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Abstract. In this manuscript we have analysed identical financial systems of fractional order with external dis-

turbances taken into consideration and introduced the disturbance observer to estimate the disturbance. We have

applied adaptive sliding mode technique to synchronize these identical systems. Numerical simulations have been

performed in MATLAB to validate the effectiveness of the method proposed. The obtained results show the use-

fulness and suitability of the method used to achieve the synchronization. A comparison has been made between

the obtained and published results and application in secure communication has also been displayed.
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switching synchronization; hybrid synchronization.
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1. INTRODUCTION

Chaos synchronization [5] [3]is a process having two or more chaotic systems( identical

or non-identical) which follow the same path. The dynamics of one system is locked into the
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another and thereby causes their synchronization in the sense that the state of one asymptoti-

cally approaches to the other. Untill 1990 synchronization between chaotic systems [19] was

considered impractical because of the divergence of trajectories. But it was because of the

pioneering work of Pecora and Caroll the synchronization between chaotic systems came into

existence and emerged an interesting area of research. Chaos being the inherent property of

nonlinear systems and has various applications such as viscoelasticity, dielectric polarization,

electromagnetic waves, diffusion, signal processing, mathematical biology and chaotic systems

in many disciplines [12] [17] [10]. The nonlinear systems which shows such type of behaviour

are known as chaotic systems. Various methods are used to know about the chaotic behaviour

of a system, some of them are by plotting phase portrait, poincare section or by finding the

lyapunov exponents. In order to know about their behaviour and making them stable or to

control them, it has become the topic of interest of the current era. Various techniques has

been designed to synchronize the chaotic systems, some of them are active control technique,

adaptive control technique, sliding mode technique, time-delay feedback control etc. Various

studies have been done comprehensively in the last two decades. Different methods have

also been designed for synchronization of chaotic systems such as adaptive feedback control,

optimal control, linear and nonlinear feedback synchronization, active control, sliding mode

control, adaptive sliding mode technique, time delay feedback approach , tracking control,

backstepping design method and so on. Due to the increased interest in chaos synchronization

various kinds of synchronization schemes have been proposed such as lag synchronization,

complete synchronization, phase and anti-phase synchronization, anti-synchronization [24],

hybrid synchronization [25] [18], dual synchronization [8], double synchronization [11],

projective synchronization [27] [28], compound synchronization [9] [21] [6] [22] [26], hybrid

funchtion projective synchronization,generalised synchronization etc.

Many attempts have been made to synchronize similar systems with different techniques.

Moreover the non-identical systems have also been synchronized by many researchers. In this

manuscript we have tried to synchronize the two identical financial system of fractional order

by taking external unknown disturbance into consideration.To estimate the disturbance, we

have introduced the disturbance observer and we have considered the external disturbance as
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bounded.

We have also introduced multiswitching due to which the number of choices of switching

increases and enhances the analysis of our study.In multi-switching, the slave system states are

synchronized with the desired state of the master system in a multi-switching manner.

In the process of hybrid synchronization, coexistence of complete and anti-synchronization

occurs. This co-existence of synchronization is also referred as mixed synchronization.

Motivated by the above studies, in this paper we present the adaptive sliding mode hybrid

multiswitching synchronization. We believe that it is the first kind of study addressing the

problem of fractional order multi-switching hybrid synchronization of chaotic systems using

disturbance observer. During our studies,we have synchronized the two identical financial

system of fractional order with external unknown bounded disturbances, compared the obtained

results with published literature and applied the results in field of secure communication.

2. PRELIMINARIES

Definition: As various definitions have been available for fractional order derivative [23] [2] [4]

[20], we have considered Caputo’s definition:

c
aDq

t x(t) =
dqx(t)

dtq =


1

Γ(n−q)
∫ t

a
x(n)(τ)dτ

(t−τ)q+1−n

for n−1 < q < n

d(n)x(t)
dtn

where 0 < q ∈ R and Γ(.) is the Gamma function.

3. SYSTEM DESCRIPTION

3.1. The fractional order Financial system model is given by

dαu1

dtα
= u3 +(u2− f )u1

dαu2

dtα
= 1−gu2−u2

1(1)

dαu3

dtα
=−u1−hu3
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where u1,u2,u3 are state variables representing interst rate, demand for investment and the

price index respectively. Parameters f, g, h are non-negative constants. Here f repre-

sents the saving amount, g represents cost per investment, h represents the elasticity of de-

mand of the market.parameters are chosen as f = 3,g = 0.1,h = 1 and initial conditions as

(u1(0),u2(0),u3(0)) = (2.0,3.0,2.0).
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Fig.1: Phase portraits of fractional order financial model for fractional order α = 0.85 with initial

condition (2,3,2).

