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Abstract. We introduce and study a Halpern-type averaging algorithm with both inertial and error terms for the

approximation of fixed points of asymptotically nonexpansive maps in real Hilbert spaces. Implementation of our

algorithm is illustrated using numerical examples in both finite and infinite dimensional real Hilbert spaces. Our

results extend recent results of Yekini, Iyiola and Ogbuisi, Numer Algor (2019), https://doi.org/10.1007/s11075-

019-00727-5 from the important class of nonexpansive maps to the much more general class of asymptotically

nonexpansive maps. Furthermore, our preliminary lemma is of independent interest.
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1. INTRODUCTION

Let H be a real Hilbert space with inner product 〈., .〉 and induced norm ||.||. Let C be a

nonempty closed convex subset of H. A mapping T : C→C is said to be L-Lipschitzian if there
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exists L > 0 such that

||T x−Ty|| ≤ L||x− y||, ∀x,y ∈C. (1.1)

T is said to be a contraction if L ∈ [0,1) and T is said to be nonexpansive if L = 1 (see for

example [3, 5, 9, 25]). T is said to be asymptotically nonexpansive (see for example [3, 9, 12,

15, 17, 33, 34]) if there exists a sequence {kn}∞
n=1 ⊆ [1,∞) with lim

n→∞
kn = 1 such that

||T nx−T ny|| ≤ kn||x− y||, ∀x,y ∈C. (1.2)

It is well known (see for example [12, 15]) that the class of nonexpansive mappings is a proper

subclass of the class of asymptotically nonexpansive mappings. The following example is also a

simple example of an asymptotically nonexpansive mapping in a finite dimensional real Hilbert

space which is not nonexpansive.

Example 1.1 Let ℜ denote the reals with the usual norm and define T : ℜ→ℜ by

T x =

 −3x, x ∈ (−∞,0]

0, x ∈ (0,∞)
.

Then ∀x,y ∈ (−∞,0], we obtain |T x−Ty|2 = 9|x− y|2, |x−T x− (y−Ty)|2 = 16|x− y|2, and

hence

|T x−Ty|2 = 9|x− y|2 = |x− y|2 + 1
2
|x−T x− (y−Ty)|2.

Observe also that ∀x,y ∈ (0,∞) we have

|T x−Ty|2 = 0≤ |x− y|2 + 1
2
|x−T x− (y−Ty)|2.

Furthermore, for all x ∈ (−∞,0] and y ∈ (0,∞) we have |T x−Ty|2 = 9x2 and

|x− y|2 + 1
2
|x−T x− (y−Ty)|2 = |x− y|2 + 1

2
|4x− y|2

= x2−2xy+ y2 +8x2 +
y2

2
−4xy

= 9x2 +
3y2

2
−6xy≥ 9x2 = |T x−Ty|2.

Thus

|T x−Ty|2 ≤ |x− y|2 + 1
2
|x−T x− (y−Ty)|2, ∀x,y ∈ℜ,
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and

|T x−Ty| ≤ 1+
√

2√
2−1

|x− y|, ∀x,y ∈ℜ.

Observe that for all integer n≥ 2 we have T nx = 0, ∀x∈ℜ. Thus for all x,y∈ℜ, n≥ 2 we have

|T nx−T ny|2 ≤ |x− y|2.

It follows that T is asymptotically nonexpansive with

kn =


1+
√

2√
2−1

, n = 1,

1, n≥ 2.

T is not nonexpansive.

T is said to be uniformly L-Lipschitzian if there exists L > 0 such that

||T nx−T ny|| ≤ L||x− y||, ∀x,y ∈C. (1.3)

T is said to be demiclosed at p if whenever {xn}∞
n=1 is a sequence in C which converges weakly

to x∗ ∈C and {T xn}∞
n=1 converges strongly to p, then T x∗= p. It is well-known (see for example

[3, 9, 27]) that if C is a nonempty closed convex subset of a real Hilbert space H and T : C→C

is an asymptotically nonexpansive mapping with a nonempty fixed point-set, F(T ), then (I−T )

is demiclosed at zero.

Let PC : H→C denote the metric projection (the proximity map) which assigns to each point

x ∈ H the unique nearest point in C, denoted by PC(x). It is well known that z = PC(x) if and

only if 〈x− z,z− y〉 ≥ 0, ∀y ∈C, and that PC is nonexpansive.

