,Sx2n)+ pb(x2n,x2n+1)+ pb(x2n,T x2n+1)
]

≤ k[
pb(x2n,x2n+1)pb(x2n,x2n+2)+ [pb(x2n,x2n+1)]

2 + pb(x2n,x2n+1)pb(x2n,x2n+1)

pb(x2n,x2n+1)+ pb(x2n,x2n+1)+ pb(x2n,x2n+2)
]

≤ kpb(x2n,x2n+1)[
pb(x2n,x2n+2)+2pb(x2n,x2n+1)

2pb(x2n,x2n+1)+ pb(x2n,x2n+2)
]

≤ kpb(x2n,x2n+1)

(2)
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Similarly, we have

pb(x2n,x2n+1) = pb(Sx2n−1,T x2n)

≤ k[
pb(x2n−1,Sx2n−1)pb(x2n−1,T x2n)+ [pb(x2n−1,x2n)]

2 + pb(x2n−1,Sx2n−1)pb(x2n−1,x2n)

pb(x2n−1,Sx2n−1)+ pb(x2n−1,x2n)+ pb(x2n−1,T x2n)
]

≤ k[
pb(x2n−1,x2n)pb(x2n−1,x2n+1)+ [pb(x2n−1,x2n)]

2 + pb(x2n−1,x2n)pb(x2n−1,x2n)

pb(x2n−1,x2n)+ pb(x2n−1,x2n)+ pb(x2n−1,x2n+1)
]

≤ kpb(x2n−1,x2n)[
pb(x2n−1,x2n+1)+2pb(x2n−1,x2n)

2pb(x2n−1,x2n)+ pb(x2n−1,x2n+1)
]

≤ kpb(x2n−1,x2n).

(3)

By Continuing this process,we get

(4) pb(x2n+1,x2n+2)≤ kpb(x2n,x2n+1)≤ k2 pb(x2n−1,x2n)≤ ...≤ k2n+1 pb(x1,x0).

Now we show that {xn} is Cauchy sequence.Let m,n≥ 1 and m≥ n

we have

pb(xn,xm)≤ s[pb(xn,xn+1)+ pb(xn+1,xm)]− pb(xn+1,xn+1)

= spb(xn,xn+1)+ spb(xn+1,xm)

≤ spb(xn,xn+1)+ s[s{pb(xn+1,xn+2)+ pb(xn+2,xm)}− pb(xn+2,xn+2)]

= spb(xn,xn+1)+ s2 pb(xn+1,xn+2)+ s2 pb(xn+2,xm)

≤ spb(xn,xn+1)+ s2 pb(xn+1,xn+2)+ ...+ sn+m−1 pb(xm+n−1,xm)

≤ skn[1+ sk+(sk)2 + ...+(sk)m−1]pb(x1,x0)

≤ [
skn

1− sk
]pb(x1,x0)

Since 0 < sk < 1 and by taking the limit m,n→ ∞, we get

limm,n→∞ p(xn,xm) = 0.

Hence {xn} is Cauchy sequence in partial-b-metric space X.Since X is complete,so there exist

u ∈ X such that limn→∞ xn = u.

Now we show that u is common fixed point of S and T.

Consider
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pb(x2n+1,Tu) = pb(Sx2n,Tu)

≤ k[
pb(x2n,Sx2n)pb(x2n,Tu)+ pb(x2n,u)2 + pb(x2n,Sx2n)pb(x2n,u)

pb(x2n,Sx2n)+ pb(x2n,u)+ pb(x2n,Tu)
]

≤ k[
pb(x2n,x2n+1)pb(x2n,Tu)+ pb(x2n,u)2 + pb(x2n,x2n+1)pb(x2n,u)

pb(x2n,x2n+1)+ pb(x2n,u)+ pb(x2n,Tu)
]

As n→ ∞,we have p(u,Tu)≤ 0. This implies Tu=u, i.e u is fixed point of T.

In the same manner we can prove Su=u.

⇒ u is fixed point of S.

Uniqueness:

Now we show that u is unique fixed point of S and T.

Let v is another fixed point of S and T.i.e Sv=Tv=v. Suppose that u 6= v then

we have

pb(u,v) = pb(Su,T v)

≤ k[
pb(u,Su)p(u,T v)+ [pb(u,v)]2 + pb(u,Su)pb(u,v)

pb(u,Su)+ pb(u,v)+ pb(u,T v)
]

≤ k[
pb(u,u)pb(u,v)+ [pb(u,v)]2 + pb(u,u)pb(u,v)

pb(u,u)+ pb(u,v)+ pb(u,v)
]

≤ k
pb(u,v)

2
.

(5)

which is a contradiction,since o < k < 1,hence u = v.

Therefore u is a unique common fixed point of S and T. �

Corollary 3.2. Let (X , p) be complete partial b-metric space with s≥ 1.

