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1. INTRODUCTION  

In 2008, Bashirov et.al [3] introduced a new kind of space, called multiplicative metric space. In 

this space the usual triangular inequality was replaced by a multiplicative triangular inequality as 

follows.      

Definition 1.1.[3] Let X be a non empty set. A mapping d: X × X → R+
  is said to be 

multiplicative metric on X if it satisfies the following conditions – 

(1)  d(x, y) ≥ 1 for all x, y  X and d(x, y) = 1 if and only if  x = y ;  

(2)  d(x, y)  =  d(y, x) for all x, y  X 

(3)  d(x, y) ≤  d(x, z).d(z, y) for all x, y, z  X ( multiplicative triangle Inequality) 

Then the pair (X, d) is called multiplicative metric space. 
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In 1968, Kannan [7] established fixed point theorem for mapping satisfying 

𝑑(𝑆𝑥, 𝑆𝑦) ≤  λ [𝑑(𝑥, 𝑆𝑥) + 𝑑(𝑦, 𝑆𝑦)] for all  𝑥, 𝑦  𝑋 where λ  [0,
1

2
) 

After that, in 2008, Azam and Arshad [2] extended the Kannan’s theorem for generalised metric 

spaces introduced by Branciari in 2000 [4]. 

In 2009, S. Moradi [8] extended Kannan’s theorem [7] and then extended the theorem due to 

Azam and Arshad [2] on complete metric spaces and on generalised metric spaces depended on 

another function. 

In this paper we prove ‘Extended Kannan theorem’ [7] and some other theorems in multiplicative 

metric space. 

 

2. PRELIMINARIES 

Example 2.1.[9] Let Rn
+ be the collection of all n-tuples of positive real numbers.  

Let d: Rn
+ × Rn

+ → R be defined as  

                       d(x, y) = (  |
𝑥1

𝑦1
| . |

𝑥2

𝑦2
| , … … … |

𝑥𝑛

𝑦𝑛
|  ) 

where x = (𝑥1, 𝑥2, … … . , 𝑥𝑛) and y = (𝑦1, 𝑦2, … … . 𝑦𝑛)  Rn
+ and | . | : R+ → R+  is defined by 

|𝑎| =  {   
𝑎       𝑖𝑓 𝑎 ≥ 1
1

𝑎
       𝑖𝑓 𝑎 < 1

  , here all the conditions of multiplicative metric are satisfied. Therefore   

( R
n

+ , d) is a multiplicative metric space. 

One can refer to [5] and [9] for detailed multiplicative metric topology. 

Definition 2.2. ([9]) A sequence {𝑥𝑛} in multiplicative metric space (𝑋, 𝑑) is said to be 

multiplicatively convergent to x  X if and only if  d(𝑥𝑛, 𝑥) → 1 as     n → ∞. 

Definition 2.3. ([9]) Let (𝑋, 𝑑) be a multiplicative metric space. Then a sequence {𝑥𝑛} in (𝑋, 𝑑) 

is called multiplicative Cauchy sequence if and only if  d(𝑥𝑛, 𝑥𝑚) → 1 as  n, m → ∞. 

Definition 2.4. ([9]) Let (𝑋, 𝑑) be a multiplicative metric space then it is said to be complete if 

every multiplicative Cauchy sequence is multiplicatively convergent. 

Theorem 2.5.([7])  Let (𝑋, 𝑑)be a complete metric space and 𝑇: 𝑋→ 𝑋 be a Kannan contraction 

mapping that is   𝑑(𝑇𝑥, 𝑇𝑦) ≤  𝑘 [𝑑(𝑥, 𝑇𝑥)+ 𝑑(𝑦, 𝑇𝑦) for all  𝑥, 𝑦  𝑋 where 𝑘  [0,
1

2
). Then 𝑇 

has a unique fixed point. 



1458 

MONIKA, NAWNEET HOODA 

      Theorem 2.6. Let (𝑋, 𝑑) be a complete metric space and 𝑇: 𝑋→ 𝑋 be a chatterjea-contraction 

mapping that is 𝑑(𝑇𝑥, 𝑇𝑦) ≤  𝑘 [𝑑(𝑥, 𝑇𝑦)+ 𝑑(𝑦, 𝑇𝑥)] for all  𝑥, 𝑦  𝑋 where 𝑘  [0,
1

2
).  Then T 

has a unique fixed point. 