4. SCHEME FOR SYNCHRONIZATION

In order to conduct the adaptive sliding mode hybrid synchronization using disturbance ob-

server we consider eq.1 as master system and the corresponding identical slave system with

external disturbances is given by

dαv1

dtα
= v3 +(v2− f )v1 +ψ1 +S1

dαv2

dtα
= 1−gv2− v2

1 +ψ2 +S2(2)

dαv3

dtα
=−v1−hv3 +ψ3 +S3

where v1,v2,v3 are state variables representing interst rate, demand for investment and the price

index respectively.ψ1,ψ2,ψ3 are external disturbances and S1,S2,S3 are controllers.

System (1) and (2) are said to be in multiswitching hybrid synchronization if there exist

suitable parameters δ j = (δ1,δ2,δ3)and suitable controller (S1,S2,S3), such that

lim
t→∞
‖ ei, j(t) ‖= lim

t→∞
‖ vi(t)−δ ju j(t) ‖= 0(3)
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As we have introduced ψi, i = 1,2,3(disturbance) in the slave system (2) and these disturbances

are not known so it would not work in developing the scheme to synchronize the master

and slave system.In order to resolve this problem,we have designed a nonlinear disturbance

observer of fractional order to have an estimate of the unknown disturbance.Before that we

have introduced some lemmas and assumptions.

Lemma 1:-Consider a continuous derivable function η(t) ∈ R.Then ,for any time t ≥ t0

we have Dα η2(t)
2 ≤ η(t)Dαη(t),where 0 < α < 1.

Lemma 2:-For the following fractional order system

Dαq(t)≤−H0q(t)+H1

there exists a constant t1 > 0, such that for all t ∈ (t1,∞),we have

||q(t)|| ≤ 2H1
H0

,

where q(t) is the state variable and H0 and H1 are two positive constants.

Assumption:-The Caputo fractional order derivative of the external disturbance ψi(t) with

i = 1,2, .....n is bdd, i.e | Dαψi(t) |≤ υi,where υi > 0 are unknown positive constants.

5. FRACTIONAL ORDER DISTURBANCE OBSERVER SCHEME

Here we design a scheme for a non-linear FODO to measure the external unknown distur-

bance being in the slave system.Essentially the scheming of disturbance observer is to increase

the disturbance reduction and robustness of system performance and to measure up the system

disturbance.We have proposed a subsidiary variable for scheming the nonlinear disturbance ob-

server(FODO) of fractional order, using the same technique as used in integer order system as

follows:-

χi = ψi−ωivi(t)(4)

where ωi (i = 1,2,3) are non-zero positive constants to be determined.
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The fractional order Caputo’s derivative of χi(t) can be written as

Dα
χi = Dα

ψi−ωiDαvi(t)(5)

Substitute (2) in (5)

Dα
χ1 = Dα

ψ1−ω1(v3 +(v2− f )v1 +χ1 +ω1v1)−ω1S1

Dα
χ2 = Dα

ψ2−ω2(1−gv2− v2
1 +χ2 +ω2v2)−ω2S2(6)

Dα
χ3 = Dα

ψ3−ω3(−v1−hv3 +χ3 +ω3v3)−ω3S3

The estimate of χi(t) are given as

Dα ˆχ1(t) =−ω1(v3 +(v2− f )v1 +ω1v1)−ω1χ̂1−ω1S1

Dα ˆχ2(t) =−ω2(1−gv2− v2
1 +ω2v2)−ω2χ̂2−ω2S2(7)

Dα ˆχ3(t) =−ω3(−v1−hv3 +ω3v3)−ω3χ̂3−ω3S3

where χ̂i denote the estimate of χi.

Using equation (4),the estimated disturbance ˆψi(t) can be written as

ψ̂i = χ̂i +ωivi(8)

Error of the disturbance estimation can be stated as

ψ̃i = ψi− ψ̂i(9)

Using equation (4)

χ̃i = χi− χ̂i = ψi− ψ̂i = ψ̃i(10)

where i = 1,2,3,then the fractional order Caputo’s derivatives of χ̃i (i = 1,2,3) can be depicted

as

Dα
χ̃i =−ωiχ̃i +Dα

ψi(11)
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In order to study the convergence of disturbance estimate error, we construct a Lyapunov func-

tion Vψi(t)(i = 1,2,3) as

Vψi(t) =
1
2

ψ̃2
i =

1
2

χ̃2
i , i = 1,2,3(12)

on employing Lemma 1,the fractional order derivative of Vψi can be depicted as

DαVψi(t)≤ χ̃iDα
χ̃i(13)

Using the equation (11) and (13),we get

DαVψi(t)≤ χ̃i(−ωiχ̃i +Dα
ψi)(14)

Using the assumption (1) in (14),we get

DαVψi(t)≤−ωiχ̃i
2 +

χ̃2
i

2
+

ρ2
i

2

=−(ωi−
1
2
)χ̃i

2 +
ρ2

i
2

=−n0Vψi(t)+n1

(15)

where n0 = 2ωi−1 and n1 =
ρ2

i
2

The control gain ωi of non linear FODO should be selected to make ωi > 0.5, and to assure the

bound of the estimated error.