Suppose T : X → Xsatisfies

pb(T x,Ty)≤ k[
pb(x,T x)pb(x,Ty)+ pb(x,y)2 + pb(x,T x)pb(x,y)

pb(x,T x)+ pb(x,y)+ pb(x,Ty)
](6)

∀x,y ∈ X ,k ∈ [0,1).Then T has a unique fixed point in X.

Proof. If we take S = T in theorem 3.1 then proof is over. �
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Theorem 3.3. Let(X,p) be a complete partial b metric space with s > 1.Suppose that the map-

pings S,T : X → X satisfy

(7) pb(Sx,Ty)≤ k max{pb(x,y),
pb(x,Sx)pb(y,Ty)

1+ pb(x,y)
,

pb(x,Ty)pb(y,Sx)
1+ pb(Sx,Ty)

}

∀x,y ∈ X,0 < k < 1 and sk < 1 . Then S and T have a unique common fixed point in X.

Proof. Let x0 ∈ X be arbitrary point,define sequences {xn} in X by

Sxn = xn+1 andT xn+1 = xn+2, n=0,1,2,...

Then from (7) we have

pb(xn+1,xn+2) = pb(Sxn,T xn+1)

≤ k max{pb(xn,xn+1),
pb(xn,Sxn)pb(xn+1,T xn+1)

1+ pb(xn,xn+1)
,

pb(xn,T xn+1)pb(xn+1,Sxn)

1+ pb(Sxn,T xn+1)
}

≤ k max{pb(xn,xn+1),
pb(xn,xn+1)pb(xn+1,xn+2)

1+ pb(xn,xn+1)
,

pb(xn,xn+2)pb(xn+1,xn+1)

1+ pb(xn+1,xn+2)
}

= k max{pb(xn,xn+1), pb(xn+1,xn+2)}

(8)

If max{pb(xn,xn+1), pb(xn+1,xn+2)}= pb(xn+1,xn+2) then

pb(xn+1,xn+2)≤ kpb(xn+1,xn+2). Since sk < 1.

This implies pb(xn+1,xn+2)≤ pb(xn+1,xn+2).

Which is a contradiction.

Hence, if max{p(xn,xn+1), pb(xn+1,xn+2)}= pb(xn,xn+1) then

pb(xn+1,xn+2)≤ kpb(xn,xn+1).

pb(xn+1,xn+2)≤ kpb(xn,xn+1)≤ k2 pb(xn−1,xn)≤ ...

pb(xn+1,xn+2)≤ kn+1 pb(x0,x1).

Now we show that {xn}is Cauchy sequence in X. Let m,n ∈ N and m > n
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we have

pb(xn,xm)≤ s[pb(xn,xn+1)+ pb(xn+1,xm)]− pb(xn+1,xn+1)

≤ s[pb(xn,xn+1)+ pb(xn+1,xm)]

≤ spb(xn,xn+1)+ s[s{pb(xn+1,xn+2)+ pb(xn+2,xm)}− pb(xn+2,xn+2)]

≤ spb(xn,xn+1)+ s[s{pb(xn+1,xn+2)+ pb(xn+2,xm)}]

≤ skn pb(x0,x1)+ s2kn+1 pb(x0,x1)+ ....

≤ skn pb(x0,x1)[1+ sk+(sk)2 + ....]

≤ skn

1− sk
pb(x0,x1).

(9)

Since 0 < sk < 1 and by taking the limit m,n→ ∞, we get

limm,n→∞ p(xn,xm) = 0.

Hence {xn} is Cauchy sequence. Since X is complete , so it converges to x∗.

Now we show x∗ is fixed point of T.

pb(x∗,T x∗)≤ s[pb(x∗,xn+1)+ pb(xn+1,T x∗)]− pb(xn+1,xn+1)

≤ spb(x∗,xn+1)+ spb(Sxn,T x∗)

≤ spb(x∗,xn+1)+ s[k max{pb(xn,x∗),
pb(xn,Sxn)pb(x∗,T x∗)

1+ pb(xn,x∗)
,

pb(xn,T x∗)pb(x∗,Sxn)

1+ pb(Sxn,T x∗)
}]

≤ spb(x∗,xn+1)+ sk max{pb(xn,x∗),
pb(xn,xn+1)pb(x∗,T x∗)

1+ pb(xn,x∗)
,

pb(xn,x∗)pb(x∗,xn+1)

1+ pb(xn+1,x∗)
}

(10)

Taking the limit n→ ∞, we get pb(x∗,T x∗)≤ 0, therefore x∗ = T x∗.

⇒ x∗ is fixed point of T.
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Now we show x∗ is fixed point of S.

pb(x∗,Sx∗)≤ s[pb(x∗,xn+2)+ pb(xn+2,Sx∗)]− pb(xn+2,xn+2)

≤ spb(x∗,xn+2)+ spb(Sx∗,T xn+1)

≤ spb(x∗,xn+1)+ s[k max{pb(x∗,xn+1),
pb(x∗,Sx∗)pb(xn+1,T xn+1)

1+ pb(x∗,xn+1)
,

pb(x∗,T xn+1)pb(xn+1,Sx∗)
1+ p(Sx∗,T xn+1)

}]

≤ spb(x∗,xn+1)+ s[k max{pb(x∗,xn+1),
pb(x∗,Sx∗)pb(xn+1,xn+2)

1+ pb(x∗,xn+1)
,

pb(x∗,xn+2)pb(xn+1,Sx∗)
1+ pb(Sx∗,xn+2)

}]

(11)

Taking the limit n→ ∞, we get pb(x∗,Sx∗)≤ 0, therefore x∗ = Sx∗.

