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Abstract. We study the inviscid Burgers equation which models nonlinear wave propagation. We derive the

inviscid Burgers equation from the Navier-Stokes equation and solve it using the Adomian decomposition method.

By means of numerical examples we show that the Adomian decomposition method produces results that compare

favourably with the exact solution obtained using the method of characteristics.

Keywords: Burgers equation; inviscid Burgers equation; Navier-Stokes equation; characteristic solution.

2010 AMS Subject Classification: 49M27, 35L60, 35Q30, 35Q35.

1. INTRODUCTION

Burgers equation is one of the most important partial differential equations (PDEs) in the theory

of nonlinear conservation laws and occurs in many areas of applied mathematics, e.g., fluid

mechanics, nonlinear acoustics, gas dynamics, cosmology, quantum mechanics and traffic flow.

Burgers equation, which is an approximation of the one-dimensional nonlinear propagation of

weak shock waves in a fluid [1], has been studied extensively in the literature. Named after

Johannes Martinus Burgers (1895-1981), Burgers equation was derived in a physical context by
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Bateman in 1915. Whitham [2] argues that Burgers equation is the simplest PDE combining

both nonlinear propagation and diffusive effects. El Malek and El-Mansi [3] estimated the

solution of Burgers equation initially obtained by Cole [4].

On the whole line Burgers equation, which may be viscid or inviscid, is known to possess trav-

elling shock wave solutions. Kuo and Lee [5] have shown that though Burgers equation is a

nonlinear PDE, it can be solved exactly. Using the method of characteristics Bendaas [6] gave

the exact solution to the inviscid Burgers equation ut +uux = 0, ∀x ∈ R, t > 0, u(ξ ,0) = f (ξ )

in parametric form as u(x, t) = f (ξ ), x = ξ + f (ξ )t. This is equivalent to the implicit solution

u(x, t) = f (x− u(x, t)t) or, recursively, un+1 = f (x− unt), n ≥ 0, for any f (x). The inviscid

Burgers equation is a prototype for equations for which the solutions can develop discontinu-

ities, i.e., shock waves [7]. A recent study describes the Burgers equation as a mathematical

model for the one-dimensional groundwater recharge by spreading [8].

The value of studying the Burgers equation has been underscored by Bonkile et al. [1] as

follows:

(1) Its exact solution is well known.

(2) The equation can be thought of as a hyperbolic equation with artificial diffusion for small

kinematic viscosity ν or as a heat equation for very small fluid velocity u.

(3) It can be used in boundary layer calculations for viscous fluid flow.

(4) It constitutes a standard test problem for use in PDE solvers.

(5) It is suitable for analysis in various fields such as those earlier highlighted, necessitating a

multidisciplinary approach in its study (see Figure 1).

More on Burgers equation can be found in the excellent review paper by Bonkile et al. [1]

and references therein. A wide range of numerical methods have been used to solve Burgers

equation, including finite differences [9, 10, 11], finite elements [12], boundary elements [13],

parameter-uniform implicit difference schemes [14], exponential finite differences [15], implicit

exponential finite differences [16] and Crank-Nicolson exponential finite differences [17], all

applied on the viscid Burgers equation. In this paper, we apply the Adomian decomposition

method (ADM) to the solution of the inviscid Burgers equation and compare the results with

the analytical solution obtained from the method of characteristics. The rest of the paper is
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FIGURE 1. A multidisciplinary approach [Adapted from [1]]

organised as follows: Section 2 shows a derivation of the inviscid Burgers equation, Section

3 outlines the method of solution, Section 4 gives some numerical examples and Section 5

concludes the study.