In the iterative approximation of fixed points of asymptotically nonexpansive maps, the mod-

ified averaging iterative scheme of Mann:

xn+1 = (1−αn)xn +αnT nxn, n≥ 1; (1.4)

and Ishikawa:

xn+1 = (1−αn)xn +αnT n[(1−βn)xn +βnT nxn], n≥ 1, (1.5)

where {αn}∞
n=1 and {βn}∞

n=1 are suitable sequences in [0,1] have played pivotal role. These

schemes were first studied by Schu ([33, 34]) in 1991 and the schemes have played pivotal

roles in approximation of fixed points of maps with asymptotic type behaviours (see for ex-

ample [3, 6, 7, 17, 26, 27, 28, 31, 33, 34]). However, these two iteration schemes yield only
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weak convergence usually obtained mostly from lim
n→∞
‖xn− T xn‖ = 0; and require “compact-

ness” assumption either on the operator or the domain of the operator or even both to yield

strong convergence. Even for nonexpansive maps, k-strictly pseudocontractive maps and other

generalizations that do not exhibit asymptotic behaviours, sometimes very strong conditions are

imposed on the fixed-point set, F(T ) to obtain strong convergence using the usual Mann or the

Ishikawa iteration process (see for example [3, 5, 9, 29, 32, 40]). For instance in [32], the au-

thor required that F(T ) is finite where T is a continuous pseudocontractive-type self-mapping

of a nonempty convex compact subset of a Hilbert space, and in [40] the authors required that

the interior of F(T ) is nonempty where T is a Lipschitz pseudocontractive self-mapping of a

nonempty closed convex subset of a Hilbert space. Thus many other schemes have been recently

studied by several authors to achieve relatively fast strong convergence with mild assumptions

on the operator, its domain, its set of fixed points and other necessary components (see for ex-

ample [1, 2, 8, 10, 11, 13, 14, 16, 18, 19, 20, 21, 22, 23, 24, 30, 36, 38, 39, 41]). In [35] the

authors introduced a Halpern-type algorithm with both inertial and error terms for approximat-

ing fixed points of nonexpansive mappings in real Hilbert spaces. They proved the following

main convergence theorem:

Theorem 1.1([35, Theorem 4.2]) Let H be a real Hilbert space and let T : H→ H be a non-

expansive mapping with a nonempty fixed point set F(T ). Let {xn} be the sequence generated

from arbitrary x0,x1 ∈ H by yn = xn +θn(xn− xn−1), n≥ 1

xn+1 = αnx0 +βnyn + γnTyn + en, n≥ 1,
(1.6)

where {αn},{βn},{γn} are sequences in (0,1); {εn} is a positive sequence and {en} ⊆ H is a

sequence of errors satisfying the conditions:

(i) lim
n→∞

αn = 0, ∑
∞
n=1 αn = ∞, εn = o(αn), where εn = o(αn) means lim

n→∞

εn
αn

= 0.

(ii) αn +βn + γn = 1, ∀n≥ 1 and liminf
n→∞

βnγn > 0.

(iii) Either ∑
∞
n=1 ‖en‖< ∞ or lim

n→∞

‖en‖
αn

= 0.

(iv) θ ∈ (0,1), 0≤ θn ≤ θ̄n, where

θ̄n =

 min{θ , εn
‖xn−xn−1‖},xn 6= xn−1

θ , otherwise.
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Then the algorithm (1.6) converges strongly to z = PF(T )x0.

It is our purpose in this paper to consider a modified averaging Halpern-type algorithm with

both inertial and error terms suitable for a class of asymptotically nonexpansive maps. Our

strong convergence theorems extend the corresponding convergence theorems of [35] for non-

expansive maps to the much more general class of asymptotically nonexpansive maps.

2. PRELIMINARIES

We shall need the following results:

Lemma 2.1([3, 9, 35, 37]) Let H be a real Hilbert space. Then, the following well-known

results hold:

(i) ‖x+ y‖2 = ‖x‖2 +2〈x,y〉+‖y‖2, ∀x,y ∈ H,

(ii) ‖x+ y‖2 ≤ ‖x‖2 +2〈y,x+ y〉, ∀x,y ∈ H,

(iii) ‖αx+βy‖2 = α(α +β )‖x‖2 +β (α +β )‖y‖2−αβ‖x− y‖2, ∀x,y ∈ H.

Lemma 2.2([3, 9, 27]) Let C be a nonempty closed convex subset of a real Hilbert space H

and let T : C −→C be a an asymptotically nonexpansive mapping. Then I−T is demiclosed at

0. i.e, if xn ⇀ x ∈C and xn−T xn→ 0, then x = T x.

Lemma 2.3([18]) Let {Γn} be a sequence of real numbers. Assume {Γn} does not decrease

at infinity, that is , there exists at least a subsequence {Γnk} of {Γn} such that Γnk ≤ Γnk+1 for

all k ≥ 0. For every n≥ n0, define an integer sequence {τ(n)} as

τ(n) = max{k ≤ n : Γk ≤ Γk+1}.