Applying lemma (2) and (15),we get

|Vψi(t) |≤
ρ2

i
2(ωi−0.5)

(16)

which means

| ψ̃i |≤

√
ρ2

i
(ωi−0.5)

(17)

From the equation (17) it is clear that ψ̃i(t) is bdd above. Therefore for the external dis-

turbances ψi(t)(i=1,2,3),the error obtained from the disturbance approximation ψ̃i satisfies

| ψ̃i |≤ ςi, where ςi is the unknown positive real constant. As in real practice the upper bound

of | ψ̃i | is not as simple to find and so the estimated value ς̂i of ςi (i=1,2,3) have been introduced .
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From the above analysis we observe that the estimated error of the disturbance of the financial

system is bounded.

6. ADAPTIVE SLIDING MODE MULTISWITCHING HYBRID SYNCHRONIZATION OF

FRACTIONAL ORDER FINANCIAL SYSTEMS

In order to have bounded hybrid synchronization between the two systems,we have designed

the nonlinear FODO based adaptive sliding mode control scheme.First we define the error states

for synchronization between the response system and the drive system as there are various

possibilities of switches some of them are:-

Switch 1:-


e21 = v2−u1

e32 = v3 +u2

e13 = v1−u3

Switch 2:-


e12 = v1−u2

e23 = v2 +u3

e31 = v3−u1

Switch 3:-


e22 = v2−u2

e33 = v3 +u3

e11 = v1−u1

Switch 4:-


e23 = v2−u3

e21 = v3 +u1

e12 = v1−u2
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Now we will discuss Switch 1 and others will follow the same
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Fig.2: Different synchronized state trajectories of switch 1.

The error dynamics of Switch 1 can be written as:-

Dαe21 = Dαv2−Dαu1

Dαe32 = Dαv3 +Dαu2(18)

Dαe13 = Dαv1−Dαu3

Using drive system (1) and response system (2), the error dynamics can be written as

Dαe21 = 1−ge21 +( f −g)u1−u3− v2
1−u2u1 +ψ2 +S2

Dαe32 =−e13−he32 +(h−g)u2−u3−u2
1 +ψ3 +S3(19)

Dαe13 = e32− f e13 + v2v1−u2 +(h− f )u3 +u1 +ψ1 +S1
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To investigate the stability of error systems (19),we employ a sliding mode surface described

by:

s1(t) = e21(t)

s2(t) = e32(t)(20)

s3(t) = e13(t)

Taking the fractional derivative of (20) we get

Dαs1(t) = Dαe21(t)

Dαs2(t) = Dαe32(t)(21)

Dαs3(t) = Dαe13(t)

The control input has been designed as:-

S1 =−e32 + f e13− v2v1 +u2− (h− f )u3−u1− ψ̂1−µ3s3− ς̂3signs3

S2 =−1+ge21− ( f −g)u1 +u3 + v2
1 +u2u1− ψ̂2−µ1s1− ς̂1signs1(22)

S3 = e13 +he32− (h−g)u2 +u3 +u2
1− ψ̂3−µ2s2− ς̂2signs2

where sign(.) is the signum function and µi > 0 are constants.The updated estimated value ς̂i is

given by:-

Dα ς̂i = mi(| si(t) | −ς̂i),

where mi(> 0)(i=1,2,3) are the constants designed.

Using the values of (22) in (19)we get:-

Dαe21 =−µ1s1− ς̂1signs1 +ψ2− ψ̂2

Dαe32 =−µ2s2− ς̂2signs2 +ψ3− ψ̂3(23)

Dαe13 =−µ3s3− ς̂3signs3 +ψ1− ψ̂1
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Dαe21 =−µ1s1− ς̂1signs1 + ψ̃2

Dαe32 =−µ2s2− ς̂2signs2 + ψ̃3(24)

Dαe13 =−µ3s3− ς̂3signs3 + ψ̃1

Choosing (22) as controllers for (19),then the sliding surface si(t) is stable and bounded,i.e

(25) | si(t) |≤ P

where P > 0 is unknown,

Using (20) and (25),we get

(26) | ei j(t) |≤ P,

From (25),we get that si(t),the sliding surface is bounded and hence the error ei j(t) is bounded.