2. DERIVATION OF THE BURGERS EQUATION

The general form of the one-dimensional Burgers equation may be obtained as a simplifying

case of the Navier-Stokes equations. For a Newtonian incompressible fluid, the Navier-Stokes

equation is given by

(1) ρ(ut +u ·∇u) =−∇P+µ∇
2u+F,

where u is the fluid velocity vector field, P the fluid pressure, µ the viscosity, ρ the fluid density,

∇u =
∂u
∂x1

~i+
∂u
∂x2

~j+
∂u
∂x3

~k and F the source term representing an external force. If we assume

that the external force is zero and divide through by ρ , the Navier-Stokes equation takes the

form

(2) ut +u ·∇u =−∇P
ρ

+ν∇
2u,

where ν = µ

ρ
> 0 is the diffusion coefficient or the kinematic viscosity of the fluid, since for

an incompressible fluid ρ is a constant. If we now drop the pressure term, we obtain the viscid
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Burgers equation

(3) ut +u ·∇u = ν∇
2u

Equation (3) is a parabolic PDE. When the kinematic viscosity ν = 0, then the diffusion term

on the RHS vanishes and (3) becomes the inviscid Burgers equation

(4) ut +u ·∇u = 0

with initial condition u(x,0)= f (x), which is a first-order one-dimensional nonlinear hyperbolic

PDE. Equation (4) can be written as

(5) ut +uux = 0

Equation (5) is the simplest model of turbulence and is a conservation equation.

3. ADOMIAN DECOMPOSITION METHOD

The Adomian decomposition method (ADM) was formulated by George Adomian [18, 19] and

is a technique used for solving both linear and nonlinear ordinary and partial differential equa-

tions. This method makes it possible to express analytic solutions in terms of a rapidly converg-

ing series. The method identifies and separates the linear and nonlinear parts of a differential

equation. By inverting and applying the highest order differential operator that is contained in

the linear part of the equation, it is possible to express the solution in terms of the rest of the

equation affected by this inverse operator. The nonlinear part is expressed in terms of Adomian

polynomials. The initial or boundary conditions and the terms that contain the independent

variables, e.g., the source term which is a function of the independent variables only, are taken

as the initial approximation. Thus, using a recurrence relation, we compute the terms of the

series to obtain the approximate solution of the differential equation.

3.1. Operator form. In the standard operator form, (5) can be rewritten as

(6) Lt(u(x, t))+Nu(x, t) = 0
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where Lt =
∂

∂ t is a first order differential operator and Nu(x, t) = uux is the nonlinear term which

is assumed to be analytic. Making Lt(u(x, t)) the subject gives

(7) Lt(u(x, t)) =−Nu(x, t)

Assuming that Lt is invertible, we apply the one-fold integral operator L−1
t (·) =

∫ t
0(·)ds to both

sides of (7) to obtain

(8) L−1
t [Lt(u(x, t))] =−L−1

t [Nu(x, t)] .

3.2. Application of the ADM to the solution of the problem. Applying the given initial

condition to (8) gives

(9) u(x, t) = f (x)−L−1
t [Nu(x, t)],

where f (x) is the constant of integration with respect to t that satisfies Lt f = 0. In equations

where the initial value t = t0, the inverse operator L−1 can be conveniently defined. The ADM

proposes a decomposition series solution of the form

(10) u(x, t) =
∞

∑
n=0

un(x, t),

with u0 identified as u(x,0) and the components un(x, t) obtained from the recursive formula

(11)
∞

∑
n=0

un(x, t) = f (x)−L−1
t [Nu(x, t)].

The nonlinear term Nu(x, t) = β (u) is given by

Nu =
∞

∑
n=0

An(u0,u1, . . . ,un),

where the An, depending on u0, u1, u2, . . . , un, are called Adomian polynomials obtained as

shown in the following theorem.

Theorem 3.1. Assume that the following hypotheses hold:

(1) The series solution u = ∑
∞
n=0 un of the problem given in equation (6) is absolutely con-

vergent.
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(2) The nonlinear term Nu can be expressed by means of a power series whose radius of

convergence is infinite, i.e.,

(12) Nu =
∞

∑
n=0

β
(n)(0)

un

n!
, |u|< ∞.

Then the Adomian polynomials An are given by

(13) An(u0,u1, . . . ,un) =
1
n!

Lλ

[
β

(
∞

∑
i=0

uiλ
i

)]
λ=0

, n = 0, 1, 2, . . . ,

where λ is a grouping parameter of convenience and Lλ = dn

dλ n .