Then τ(n)→ ∞ as n→ ∞, and for all n≥ n0,

max{Γτ(n),Γn} ≤ Γτ(n)+1.

3. MAIN RESULTS

We begin with the following important lemma which will play crucial role in the proof of our

convergence results.
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Lemma 3.1 Let {an}∞
n=1, {cn}∞

n=1, {en}∞
n=1⊂ℜ+ = [0,∞), {bn}∞

n=1⊂ (0,1) and {dn}∞
n=1⊂

ℜ be sequences such that

an+1 ≤ [1−bn + cn]an +dn + en, n≥ 1. (3.1)

Let ∑
∞
n=1 cn < ∞ and ∑

∞
n=1 en < ∞. Then we have the following results:

(i) If dn ≤Mbn for some M > 0, then {an}∞
n=1 is bounded.

(ii) If lim
n→∞

bn = 0; ∑
∞
n=1 bn = ∞, and limsup

n→∞

dn
bn
≤ 0, then lim

n→∞
an = 0.

Proof. Suppose (i) holds, then

an+1 ≤ [1−bn + cn]an +dn + en

≤ [1−bn + cn]an +Mbn + en

≤ [1−bn + cn][(1−bn−1 + cn−1)an−1 +Mbn−1 + en−1]+Mbn + en

≤ [1−bn + cn][1−bn−1 + cn−1]an−1 +M[(1−bn + cn)bn−1 +bn]

+(1−bn + cn)en−1 + en

= [1−bn + cn][1−bn−1 + cn−1]an−1

+M[1− (1−bn + cn)(1−bn−1 + cn−1)+(1−bn + cn)cn−1 + cn]

+(1−bn + cn)en−1 + en

≤ [1−bn + cn][1−bn−1 + cn−1]
[
(1−bn−2 + cn−2)an−2

+Mbn−2 + en−2
]

+M[1− (1−bn + cn)(1−bn−1 + cn−1)+(1−bn + cn)cn−1 + cn]

+(1−bn + cn)en−1 + en

= [1−bn + cn][1−bn−1 + cn−1][1−bn−2 + cn−2]an−2

+M[(1−bn + cn)(1−bn−1 + cn−1)bn−2

+1− (1−bn + cn)(1−bn−1 + cn−1)+(1−bn + cn)cn−1 + cn]

+(1−bn + cn)(1−bn−1 + cn−1)en−2
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+(1−bn + cn)en−1 + en

= [1−bn + cn][1−bn−1 + cn−1][1−bn−2 + cn−2]an−2

+M[1− (1−bn + cn)(1−bn−1 + cn−1)(1−bn−2 + cn−2)

+(1−bn + cn)(1−bn−1 + cn−1)cn−2 +(1−bn + cn)cn−1 + cn]

+(1−bn + cn)(1−bn−1 + cn−1)en−2

+(1−bn + cn)en−1 + en

...

≤
n

∏
j=1

(1−b j + c j)a1 +M(1−
n

∏
j=1

(1−b j + c j))

+M
n

∏
j=1

(1+ c j)[
n

∑
k=1

ck]+
n

∏
j=1

(1+ c j)[
n

∑
k=1

ek] (3.2)

≤
n

∏
j=1

(1+ c j)a1 +M(1−
n

∏
j=1

(1−b j + c j))

+
n

∏
j=1

(1+ c j)[M
n

∑
k=1

ck]+
n

∏
j=1

(1+ c j)[
n

∑
k=1

ek]. (3.3)

Since ∑
∞
n=1 cn < ∞, then ∏

∞
j=1(1+ c j) < ∞. Also ∑

∞
n=1 en < ∞ and hence it follows from (3.3)

that {an} is bounded.

Suppose (ii) holds. Let ε > 0 be arbitrary and let N be a positive integer such that:

dn ≤ εbn, ∀n≥ N;
∞

∑
n=N

cn <
ε

M
;

∞

∑
n=N

en < ε,

then it follows from (3.2) that

an+1 ≤
n

∏
j=N

(1−b j + c j)aN + ε(1−
n

∏
j=N

(1−b j + c j))+
n

∏
j=N

(1+ c j)[M
n

∑
k=N

ck +
n

∑
k=N

ek]

≤
n

∏
j=N

(1−b j + c j)aN + ε(1−
n

∏
j=N

(1−b j + c j))+2ε

n

∏
j=N

(1+ c j). (3.4)
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Observe that

n

∏
j=N

(1−b j + c j) ≤
n

∏
j=N

[(1−b j)(1+Dc j)],( since
1

(1−bn)
≤ D for some D > 0)

≤ exp(D
n

∑
j=N

c j)exp(−
n

∑
j=N

b j)→ 0 as n→ ∞.