Theorem 2.7. Let (𝑋, 𝑑) be a multiplicative metric space. A self mapping 𝑓 is said to be 

multiplicative Kannan contraction if 

         𝑑(𝑓𝑥, 𝑓𝑦) ≤ (𝑑(𝑓𝑥, 𝑥). 𝑑(𝑓𝑦, 𝑦))𝜆  for all 𝑥, 𝑦  𝑋 where λ  [0,
1

2
). 

Theorem2.8. Let (𝑋, 𝑑) be a multiplicative metric space. A self mapping 𝑓 is said to be 

multiplicative chatterjea contraction if 

         𝑑(𝑓𝑥, 𝑓𝑦) ≤ (𝑑(𝑓𝑥, 𝑦). 𝑑(𝑓𝑦, 𝑥))𝜆  for all  𝑥, 𝑦  𝑋 where λ  [0,
1

2
). 

After that S.Moradi  proved ‘Extended Kannan’s Theorem’ on complete metric space as follows:   

Theorem 2.9. (Extended Kannan’s  theorem) Let (𝑋, 𝑑) be a complete metric space and  𝑇, S : 

𝑋→ 𝑋 be a mapping such that 𝑇 is continuous one to one and subsequentially convergent. 

If  λ  [0,
1

2
) and              

             𝑑(𝑇𝑆𝑥, 𝑇𝑆𝑦) ≤  λ [𝑑(𝑇𝑥, 𝑇𝑆𝑥) + 𝑑(𝑇𝑦, 𝑇𝑆𝑦)], for all 𝑥, 𝑦  𝑋 , 

then 𝑆 has a unique fixed point. Also if  𝑇 is sequentially convergent then for every 𝑥0  X, the 

sequence of iterates {𝑆𝑛𝑥0} converges to this fixed point. 

 

3. MAIN RESULTS 

In this section we prove extended Kannan theorem in multiplicative metric space as follows – 

Theorem 3.1. Let (𝑋, 𝑑) be a multiplicative metric space and  𝑇, 𝑆 : 𝑋→ 𝑋 be a mapping 

such that  𝑇 is continuous, one to one and subsequentially convergent.  If  λ  [0,
1

2
) and 

 𝑑(𝑇𝑆𝑥, 𝑇𝑆𝑦)  ≤ [𝑑(𝑇𝑥, 𝑇𝑆𝑥). 𝑑(𝑇𝑦, 𝑇𝑆𝑦)]𝜆 for all 𝑥, 𝑦  𝑋 then S has a unique fixed point. Also 

if 𝑇 is sequentially convergent then for every 𝑥0  𝑋 , the sequence of iterates {𝑆𝑛𝑥0} converges 

to this fixed point. 

Proof. Let 𝑥0 be any arbitrary point in 𝑋. We define {𝑥𝑛} such that 𝑥𝑛+1 =  𝑆𝑥𝑛  

Now we have, 

𝑑(𝑇𝑥𝑛, 𝑇𝑥𝑛+1) = 𝑑(𝑇𝑆𝑥𝑛−1, 𝑇𝑆𝑥𝑛) 
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                        ≤ [𝑑(𝑇𝑥𝑛−1, 𝑇𝑆𝑥𝑛−1). 𝑑(𝑇𝑥𝑛, 𝑇𝑆𝑥𝑛)]𝜆 

                        ≤ 𝑑𝜆 (𝑇𝑥𝑛−1, 𝑇𝑆𝑥𝑛−1). 𝑑𝜆 (𝑇𝑥𝑛, 𝑇𝑆𝑥𝑛) 

                        = 𝑑𝜆 (𝑇𝑥𝑛−1, 𝑇𝑥𝑛). 𝑑𝜆 (𝑇𝑥𝑛, 𝑇𝑥𝑛+1) 

implies 

𝑑1 − 𝜆 (𝑇𝑥𝑛, 𝑇𝑥𝑛+1) ≤  𝑑𝜆 (𝑇𝑥𝑛−1, 𝑇𝑥𝑛)         