Proof. Assuming the above hypotheses, the series whose terms are the Adomian polynomials

{An}∞
n=0 results from a generalization of the Taylor series

(14) Nu =
∞

∑
n=0

An(u0,u1, . . . ,un) =
∞

∑
n=0

β
(n)(u0)

(u−u0)
n

n!
,

It should be noted that (14) is a rearrangement of the series (13) and that due to the given

hypotheses this series is convergent. Now, consider the parametrization proposed by Adomian

[18] given by

(15) uλ (x, t) =
∞

∑
n=0

un(x, t)gn(λ ),

where λ is a parameter in R and g is a complex-valued function such that |g| < 1. With this

choice of g and using the above hypotheses, the series (15) is absolutely convergent. Substitut-

ing (15) in (14), we obtain

(16) Nuλ =
∞

∑
n=0

β
(n)(u0)

(
∑

∞
j=1 u j(x, t)g j(λ )

)n

n!
,

Due to the absolute convergence of

∞

∑
j=1

u j(x, t)g j(λ )
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we can rearrange Nuλ so as to obtain the series in the form ∑
∞
n=0 Angn(λ ). Using (15) we can

finally get the coefficients Ai of gi(λ ) and deduce the Adomian polynomials, i.e.,

Nuλ = β (u0)+β
′
(u0)

(
u1g(λ )+u2g2(λ )+u3g3(λ )+ · · ·

)
+

β
′′
(u0)

2!
(
u1g(λ )+u2g2(λ )+u3g3(λ )+ · · ·

)2

+
β
′′′
(u0)

3!
(
u1g(λ )+u2g2(λ )+u3g3(λ )+ · · ·

)3

+
β (4)(u0)

4!
(
u1g(λ )+u2g2(λ )+u3g3(λ )+ · · ·

)4
+ · · ·

= β (u0)+β
′
(u0)u1g(λ )+

(
β
′
(u0)u2 +β

′′
(u0)

u2
1

2!

)
g2(λ )

+

(
β
′
(u0)u3 +β

′′
(u0)u1u2 +β

′′′
(u0)

u3
1

3!

)
g3(λ )+ · · ·

=
∞

∑
n=0

An(u0,u1,u2, . . . ,un)gn(λ )

Setting g(λ ) = λ and taking derivatives on both sides enables us to make the following identi-

fication

A0(u0) = β (u0)

A1(u0,u1) = β
′
(u0)u1

A2(u0,u1,u2) = β
′
(u0)u2 +

u2
1

2!
β
′′
(u0)

A3(u0,u1,u2,u3) = β
′
(u0)u3 +β

′′
(u0)u1u2 +

u3
1

3!
β
′′′
(u0)

A4(u0, . . . ,u4) = β
′
(u0)u4 +β

′′
(u0)

(
u1u3 +

u2
1

2!

)
+

u2
1u2

2!
β
′′′
(u0)+

u4
1

4!
β
(4)(u0)

...

Summing these up gives the result (equation (13)):

(17) An(u0,u1, . . . ,un) =
1
n!

dn

dλ n

[
β

(
∞

∑
i=0

uiλ
i

)]
λ=0

, n = 0, 1, 2, . . .

�
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For Burgers equation (9), the Adomian polynomials are found as

(18)

A0(u0) = β (u0) = u0u0x , where u0 = f (x)

A1(u0,u1) = β
′
(u0)u1 = (u0u0x)

′
u1

A2(u0,u1,u2) = β
′
(u0)u2 +

u2
1

2!
β
′′
(u0) = (u0u0x)

′
u2 +

u2
1

2
(u0u0x)

′′

...

It should be noted that A0 depends only on u0, A1 depends only on u0 and u1, A2 depends only

on u0, u1 and u2, and so on. Substituting (10) and (18) into (9) gives the recursive scheme

(19)
u0 = f (x)

un+1 =−L−1
t [An], n≥ 0

The scheme (19) is equivalent to

(20)

u0 = f (x)

u1 =−L−1
t [A0]

u2 =−L−1
t [A1]

u3 =−L−1
t [A2]

...

un+1 =−L−1
t [An], n≥ 0

In this way, the components u0, u1, u2, . . . are identified and the series solution to the Burgers

equation is completely determined. The exact solution may be determined using the approxi-

mation

u(x, t) = lim
n→∞

Φn,

where Φn = ∑
n−1
k=0 uk.