This together with (3.4) yields

limsup
n→∞

an ≤ 3ε.

Hence lim
n→∞

an = 0. �

Theorem 3.1 Let H be a real Hilbert space and let T : H → H be an asymptotically nonex-

pansive mapping with a nonempty fixed point set F(T ) and with a sequence {kn} ⊆ [1,∞) such

that ∑
∞
n=1(kn−1)< ∞ . Let {xn} be the sequence generated from arbitrary x0,x1 ∈ H by

 yn = xn +θn(xn− xn−1), n≥ 1

xn+1 = αnx0 +βnyn + γnT nyn + en, n≥ 1,
(3.5)

where {αn},{βn},{γn} are sequences in (0,1); {εn} is a positive sequence and {en} ⊆ H is a

sequence of errors satisfying the conditions:

(i) lim
n→∞

αn = 0, ∑
∞
n=1 αn = ∞, εn = o(αn), where εn = o(αn) means lim

n→∞

εn
αn

= 0.

(ii) αn +βn + γn = 1, ∀n≥ 1 and liminf
n→∞

βnγn > 0.

(iii) Either ∑
∞
n=1 ‖en‖< ∞ or lim

n→∞

‖en‖
αn

= 0.

(iv) θ ∈ (0,1), 0≤ θn ≤ θ̄n, where

θ̄n =

 min{θ , εn
‖xn−xn−1‖},xn 6= xn−1

θ , otherwise.

(vi) lim
n→∞

kn−1
αn

= 0.

Then the algorithm (3.5) converges strongly to z = PF(T )x0.
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Proof. Let p ∈ F(T ). Then

‖xn+1− p‖ = ‖αnx0 +βnyn + γnT nyn + en− p‖

= ‖αn(x0− p)+βn(yn− p)+ γn(T nyn− p)+ en‖

≤ αn‖x0− p‖+βn‖yn− p‖+ γn‖T nyn− p‖+‖en‖

≤ αn‖x0− p‖+βn‖yn− p‖+ γnkn‖yn− p‖+‖en‖

= αn‖x0− p‖+(βn + γn)‖yn− p‖+ γn(kn−1)‖yn− p‖+‖en‖

= [1−αn + γn(kn−1)]‖yn− p‖+αn‖x0− p‖+‖en‖

≤ [1−αn + γn(kn−1)][‖xn− p‖+θn‖xn− xn−1‖]+αn‖x0− p‖+‖en‖

= [1−αn + γn(kn−1)]‖xn− p‖+[1−αn + γn(kn−1)]θn‖xn− xn−1‖]

+αn‖x0− p‖+‖en‖

≤ [1−αn + γn(kn−1)]‖xn− p‖+αn[(1−αn + γn(kn−1))
θn

αn
‖xn− xn−1‖

+‖x0− p‖+ ‖en‖
αn

] (3.6)

If lim
n→∞

‖en‖
αn

= 0, then there exists D > 0 such that

[(1−αn + γn(kn−1))
θn

αn
‖xn− xn−1‖+‖x0− p‖+ ‖en‖

αn
]≤ D, ∀n.

Thus we obtain from (3.6) that

‖xn+1− p‖ ≤ [1−αn + γn(kn−1)]‖xn− p‖+M1αn,

and it follows from Lemma 3.1 that {xn} is bounded.

If ∑
∞
n=1 ‖en‖< ∞ , from (3.6) we have that

‖xn+1− p‖ ≤ [1−αn + γn(kn−1)]‖xn− p‖

+αn[1−αn + γn(kn−1)]
θn

αn
‖xn− xn−1‖+‖x0− p‖+‖en‖

≤ [1−αn + γn(kn−1)]‖xn− p‖+Mαn +‖en‖, ∀n and for some M > 0. (3.7)
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It follows from Lemma 3.1 and inequality (3.7) that {xn} is bounded. Using Lemma 2.1 and

the fact that θ ∈ (0,1) yields:

‖yn− p‖2 = ‖xn +θn(xn− xn−1)− p‖2

≤ ‖xn− p‖2 +θn‖xn− xn−1‖2 +2θn〈xn− xn−1,xn− p〉

= ‖xn− p‖2 +θn‖xn− xn−1‖2 +θn[‖xn− p‖2 +‖xn− xn−1‖2−‖xn−1− p‖2]

= ‖xn− p‖2 +2θn‖xn− xn−1‖2 +θn[‖xn− p‖2−‖xn−1− p‖2]. (3.8)