      𝑑(𝑇𝑥𝑛, 𝑇𝑥𝑛+1)   ≤   (𝑑(𝑇𝑥𝑛−1, 𝑇𝑥𝑛))
𝜆

1− 𝜆     

by same argument- 

𝑑(𝑇𝑥𝑛, 𝑇𝑥𝑛+1)  ≤   (𝑑(𝑇𝑥0, 𝑇𝑥1))(
𝜆

1− 𝜆
)

𝑛

                                                         (3.1) 

Now by (3.1), for every m, n  N such that m > n , we have  

𝑑(𝑇𝑥𝑚, 𝑇𝑥𝑛)  =  𝑑(𝑇𝑥𝑚, 𝑇𝑥𝑚−1) 𝑑(𝑇𝑥𝑚−1, 𝑇𝑥𝑚−2) … 𝑑(𝑇𝑥𝑛+1, 𝑇𝑥𝑛) 

                       ≤  (𝑑(𝑇𝑥0, 𝑇𝑥1))(
𝜆

1− 𝜆
)

𝑚−1

.(𝑑(𝑇𝑥0, 𝑇𝑥1))(
𝜆

1− 𝜆
)

𝑚−2

… (𝑑(𝑇𝑥0, 𝑇𝑥1))(
𝜆

1− 𝜆
)

𝑛

                                 

                       ≤   (𝑑(𝑇𝑥0, 𝑇𝑥1))(
𝜆

1− 𝜆
)

𝑚−1
+(

𝜆

1− 𝜆
)

𝑚−2
+⋯+(

𝜆

1− 𝜆
)

𝑛

 . 

                       ≤   (𝑑(𝑇𝑥0, 𝑇𝑥1))(
𝜆

1− 𝜆
)

𝑛
+(

𝜆

1− 𝜆
)

𝑛+1
+⋯

 

                       =    (𝑑(𝑇𝑥0, 𝑇𝑥1))(
𝜆

1− 𝜆
)

𝑛
(

1−𝜆

1− 2𝜆
)
                                                                             (3.2)  

Letting m, n → ∞ in (3.2), we have  𝑑(𝑇𝑥𝑚, 𝑇𝑥𝑛) → 1. 

So {𝑇𝑥𝑛} is a Cauchy sequence and since 𝑋 is a complete multiplicative metric space , there 

exist   𝑣  𝑋 such that  

            lim
𝑛→∞

𝑇𝑥𝑛  =  𝑣                                                                                 (3.3) 

Since T is subsequentially convergent so {𝑥𝑛} has a convergent subsequence.  

So there exist 𝑢 𝑋 and {𝑥𝑛(𝑘)}
∞

k = 1  such that lim
𝑘→∞

𝑥𝑛(𝑘)  =  𝑢 . 

using continuity of  T and lim
𝑘→∞

𝑇𝑥𝑛(𝑘)  =  𝑇𝑢 

by (3.3) we conclude that 𝑇𝑢 = 𝑣 

so,  𝑑(𝑇𝑢, 𝑇𝑆𝑢)  ≤   𝑑(𝑇𝑆𝑢, 𝑇𝑥𝑛(𝑘)).𝑑(𝑇𝑥𝑛(𝑘), 𝑇𝑥𝑛(𝑘)+1). 𝑑(𝑇𝑥𝑛(𝑘)+1, 𝑇𝑢). 

                            ≤  𝑑(𝑇𝑆𝑢, 𝑇𝑆𝑥𝑛(𝑘)−1).𝑑(𝑇𝑥𝑛(𝑘), 𝑇𝑥𝑛(𝑘)+1). 𝑑(𝑇𝑥𝑛(𝑘)+1, 𝑇𝑢). 
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≤  {𝑑(𝑇𝑢, 𝑇𝑆𝑢). 𝑑(𝑇𝑥𝑛(𝑘)−1, 𝑇𝑆𝑥𝑛(𝑘)−1)}
𝜆
.(d(𝑇𝑥1, 𝑇𝑥0))(

𝜆

1− 𝜆
)

𝑛(𝑘)

. 𝑑(𝑇𝑥𝑛(𝑘)+1, 𝑇𝑢). 

Implies, ((𝑑(𝑇𝑢, 𝑇𝑆𝑢))1 − 𝜆  ≤  {𝑑(𝑇𝑥𝑛(𝑘)−1, 𝑇𝑥𝑛(𝑘))}
𝜆
. (d(𝑇𝑥1, 𝑇𝑥0))(

𝜆

1− 𝜆
)

𝑛(𝑘)

.𝑑(𝑇𝑥𝑛(𝑘)+1, 𝑇𝑢). 