Remark 3.2. For the non-homogeneous inviscid Burgers equation

ut +uux = F(x, t),
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with initial condition u(x,0) = f (x), the operator form is

Lt(u(x, t))+Nu(x, t) = F(x, t),

so that, applying the initial conditions, the solution is

u(x, t) = f (x)−L−1
t [Nu(x, t)]+L−1

t [F(x, t)]

from the recursive relationship

(21)
u0 = f (x)+L−1

t [F(x, t)]

un+1 =−L−1
t [An], n≥ 0

Remark 3.3. Note that the recursive relationship (20) is constructed on the basis that the ze-

roth component u0(x, t) is defined by all the terms that arise from the initial conditions and

from integrating the source term F(x, t). The remaining components un(x, t), n ≥ 1 are com-

pletely determined recursively such that each term is computed by using the immediately pre-

ceding term. Accordingly, considering the first few terms only, the recursive relation (20) gives

u0(x, t), u1(x, t), u2(x, t), . . .

4. NUMERICAL EXAMPLES

In this section we give numerical examples of homogeneous inviscid Burgers equations which

we solve using the ADM. The examples show that the ADM solution gives a good approxima-

tion to the exact solution. All the computations associated with these examples were performed

using a Samsung Series 3 PC with an Intel Celeron CPU 847 at 1.10GHz and 6.0GB inter-

nal memory. The figures were constructed using MATLAB R2016a. In each of the following

examples, we solve the equation (5) with different initial conditions.
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Problem 1. Consider the homogeneous inviscid Burgers equation (5) with initial condition

u(x,0) = x. Using (21) we find the Adomian polynomials as

A0(u0) = u0u0x = x(x)x = x

A1(u0,u1) = (u0u0x)
′
u1 =−xt

A2(u0,u1,u2) = (u0u0x)
′
u2 +

u2
1

2!
(u0u0x)

′′
=

1
2

xt2

A3(u0, . . . ,u3) = (u0u0x)
′
u3 +(u0u0x)

′′
u1u2 +

u3
1

3!
(u0u0x)

′′′
=−1

6
xt3

...

and the individual terms of the decomposition as

u0 = x

u1 =−L−1
t [A0] =−L−1

t [x] =−
∫ t

0 xds =−xt

u2 =−L−1
t [A1] =−L−1

t [−xt] =
∫ t

0 xsds = 1
2xt2

u3 =−L−1
t [A2] =−L−1

t
[1

2xt2]=−∫ t
0

1
2xs2ds =−1

6xt3

and so on. So the ADM solution is the partial sum of the approximants

u = u0 +u1 +u2 +u3 + · · ·

= x− xt +
xt2

2
− xt3

6
+ · · ·

= x
(

1− t +
t2

2!
− t3

3!
+ · · ·

)
i.e.,

(22) u(x, t) = xe−t

The exact solution is

u = x−ut

or

(23) u(x, t) =
x

1+ t
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Let ut = ut(x, t), where 0.1 ≤ t ≤ 0.5, be the exact solution when t is fixed, and let uADM be

the approximate solution from the ADM. Then the ADM and exact results for 0 ≤ x ≤ 1 and

0.1 ≤ t ≤ 0.5 are shown in Table 1. Figure 2(a) shows the ADM results for 0 ≤ x ≤ 1 and

0.1 ≤ t ≤ 0.5, while the projection of the surface is shown in Figure 2(b) and compares the

approximate and exact solutions for 0≤ x≤ 1 and a fixed t = 0.1.