Furthermore,

‖xn+1− p‖2 = ‖αnx0 +βnyn + γnT nyn + en− p‖2

= ‖αn(x0− p)+βn(yn− p)+ γn(T nyn− p)+ en‖2

= ‖αn(x0− p+
en

αn
)+βn(yn− p)+ γn(T nyn− p)‖2

≤ ‖βn(yn− p)+ γn(T nyn− p)‖2 +2〈αn(x0− p+
en

αn
),xn+1− p〉

= βn(βn + γn)‖yn− p‖2 + γn(βn + γn)‖T nyn− p)‖2−βnγn‖yn−T nyn‖2

+2αn〈(x0− p+
en

αn
),xn+1− p〉

≤ βn(βn + γn)‖yn− p‖2 + γn(βn + γn)kn‖yn− p‖2−βnγn‖yn−T nyn‖2

+2αn〈(x0− p+
en

αn
),xn+1− p〉

= (βn + γn)
2‖yn− p‖2 + γn(βn + γn)(kn−1)‖yn− p)‖2−βnγn‖yn−T nyn‖2

+2αn〈(x0− p+
en

αn
),xn+1− p〉

≤ (βn + γn)‖yn− p‖2 + γn(βn + γn)(kn−1)‖yn− p)‖2−βnγn‖yn−T nyn‖2

+2αn〈(x0− p+
en

αn
),xn+1− p〉

= (1−αn)‖yn− p‖2 + γn(1−αn)(kn−1)‖yn− p)‖2−βnγn‖yn−T nyn‖2

+2αn〈(x0− p+
en

αn
),xn+1− p〉

= (1−αn)[1+ γn(kn−1)]‖yn− p‖2−βnγn‖yn−T nyn‖2

+2αn〈(x0− p+
en

αn
),xn+1− p〉. (3.9)
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From (3.8) and (3.9), we obtain

‖xn+1− p‖2 ≤ (1−αn)[1+ γn(kn−1)][‖xn− p‖2 +θn(‖xn− p‖2−‖xn−1− p‖2)

+2θn‖xn− xn−1‖2]−βnγn‖yn−T nyn‖2 +2αn〈(x0− p+
en

αn
),xn+1− p〉

= (1−αn)[1+ γn(kn−1)]‖xn− p‖2

+(1−αn)[1+ γn(kn−1)]θn(‖xn− p‖2−‖xn−1− p‖2)

−βnγn‖yn−T nyn‖2 +2θn(1−αn)[1+ γn(kn−1)]‖xn− xn−1‖2

+2αn〈(x0− p+
en

αn
),xn+1− p〉 (3.10)

Setting Γn = ‖xn− p‖2 ∀ n ≥ 1 in (3.10) gives

Γn+1 ≤ (1−αn)[1+ γn(kn−1)]Γn +(1−αn)[1+ γn(kn−1)]θn(Γn−Γn−1)

−βnγn‖yn−T nyn‖2 +2θn(1−αn)[1+ γn(kn−1)]‖xn− xn−1‖2

+2αn〈(x0− p+
en

αn
),xn+1− p〉. (3.11)

We now consider the following two cases:

Case I: Suppose ∃ an n0 ∈ N such that Γn ≥ Γn+1, ∀n ≥ n0, then lim
n→∞

Γn exists and it follows

from (3.11) that

βnγn‖yn−T nyn‖2 ≤ Γn−Γn+1 +(1−αn)[1+ γn(kn−1)]θn(Γn−Γn−1)

+2θn(1−αn)[1+ γn(kn−1)]‖xn− xn−1‖2

+2αn〈(x0− p+
en

αn
),xn+1− p〉

= Γn−Γn+1 +θn(1−αn)[1+ γn(kn−1)](Γn−Γn−1)

+2θn(1−αn)[1+ γn(kn−1)]‖xn− xn−1‖2 +2αn〈(x0− p,xn+1− p〉

+2〈en,xn+1− p〉. (3.12)

It now follows from (3.12) that

lim
n→∞

βnγn‖T nyn− yn‖= 0. (3.13)
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Since liminf
n→∞

βnγn > 0, it follows from (3.13) that

lim
n→∞
‖T nyn− yn‖= 0. (3.14)

Observe that ‖yn− xn‖= θn‖xn− xn−1‖→ 0 as n→ ∞. Furthermore,

‖xn+1− yn‖ = ‖αnx0 +βnyn + γnT nyn + en− yn‖

= ‖αn(x0− yn +
en

αn
)+ γn(T nyn− yn)‖

≤ αn‖x0− yn +
en

αn
‖+ γn‖T nyn− yn‖→ 0 as n→ ∞.

Thus ‖yn− yn−1‖ ≤ ‖yn− xn‖+‖xn− yn−1‖→ 0 as n→ ∞, and it follows that

‖yn−Tyn‖ ≤ ‖yn−T nyn‖+‖T nyn−Tyn‖

≤ ‖yn−T nyn‖+L‖T n−1yn− yn‖

≤ ‖yn−T nyn‖+L‖T n−1yn−T n−1yn−1‖+L‖T n−1yn−1− yn‖

≤ ‖yn−T nyn‖+L(1+L)‖yn− yn−1‖+L‖T n−1yn−1− yn−1‖→ 0 as n→ ∞.