 𝑑(𝑇𝑢, 𝑇𝑆𝑢) ≤  {𝑑(𝑇𝑥𝑛(𝑘)−1, 𝑇𝑥𝑛(𝑘))}
(

𝜆

1− 𝜆
)
 . (d(𝑇𝑥1, 𝑇𝑥0))(

𝜆

1− 𝜆
)

𝑛(𝑘)
.(

1

1− 𝜆
)
. 𝑑(𝑇𝑥𝑛(𝑘)+1, 𝑇𝑢)

(
1

1− 𝜆
)
 

Letting 𝑘 → ∞ , 𝑑(𝑇𝑢, 𝑇𝑆𝑢) → 1, since 𝑇 is one to one, we get  𝑆𝑢 = 𝑢. 

So, 𝑆 has a fixed point. Since (3.1) holds and 𝑇 is one to one, 𝑆 has a unique fixed point. 

Now if 𝑇 is sequentially convergent, then by replacing n with { 𝑛(𝑘)}, we conclude that  

lim
𝑛→∞

𝑥𝑛  = 𝑢 and this shows that {𝑥𝑛} converges to the fixed point of  𝑆. 

Remark 3.2. By taking 𝑇𝑥 = 𝑥 in theorem (3.1), we can conclude the Kannan’s theorem for 

multiplicative space. 

Theorem 3.3. Let (𝑋, 𝑑) be a multiplicative metric space and  𝑇, 𝑆 : 𝑋→ 𝑋 be a mapping 

such that  𝑇 is continuous, one to one and subsequentially convergent.  If  λ  [0,
1

2
) and 

 𝑑(𝑇𝑆𝑥, 𝑇𝑆𝑦)  ≤   [𝑑(𝑇𝑥, 𝑇𝑆𝑦). 𝑑(𝑇𝑦, 𝑇𝑆𝑥)]𝜆 for all 𝑥, 𝑦  𝑋 then 𝑆 has a unique fixed point. 

Also if 𝑇 is sequentially convergent then for every 𝑥0  𝑋 , the sequence of iterates {𝑆𝑛𝑥0} 

converges to this fixed point. 

Theorem 3.4. Let (𝑋, 𝑑) be a complete multiplicative metric space and 𝑇, 𝑆 : 𝑋→ 𝑋 be a 

mapping such that  𝑇 is continuous one to one and subsequentially convergent and 

𝑑(𝑇𝑆𝑥, 𝑇𝑆𝑦)  ≤   𝑑(𝑇𝑥, 𝑇𝑆𝑥)𝑝. 𝑑(𝑇𝑦, 𝑇𝑆𝑦)𝑞 . 𝑑(𝑇𝑥, 𝑇𝑦)𝑟 ,  

where 𝑝, 𝑞, 𝑟  [0,
1

2
) with 𝑝 + 𝑞 + 𝑟 < 1. 

 Proof. Let 𝑥0  𝑋 and {𝑥𝑛} be a sequence in 𝑋 such that  𝑥𝑛 =  𝑆𝑥𝑛−1 = 𝑆𝑛𝑥0 

Now, 

d(𝑇𝑥𝑛+1, 𝑇𝑥𝑛) = d(𝑇𝑆𝑥𝑛, 𝑇𝑆𝑥𝑛−1) 

                       ≤  d(𝑇𝑥𝑛, 𝑇𝑆𝑥𝑛)𝑝.  d(𝑇𝑥𝑛−1, 𝑇𝑆𝑥𝑛−1)𝑞.  d(𝑇𝑥𝑛, 𝑇𝑥𝑛−1)𝑟 

 d(𝑇𝑥𝑛, 𝑇𝑥𝑛+1)1−𝑝  ≤   d(𝑇𝑥𝑛−1, 𝑇𝑥𝑛)𝑞+𝑟 

d(𝑇𝑥𝑛, 𝑇𝑥𝑛+1) ≤   d(𝑇𝑥𝑛−1, 𝑇𝑥𝑛)
𝑞+𝑟

1−𝑝 , where  λ =  
𝑞+𝑟

1−𝑝
   [(0,1)] 