TABLE 1. Approximate solution uADM(x, t) for Problem 1

x u0.1 uADM u0.2 uADM u0.3 uADM u0.4 uADM u0.5 uADM

0 0 0 0 0 0 0 0 0 0 0

0.2 0.1818 0.1810 0.1667 0.1637 0.1538 0.1482 0.1429 0.1341 0.1500 0.1213

0.4 0.3636 0.3619 0.3333 0.3275 0.3077 0.2963 0.2857 0.2681 0.2781 0.2426

0.6 0.5455 0.5429 0.5000 0.4912 0.4615 0.4445 0.4286 0.4022 0.4111 0.3639

0.8 0.7273 0.7239 0.6667 0.6550 0.6134 0.5927 0.5714 0.5363 0.5444 0.4852

1.0 0.9091 0.9048 0.8333 0.8187 0.7692 0.7408 0.7143 0.6703 0.6778 0.6065

    
(a) (b) 

FIGURE 2. (a) Approximate solution for Problem 1 for 0≤ x≤ 1 and

0.1≤ t ≤ 0.5 (b) Projection of surface for fixed t = 0.1

Problem 2. Consider the homogeneous inviscid Burgers equation (5) with initial condition

u(x,0) =−x. The first few approximants are given below:
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u0 =−x

u1 =−L−1
t [A0] =−L−1

t [x] =−xt

u2 =−L−1
t [A1] =−L−1

t [−xt] = 1
2xt2

u3 =−L−1
t [A2] =−L−1

t
[1

2xt2]=−1
6xt3

u4 =−L−1
t [A3] =−L−1

t
[
−1

6xt3]= 1
24xt4

u5 =−L−1
t [A4] =−L−1

t
[ 1

24xt4]=− 1
120xt5

and so on. Thus, the solution by the ADM is

u = u0 +u1 +u2 +u3 + · · ·

= −x− xt +
xt2

2
− xt3

6
+

xt4

24
− xt5

120
+ · · ·

= x
(
−1− t +

t2

2!
− t3

3!
+

t4

4!
− t5

5!
+ · · ·

)
= x

(
−2+1− t +

t2

2!
− t3

3!
+

t4

4!
− t5

5!
+ · · ·

)
i.e.,

(24) u(x, t) = x(e−t−2)

The exact solution is

u =−(x−ut)

or

(25) u(x, t) =
x

t−1

The results for 0 ≤ x ≤ 1 and 0.1 ≤ t ≤ 0.5 are shown in Table 2. Figure 3(a) shows the

approximate solution for 0 ≤ x ≤ 1 and 0.1 ≤ t ≤ 0.5 while the projection of the surface for a

fixed t = 0.1 is shown in Figure 3(b).

Problem 3. Consider a homogeneous Burgers equation (5) having initial condition u(x,0) = 2x.

The series solution will consist of the partial sum of the approximants:

u0 = 2x

u1 =−L−1
t [A0] =−L−1

t [4x] =−4xt

u2 =−L−1
t [A1] =−L−1

t [−16xt] = 8xt2
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TABLE 2. Approximate solution uADM(x, t) for Problem 2

x u0.1 uADM u0.2 uADM u0.3 uADM u0.4 uADM u0.5 uADM

0 0 0 0 0 0 0 0 0 0 0

0.2 -0.222 -0.219 -0.250 -0.236 -0.286 -0.253 -0.333 -0.266 -0.400 -0.279

0.4 -0.444 -0.438 -0.500 -0.473 -0.571 -0.504 -0.667 -0.532 -0.800 -0.557

0.6 -0.667 -0.657 -0.750 -0.709 -0.857 -0.756 -1.000 -0.798 -1.200 -0.836

0.8 -0.889 -0.876 -1.000 -0.945 -1.143 -1.007 -1.333 -1.064 -1.600 -1.115

1.0 -1.111 -1.095 -1.250 -1.181 -1.429 -1.259 -1.667 -1.330 -2.000 -1.393

    
   

u(
x,

t)

(a) (b) 