Since {xn}∞
n=1 is bounded, there exists a subsequence {xnk}∞

k=1 of {xn}∞
n=1 such that xnk ⇀ q∈H

and

limsup
n→∞

〈x0− p,xn− p〉= limsup
k→∞

〈x0− p,xnk− p〉= 〈x0− p,q− p〉. (3.15)

Using yn = xn +θn(xn− xn−1) gives ‖yn− xn‖= θn‖xn− xn−1‖→ 0 as n→ ∞. (3.16)

Since xnk ⇀ q as k→ ∞, then ynk ⇀ q as k→ ∞, and it follows from the demiclosedness

property of (I−T ) at zero that q ∈ F(T ). Furthermore, from p = PF(T )x0 we obtain

limsup
n→∞

〈x0− p,xn− p〉 ≤ 0. (3.17)

From (3.10), we have

Γn+1 ≤ (1−αn)[1+ γn(kn−1)]Γn +(1−αn)[1+ γn(kn−1)]θn(Γn−Γn−1)

+2θn(1−αn)[1+ γn(kn−1)]‖xn− xn−1‖2 +2αn〈x0− p+
en

αn
,xn+1− p〉

= (1−αn)[1+ γn(kn−1)]Γn +(1−αn)[1+ γn(kn−1)]θn(‖xn− p‖2−‖xn−1− p‖2)

+2θn(1−αn)[1+ γn(kn−1)]‖xn− xn−1‖2 +2αn〈x0− p+
en

αn
,xn+1− p〉
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= (1−αn)[1+ γn(kn−1)]Γn +(1−αn)[1+ γn(kn−1)]θn[(‖xn− p‖−‖xn−1− p‖)

×(‖xn− p‖+‖xn−1− p‖)]+2θn(1−αn)[1+ γn(kn−1)]‖xn− xn−1‖2

+2αn〈x0− p+
en

αn
,xn+1− p〉

≤ (1−αn)[1+ γn(kn−1)]Γn

+(1−αn)[1+ γn(kn−1)]θn[(‖xn− p+ p− xn−1‖)(‖xn− p‖+‖xn−1− p‖)]

+2θn(1−αn)[1+ γn(kn−1)]‖xn− xn−1‖2 +2αn〈x0− p+
en

αn
,xn+1− p〉

≤ (1−αn)[1+ γn(kn−1)]Γn +(1−αn)[1+ γn(kn−1)]θn‖xn− xn−1‖(
√

Γn +
√

Γn−1)

+2θn(1−αn)[1+ γn(kn−1)]‖xn− xn−1‖2 +2αn〈x0− p+
en

αn
,xn+1− p〉

≤ (1−αn)[1+ γn(kn−1)]Γn +θn‖xn− xn−1‖K1 +2αn〈x0− p+
en

αn
,xn+1− p〉, (3.18)

where K1 = sup
n≥1
{(1−αn)[1+ γn(kn−1)][

√
Γn +

√
Γn−1 +2‖xn− xn−1‖]}.

Since ∑
∞
n=1 ‖en‖< ∞, then (3.18) gives

Γn+1 ≤ (1−αn)[1+ γn(kn−1)]Γn +θn‖xn− xn−1‖K1 +αnun +gn (3.19)

with un := 2〈x0− p,xn+1− p〉, gn := K2‖en‖, K2 > 0. Using Lemma 3.1 and conditions (i) and

(iii) of the Theorem we obtain Γn = ‖xn− p‖→ 0 as n→ ∞.

From the fact that lim
n→∞

‖en‖
αn

= 0, (3.18) gives

Γn+1 ≤ (1−αn)[1+ γn(kn−1)]Γn +θn‖xn− xn−1‖K1 +2αnun (3.20)

un = 〈x0− p+ en
αn
,xn+1− p〉.

Observe from (3.18) that limsup
n→∞

un ≤ 0. Hence by Lemma 2.3 and conditions of Theorem

3.1 we obtain xn→ p as n→ ∞.

Case II: Assume that {‖xn− p‖} is not a monotone decreasing sequence.

Following the method of proof in ([18, 35]) we set Γn = ‖xn− p‖2 and let τ : N −→ N be a

mapping for all n≥ n0 for some n0 large enough by

τ(n) = max{k ∈ N : k ≤ n, Γk ≤ Γk+1}.