The nonlinear FODO-based adaptive sliding mode multiswitching hybrid synchronization

scheme for fractional order financial system with external disturbances can be summarised as

following theorem.

Theorem 1: For multiswitching hybrid synchronization error system (19) with 0 < α <

1, on considering the sliding mode surface according to (20) and approximately the external

bounded disturbance by using non-linear FODO (9) and (10). Then multiswitching hybrid

synchronization error e(t) is stable and bounded under the adaptive sliding control scheme (22).

Proof:To prove the multiswitching hybrid synchronization error convergence e(t), we consider

the Lyapunov function V(t) as

V(t) =
3

∑
i=1

1
2

s2
i (t)+

3

∑
i=1

1
2

ψ̃
2(t)+

3

∑
i=1

1
2
( 1
√

mi
(ς̂i− ςi)

)2(27)

Differentiating and using Property 2 in eq. (27), we obtain

DαV(t) =
3

∑
i=1

1
2

Dαs2
i (t)+

3

∑
i=1

1
2

Dα
ψ̃

2(t)+
3

∑
i=1

1
2

Dα
( 1
√

mi
(ς̂i− ςi)

)2(28)
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Substitute ς̂i− ςi = ς̃i and using Lemma 2 in in eq.(28), we get

DαV(t)≤
3

∑
i=1

si(t)Dαsi(t)+
3

∑
i=1

1
2

Dα
ψ̃

2(t)+
3

∑
i=1

1
√

mi
ς̃iDα

ς̃i(29)

Using (21) and substitute the value of (24) in (29), we have

DαV(t)≤
3

∑
i=1

si(t)(−µisi− ς̂isignsi + ψ̃i)

+
3

∑
i=1

1
2

Dα ˜ψ(t)
2
(t)+

3

∑
i=1

1
√

mi
ς̃iDα

ς̃i(30)

Using Property 1 and ς̃i = ς̂i− ςi, we get

Dα
ς̃i = Dα

ς̂i(31)

From update laws and (30), we get

3

∑
i=1

1
√

mi
ς̃iDα

ς̃i =
3

∑
i=1

ς̃i(| si(t) | −ς̂i)

=
3

∑
i=1

ς̃i | si(t) | −
3

∑
i=1

ς̃iς̂i

≤
3

∑
i=1

ς̃i | si(t) | −
3

∑
i=1

1
2

ς̃
2
i +

3

∑
i=1

1
2

ς
2
i(32)

After substituting (32) in (30), we get

DαV(t)≤
3

∑
i=1

si(t)(−ωisi− ς̂isignsi + θ̃i)+
3

∑
i=1

1
2

Dα
ω̃

2(t)

+
3

∑
i=1

φ̃i | si(t) | −
3

∑
i=1

1
2

φ̃
2
i +

3

∑
i=1

1
2

ς
2
i(33)

Eq.(33) can be written as

DαV(t)≤−mis2
i +

3

∑
i=1

ς̂i | si |+
3

∑
i=1

ψ̃i | si |+
3

∑
i=1

1
2

Dα
ψ̃

2(t)

+
3

∑
i=1

ς̃i | si(t) | −
3

∑
i=1

1
2

ς̃
2
i +

3

∑
i=1

1
2

ς
2
i(34)

Using

(35)
3

∑
i=1

ς̃i | si(t) | −
3

∑
i=1

ς̂i | si |=−
3

∑
i=1

ςi | si |



1782 TRIKHA, CHAUDHARY, NASREEN, JAHANZAIB, HAIDER

From (34-35) and | ψ̃i(t) |≤ ςi(t), we get

DαV(t)≤−mis2
i +

3

∑
i=1

1
2

Dα
ω̃

2(t)−
3

∑
i=1

1
2

ς̃
2
i +

3

∑
i=1

1
2

ς
2
i(36)

From eq. (16) and (36), we have

DαV(t)≤−mis2
i −

3

∑
i=1

1
2

ς̃
2
i +

3

∑
i=1

1
2

ς
2
i +

3

∑
i=1
−(ωi−

1
2
)χ̃i

2 +
3

∑
i=1

ρ2
i

2

≤−n2V (t)+n3(37)

where n2 = min(2mi,1,2ωi− 1) and n3 = ∑
3
i=1

1
2ρ2

i +∑
3
i=1

1
2ς2

i . The synchronization error is

bounded on choosing the values mi > 0 and ωi > 0.5. Using the Lemma 2 in (37), we get

|V (t) | ≤ 2n3

n2

=
∑

3
i=1 ρ2

i +∑
3
i=1 ς2

i
g2

(38)

Eq.(38) implies that

‖ s(t) ‖≤

√
2(∑3

i=1 ρ2
i +∑

3
i=1 ς2

i )

22
(39)

Therefore, the inequality (38) and (39) implies that the synchronization errors e(t) and s(t) will

be bounded as t → ∞. Hence, the error dynamical system (19) is bounded and stable and

we achieve bounded multiswitching hybrid synchronization between master and slave systems.