FIGURE 3. (a) Approximate solution for Problem 2 for 0≤ x≤ 1 and

0.1≤ t ≤ 0.5 (b) Projection of surface for fixed t = 0.1

u3 =−L−1
t [A2] =−L−1

t
[
32xt2]=−32

3 xt3

u4 =−L−1
t [A3] =−L−1

t
[
−128

3 xt3]= 32
3 xt4

u5 =−L−1
t [A4] =−L−1

t
[128

3 xt4]=−128
15 xt5

and so on. The ADM solution is therefore

u(x, t) = u0 +u1 +u2 +u3 + · · ·

= 2x−4xt +8xt2− 32
3

xt3 +
32
3

xt4− 128
15

xt5 +
512
90

xt6

−1024
315

xt7 +
512
315

xt8− 2048
2835

xt9 + · · ·
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The exact solution is

u = 2(x−ut)

or

(26) u(x, t) =
2x

1+2t

The ADM and exact results for 0 ≤ x ≤ 1 and 0.1 ≤ t ≤ 0.5 are shown in Table 3. Figure

4(a) gives the surface representing the approximate solution for Problem 3 for 0 ≤ x ≤ 1 and

0.1 ≤ t ≤ 0.5, while Figure 4(b) shows a projection of the surface for 0 ≤ x ≤ 1 and a fixed

t = 0.1.

TABLE 3. Approximate solution uADM(x, t) for Problem 3

x u0.1 uADM u0.2 uADM u0.3 uADM u0.4 uADM u0.5 uADM

0 0 0 0 0 0 0 0 0 0 0

0.2 0.3333 0.3341 0.2857 0.2899 0.2500 0.2602 0.2222 0.2403 0.2000 0.2270

0.4 0.6667 0.6681 0.5714 0.5797 0.5000 0.5205 0.4444 0.4807 0.4000 0.4540

0.6 1.0000 1.0022 0.8571 0.8696 0.7500 0.7807 0.6667 0.7210 0.6000 0.6811

0.8 1.3333 1.3363 1.1429 1.1591 1.0000 1.0410 0.8889 0.9613 0.8000 0.9081

1.0 1.6667 1.6703 1.4286 1.4493 1.2500 1.3012 1.1111 1.2017 1.0000 1.1351

   
(a) (b) 

FIGURE 4. (a) Approximate solution for Problem 3 for 0≤ x≤ 1 and

0.1≤ t ≤ 0.5 (b) Projection of surface for fixed t = 0.1
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Let et,Prob.xx = |ut − uADM| be the absolute error for t = 0.1 and t = 0.5 for Problems 1, 2 and

3. A comparison of absolute errors using results in Tables 1, 2 and 3 shows that the ADM

approximation is better for smaller values of t (see Table 4 and Figure 5).

TABLE 4. Absolute errors for t = 0.1 and t = 0.5 for Problems 1, 2 and 3

e0.1,Prob.1 e0.5,Prob.1 e0.1,Prob.2 e0.5,Prob.2 e0.1,Prob.3 e0.5,Prob.3

0 0 0 0 0 0

0.0008 0.0120 0.0032 0.1213 0.0007 0.0270

0.0017 0.0241 0.0064 0.2426 0.0015 0.0540

0.0026 0.0361 0.0096 0.3639 0.0022 0.0811

0.0034 0.0481 0.0128 0.4852 0.0029 0.1081

0.0043 0.0601 0.0159 0.6065 0.0037 0.1351

  
   

Er
ro

rs

(a) (b) (c) 

FIGURE 5. Absolute errors for t = 0.1 and t = 0.5 for (a) Problem 1 (b) Problem

2 (c) Problem 3

5. CONCLUSION

In this paper we have successfully used the Adomian decomposition method to find the solu-

tion of the inviscid Burgers equation which is a one-dimensional quasilinear PDE. Numerical

results based on selected Burgers equations show that the ADM solution compares favourably

with the exact solution. Possible extensions to this work include (1) use of one of the many

modifications of the ADM, e.g., [20, 21, 22, 23]; (2) solution of the non-homogeneous inviscid
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Burgers equation, since it has been shown that the homogeneous Burgers equation lacks the

most important property attributed to turbulence, i.e., the solutions do not exhibit chaotic fea-

tures such as sensitivity with respect to initial conditions [4]; (3) application of the ADM to the

viscid Burgers equation and other nonlinear PDES like the Korteweg-de Vries (KdV) equation.
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