Clearly, {τ(n)} is a non decreasing sequence such that τ(n)→ ∞ as n→ ∞ and

0≤ Γτ(n) ≤ Γτ(n)+1 ∀n≥ n0. (3.21)
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With similar arguments as in (3.19), we easily obtain

lim
n→∞
‖T τ(n)yτ(n)− yτ(n)‖= 0, lim

n→∞
‖Tyτ(n)− yτ(n)‖= 0, lim

n→∞
‖yτ(n)− xτ(n)‖= 0,

lim
n→∞
‖T nyτ(n)− xτ(n)‖= 0. (3.22)

Using the boundedness of {xn}∞
n=1, {yn}∞

n=1 and assumptions and conditions of Theorem 3.1

we have that

‖xτ(n+1)− xτ(n)‖ ≤ ατ(n)‖x0− xτ(n)‖+βτ(n)‖yτ(n)− xτ(n)‖

+γτ(n)‖T nyτ(n)− xτ(n)‖+‖eτ(n)‖→ 0 as n→ ∞. (3.23)

Since {xτ(n)} is bounded, there exists a subsequence {xτ(nk)} of {xτ(n)} such that {xτ(nk)}

converges weakly to q ∈ F(T ). Similar to Case I above, it can be shown that limsup
n→∞

〈x0−

p,xτ(n)+1− p〉 ≤ 0. Using (3.18) we have that

ατ(n)Γτ(n) ≤ (1−ατ(n))γτ(n)(kτ(n)−1)Γτ(n)+θτ(n)‖xτ(n)− xτ(n)−1‖K1

+2ατ(n)〈x0− p+
eτ(n)

ατ(n)
,xτ(n)+1− p〉. (3.24)

Thus

Γτ(n) ≤ (1−ατ(n))γτ(n)
(kτ(n)−1)

ατ(n)
Γτ(n)+

θτ(n)

ατ(n)
‖xτ(n)− xτ(n)−1‖K1

+2〈x0− p+
eτ(n)

ατ(n)
,xτ(n)+1− p〉. (3.25)

From (3.25) we obtain lim
n→∞
‖xτ(n)− p‖= lim

n→∞
Γτ(n) = 0 and it follows that lim

n→∞
‖xτ(n)+1− p‖= 0.

Clearly Γn ≤ Γτ(n)+1 for n ≥ n0. We note also that τ(n) ≤ n for n ≥ n0, and consider the

three cases namely: τn = n,τn = n− 1, and τ(n) < n− 1. Obviously Γn ≤ Γτ(n)+1 for τ(n) =

n and τ(n) = n−1. For τ(n) ≤ n−2 and for any integer n ≥ n0, it follows from the definition

of τ(n) that Γi ≥ Γi+1, for τ(n)+ 1 ≤ i ≤ n− 1. Hence Γτ(n)+1 ≥ Γτ(n)+2 ≥ ·· · ≥ Γn−1 ≥ Γn.

Thus for all sufficiently large n we obtain 0≤ Γn≤ Γτ(n)+1, from which it follows that lim
n→∞

Γn =

0. Thus {xn}∞
n=1 converges strongly to p. �
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For arbitrary β ∈ (0,1), we can consider the following algorithm:

Algorithm 3.2 With {αn},{εn},{en},θ ,{θn} and {θ̄n} as in Theorem 3.1, let {xn} be gen-

erated from arbitrary starting points x0,x1 ∈ H by

xn+1 = αnx0 +(1−αn)T(β ,n)(xn +θn(xn− xn−1))+ en, (3.26)

where T(β ,n) = (1−β )I +βT n.

We obtain the following Corollary:

Corollary 3.1 Let H be a real Hilbert space and let T : H→H be an asymptotically nonexpan-

sive mapping with a nonempty fixed point set F(T ) and with a sequence {kn} ⊆ [1,∞) such that

∑
∞
n=1(kn−1)< ∞ . Let {xn} be the sequence generated from arbitrary x0,x1 ∈ H by Algorithm

3.26. Then the algorithm (3.26) converges strongly to z = PF(T )x0.

Proof. With yn = xn +θn(xn− xn−1), we obtain

xn+1 = αnx0 +(1−αn)T(β ,n)yn + en,

= αnx0 +(1−αn)(1−β )yn +(1−αn)βT nyn + en

= αnx0 +βnyn + γnT nyn + en,

where βn = (1−αn)(1− β ) and γn = (1−αn)β . Since αn + βn + γn = 1 and liminf
n→∞

βnγn =

β (1−β )> 0, then the results follows from Theorem 3.1. �

4. NUMERICAL EXAMPLES

Example 4.1 Let X denote the real Hilbert space `2 and B the unit closed ball in X . Define