This completes the proof.

7. NUMERICAL SIMULATIONS AND DISCUSSIONS

Simulations have been carried out using MATLAB.The system parameters for master

system and slave system are taken as ( f = 3,g = 0.1,h = 1) and the initial conditions for drive

and response system respectively have been taken as (u1(0) = 2,u2(0) = 3,u3(0) = 2) and

(v1(0) = 1,v2(0) = 4,v3(0) =−1).



MULTISWITCHING HYBRID SYNCHRONIZATION SYNCHRONIZATION 1783

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−1

−0.5

0

0.5

1

1.5

2

t

e 1,e
2,e

3

 

 
e

1

e
2

e
3

Fig.3: Synchronization error approaches zero at t=0.06(approximately) for α = 0.85.
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Fig.5: Disturbance observers Error

The initial condition for switch 1 is (e21(0) = 2,e32(0) = 2,e13(0) =−1), ς̂(0) = (0.2,0.2,0.2)

and χ̂(0) = (0.2,0.2,0.2) .We select the described parameter as (ω1,ω2,ω3) = (110,110,110),

(µ1,µ2,µ3) = (90,90,90) and (φ1,φ2,φ3) = (0.1,0.1,0.1). We consider the disturbances as



1784 TRIKHA, CHAUDHARY, NASREEN, JAHANZAIB, HAIDER

ψ1 = (1− t)sint , ψ2 = sign(cos2t) and ψ3 =
1
2

cost. For numerical simulations we consider

the scaling factors as δ1 = 1, δ2 = −1 and δ3 = 1. Fig.1 shows the phase portrait of fractional

order financial model. Fig.2 shows the trajectories of variables of switch-1. Fig.3 shows the

synchronization error converges to zero. Fig.4 shows the trajectories of estimated disturbance

and actual disturbance and Fig.5 shows the disturbance error.

8. COMPARISON WITH PUBLISHED LITERATURE

Synchronization techniques are being developed every now and then with the aim of increas-

ing their robustness and reducing their synchronization time. A few popular synchronization

techniques are the adaptive sliding mode technique and disturbance observer based adaptive

sliding mode technique. In [16] synchronization is performed considering uncertainties and

disturbances using adaptive sliding mode technique at approx. 1.5 units of time and in [7] at

3 units hybrid projective synchronization is performed . In [1] hybrid projective compound

synchronization is attained at 0.2 units using disturbance observer based adaptive sliding mode

technique. In [15], [14] and [13]disturbance observer based adaptive sliding mode technique on

Newton Leipnik system ,financial models and Genesio-Tesi system is achieved at 0.1,0.2 and

0.07 units respectively.

In this paper multi-switching hybrid synchronization using disturbance observer adaptive slid-

ing mode control on fractional financial system is achieved at 0.05 units indicating the efficacy

of the deigned controllers.

9. ILLUSTRATION IN SECURE COMMUNICATION

Many chaos synchronization techniques using various control methods are being developed

recently. Chaotic systems shows high sensitivity to initial conditions and parameter values,

hence they prove to be highly suitable in secure communication, image encryption, control pro-

cesses etc. The achieved synchronization in this paper is illustrated in field of secure communi-

cation with help of an example. Let the message to be sent secretly be p(t) = sin(t).cos(t). We

hide it among the chaotic signals from the chaotic system and transmit the encrypted message
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p1(t). After performing the desired synchronization using designed controllers at the receiving

end the secret message is decoded as p2(t). The results are displayed in Fig. 6.
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Fig.6: Illustration in Secure Communication

10. CONCLUSION

During the whole analysis we have been successful in estimating the external disturbances.

In order to realize the hybrid multiswitching synchronization we have used the nonlinear sliding

mode scheme. Also the error has been displayed to be stable and bounded using the adaptive

sliding control scheme. The multi-switching synchronization scheme presented in this paper

gives more switching options for constructing the error states and hence makes it more strong.

Comparison of the obtained results show the efficacy of designed controllers. This method has

been illustrated to be applicable in secure communication with help of an example.
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