Thus  d(𝑇𝑥𝑛, 𝑇𝑥𝑛+1) ≤  d(𝑥𝑛, 𝑥𝑛−1)λ    ≤  …≤   d(𝑇𝑥1, 𝑇𝑥0)λ𝑛
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Now for every m, n  𝑁 such that m  >  n, 

we have,  

d(𝑇𝑥𝑚, 𝑇𝑥𝑛)  =   d(𝑇𝑥𝑚, 𝑇𝑥𝑚−1).d(𝑇𝑥𝑚−1, 𝑇𝑥𝑚−2)…d(𝑇𝑥𝑛+1, 𝑇𝑥𝑛)  

                       ≤   d(𝑇𝑥1, 𝑇𝑥0)λ𝑚−1
.  d(𝑇𝑥1, 𝑇𝑥0)λ𝑚−2

…  d(𝑇𝑥1, 𝑇𝑥0)λ𝑛
                    

                       ≤   (d(𝑇𝑥0, 𝑇𝑥1))(𝜆)𝑚−1+(𝜆)𝑚−2+⋯+(𝜆)𝑛
 

                       ≤   (d(𝑇𝑥0, 𝑇𝑥1))(𝜆)𝑛+(𝜆)𝑛+1+⋯  

                       =   (d(𝑇𝑥0, 𝑇𝑥1))𝜆𝑛[1 + 𝜆 + 𝜆2+⋯ ] 

                       =  (d(𝑇𝑥0, 𝑇𝑥1))
𝜆𝑛

1−𝜆 

Taking m, n → ∞, we have  d(𝑇𝑥𝑚, 𝑇𝑥𝑛) → 1. So { 𝑇𝑥𝑛} is a Cauchy sequence and since 𝑋 is a 

complete metric space, there exists 𝑣  𝑋 such that 

    lim
𝑛→∞

𝑇𝑥𝑛 = 𝑣 

Since 𝑇 is subsequentially convergent, so {𝑥𝑛} has a convergent subsequence. So there exist , 

 𝑢  𝑋 and {𝑥𝑛(𝑘)} such that lim
𝑘→∞

𝑇𝑥𝑛(𝑘) = 𝑇𝑢 

By (3.3) we conclude that 𝑇𝑢 = 𝑣 

So,  𝑑(𝑇𝑢, 𝑇𝑆𝑢) ≤ 𝑑(𝑇𝑆𝑢, 𝑇𝑥𝑛(𝑘)).𝑑(𝑇𝑥𝑛(𝑘), 𝑇𝑥𝑛(𝑘)+1). 𝑑(𝑇𝑥𝑛(𝑘)+1, 𝑇𝑢). 

                          ≤ 𝑑(𝑇𝑆𝑢, 𝑇𝑆𝑥𝑛(𝑘)−1).𝑑(𝑇𝑥𝑛(𝑘), 𝑇𝑥𝑛(𝑘)+1). 𝑑(𝑇𝑥𝑛(𝑘)+1, 𝑇𝑢). 

                          ≤𝑑(𝑇𝑢, 𝑇𝑆𝑢)𝑝.𝑑(𝑇𝑥𝑛(𝑘)−1, 𝑇𝑆𝑥𝑛(𝑘)−1)
𝑞

𝑑(𝑇𝑢, 𝑇𝑆𝑥𝑛(𝑘)−1)
𝑟
. (d(𝑇𝑥0, 𝑇𝑥1))𝜆𝑛(𝑘)

 

 So,  

𝑑(𝑇𝑢, 𝑇𝑆𝑢)1−𝑝  ≤    𝑑(𝑇𝑥𝑛(𝑘)−1, 𝑇𝑥𝑛(𝑘))
𝑞

. 𝑑(𝑇𝑢, 𝑇𝑥𝑛(𝑘))
𝑟
. (d(𝑇𝑥0, 𝑇𝑥1))𝜆𝑛(𝑘)

. 𝑑(𝑇𝑥𝑛(𝑘)+1, 𝑇𝑢). 

Letting k → ∞,  𝑑(𝑇𝑢, 𝑇𝑆𝑢) → 1, since T is one to one we get Su = u. 

So, S has a fixed point. 
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