T : B→ B by

T x = T (x1,x2,x3, . . .) = (0,x2
1,A2x2,A3x3, . . .),

where Ai is a sequence of numbers such that 0 < Ai < 1 and ∏
∞
i=2 Ai =

1
2 . Then T is Lipschitzian

and ||T x−Ty|| ≤ 2||x−y||, ∀x,y ∈ B. Furthermore, ||T nx−T ny|| ≤ 2∏
n
i=2 Ai||x−y||= kn||x−

y||, for n = 2,3, . . . . Since lim
n→∞

kn = 1, we have that T is asymptotically nonexpansive. If x =

(3
4 ,0,0,0, . . .) and y = (1

2 ,0,0,0, . . .), then ||T x−Ty|| = 5
16 > 1

4 = ||x− y||. This example has

served as standard example for various works on asymptotically nonexpansive maps and its

generalizations.
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In particular we can take Ai =
i2−1

i2 , i > 1. Then kn = 2∏
n
i=2 Ai, and we further choose

αn =
√

kn−1+ 1
n+1 , βn = γn =

1
2(

n
n+1−

√
kn−1), εn =

1
(n+1)2 , en =

c
(n+1)2 , where c∈H is any

fixed vector. Choosing x1 = (1
2 ,0,0,0, . . .), x2 = (2

5 ,0,0,0, . . .), θ = 0.5, and c = (1
3 ,0,0,0, . . .)

in H, algorithm (3.5) and algorithm (3.26) with β = 0.5 and 0.9 converge to zero as shown in

Figure 1 and table 1 below:

FIGURE 1. Graph showing the convergence of iterative algorithms

Number Algorithm 3.26 Algorithm 3.26
of Algorithm 3.5 with with

Iterates β = 0.5 β = 0.9
2 0.1 0.1 0.1
3 0.149702 0.1497 0.1558
4 0.151111 0.1485 0.1957
5 0.0538255 0.0553 0.0578
...

...
...

...
29 0.00116518 0.0003 0.0001
30 0.000983747 0.0002 0
31 0.000830058 0.0002 0
32 0.000699556 0.0001 0
...

...
...

...
57 0.000010828 0 0
58 0.000010008 0 0

Elapsed time 0.155271 seconds 0.471473 seconds 0.430826 seconds.

TABLE 1. Showing the numerical values of the iterates for the two algorithms
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Example 4.2 Let ℜ denote the reals with the usual norm and define T : ℜ→ℜ by

T x =

 −3x, x ∈ (−∞,0]

0, x ∈ (0,∞).

Then

kn =


1+
√

2√
2−1

, n = 1,

1, n≥ 2,

and we can choose αn =
√

kn−1+ 1
n+1 , βn = γn =

1
2(

n
n+1−

√
kn−1), εn =

1
(n+1)2 , en =

c
(n+1)2 ,

where c ∈ H is any fixed vector. Choosing x1 = 0.6, x2 = 2.5, θ = 0.5, and c = 0.9 in H, then

the algorithm (3.5) and algorithm (3.26) with β = 0.5 and 0.9 converge to zero as shown in

Figure 2 and table 2:

FIGURE 2. Graph showing the convergence of iterative algorithms
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Number Algorithm 3.26 Algorithm 3.26
of Algorithm 3.5 with with

Iterates β = 0.5 β = 0.9
1 1.9 1.9 1.9
2 2.8844 2.8844 1.1021
3 1.611 1.1711 0.375
4 0.7984 0.5198 0.5427
5 0.0142 0.0252 0.2027
...

...
...

...
27 0.0002 0.0002 0.0001
28 0.0002 0.0002 0.0001
29 0.0002 0.0002 0
...

...
...

...
33 0.0001 0.0001 0
34 0.0001 0.0001 0
35 0.0001 0.0001 0

Elapsed Time 0.169970 seconds 0.496013 seconds 0.483270 seconds

TABLE 2. Showing the numerical values of the iterates for the two algorithms

5. CONCLUSION

Two Halpern-type averaging algorithm (algorithms 3.5 and 3.26) with both inertial and error

terms were introduced and studied in this paper. Both algorithms were employed in the approx-

imation of fixed points of asymptotically nonexpansive maps in real Hilbert spaces. Asymp-

totically nonexpansive maps are more general than nonexpansive maps and as such the results

presented here generalize and extend some existing results in this area. Strong convergence

results were obtained for both algorithms. The validity of the algorithms is illustrated using nu-

merical examples in both finite and infinite dimensional real Hilbert spaces. From the numerical

experiment, algorithm 3.5 converges faster than algorithm 3.26. Although algorithm 3.26 has

fewer number of iterations, it took more time than algorithm 3.5 to complete the iterative pro-

cess. In practical application of the results to real world problems, it is advisable to implement

algorithm 3.5.
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