⇒ x∗ is fixed point of S.

Uniqueness:

If u and v are two fixed point of S and T ,then we have Su = u,Sv = v,Tu = u,T v = v.

Consider

pb(u,v) = pb(Su,T v)

≤ k max{pb(u,v),
pb(u,Su)pb(v,T v)

1+ pb(u,v)
,

pb(u,T v)pb(v,Su)
1+ pb(Su,T v)

}

≤ k max{pb(u,v),
pb(u,u)pb(v,v)

1+ pb(u,v)
,

pb(u,v)pb(v,u)
1+ pb(u,v)

}

≤ k max{0,0, pb(u,v)pb(v,u)
1+ pb(u,v)

}

The above inequality is true only if pb(u,v) = 0.Therefore u = v ⇒ S and T have a unique

common fixed point in X.

�

If max{pb(x,y),
pb(x,Sx)pb(y,Ty)

1+ pb(x,y)
,

pb(x,Ty)pb(y,Sx)
1+ pb(Sx,Ty)

}= Pb(x,y)

then from theorem 3.3 we have the following result as

Corollary 3.4. Let X be a complete partial b-metric space with s > 1.Suppose S,T : X → X

satisfies pb(Sx,Ty)≤ kpb(x,y),∀x,y ∈ X,0 < k < 1 and sk < 1 .

Then S and T have a unique common fixed point in X.
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Corollary 3.5. Let X be a complete partial b-metric space with s > 1.Suppose T : X → X

satisfies

pb(T x,Ty)≤ kpb(x,y), ∀x,y ∈ X,0 < k < 1 and sk < 1 .

Then T has a unique fixed point in X.

Proof. Put S=T in the above theorem 3.3 we get the result. �

We can extend our result for the mappings involving contraction of integral type as follows.

Let Ψ the set of functions ρ : [0,∞)→ [0,∞) satisfies

(1) ρ is Lebesgue integrable mapping on compact subset [0,∞).

(2) for any ε > 0, we have
∫

ε

0 ρ(t)dt ≥ 0.

Theorem 3.6. Let(X , pb) be a complete partial b metric space with s > 1.Suppose that the

mappings S,T : X → X satisfy

∫ d(Sx,Ty)

0
ρ(t)dt ≤ a

∫ [
pb(x,Sx)pb(x,Ty)+[pb(x,y)]

2+pb(x,Sx)p(x,y)
pb(x,Sx)+pb(x,y)+pb(x,Ty) ]

0
ρ(t)dt

∀x,y ∈ X,0 < k < 1 with sk < 1 and pb(x,Sx)+ pb(x,y)+ pb(x,Ty) 6= 0. Then S and T have a

unique common fixed point in X.

If we put S = T in theorem 3.6 , then we get the following theorem

Theorem 3.7. Let(X , pb) be a complete partial b metric space with s > 1.Suppose that the

mappings T : X → X satisfy

∫ d(T x,Ty)

0
ρ(t)dt ≤ k

∫ [
pb(x,T x)pb(x,Ty)+[pb(x,y)]

2+pb(x,T x)p(x,y)
pb(x,T x)+pb(x,y)+pb(x,Ty) ]

0
ρ(t)dt

∀x,y ∈ X,0 < k < 1 with sk < 1 and pb(x,T x)+ pb(x,y)+ pb(x,Ty) 6= 0. Then T has a unique

common fixed point in X.
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Theorem 3.8. Let(X , pb) be a complete partial b metric space with s > 1.Suppose that the

mappings S,T : X → X satisfy

∫ pb(Sx,Ty)

0
ρ(t)dt ≤ a

∫ [max{pb(x,y),
pb(x,Sx)pb(y,Ty)

1+ pb(x,y)
,

pb(x,Ty)pb(y,Sx)
1+ pb(Sx,Ty)

}]

0
ρ(t)dt

∀x,y ∈ X,0 < k < 1 and sk < 1 . Then S and T have a unique common fixed point in X.

Example:LetX = [0,∞) be equipped with partial order relation defined by x > y and

pb : X ×X → Xdefined by pb(x,y) = |x− y|2 +3 for allx,y ∈ X , where s ≥ 2.It is obvious that

(X , pb) is a complete partial b-metric space .

Let the mapping S,T : X→ X defined by S(x) =
x
2

and T (y) =
y
3

.This satisfies all the conditions

of the theorem 3.1 and theorem 3.3, thus 0 is the only fixed point of S and T.
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