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Abstract. In this work we address a single machine scheduling problems with sequence-dependent setup times, in

which the setup time and the processing time may depend on the job position in the processing order. We consider

two manufacturing environments. In the first one, jobs are processed automatically, then the job positions affect

only on the setup times. In the second environment, the operators modify the machine settings between different

types of jobs and operate it to process the jobs, then the job positions affect both setup time and processing time. In

this work, we will investigate the validity of the assumption: scheduling problems render high-quality solutions that

reckon with job positions just as the those reckoned without job positions. Minimising the maximum completion

time and the sum of completion time of the jobs are the objective functions. To tackle this scenario, we introduce

four mathematical formulations: one formulation for each combination of objective function and manufacturing

environment. The validity of the models is established by the results of extensive computational experiments on

the proposed models.
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1. INTRODUCTION

There is an immense time-saving when setup times (costs) have been explicitly included in

scheduling decisions in various real world industrial and service realms. It is crucial, in some

cases, that the setup times must be explicitly considered. Food processing, chemical, printing

or metal processing industries just to name a few [2]. Whenever the time required to prepare a

machine for processing a given job is also depends on the last scheduled job, the setup time is

called as sequence-dependent setup time (STsd).

The explicit consideration of STsd in scheduling problems substantially increases the com-

plexity and hence the problems will be much harder to solve or have to approximate from a

computational point of view. For instance, the problem of minimising the Total Completion

Time (TCT ) on a machine with independent setup times can be easily solved by the simple

shortest processing time rule, whereas if STsd are considered, the problem becomes an asym-

metric minimum latency problem, which is NP-hard in the strong sense [9].

The dependency can be position-dependent, which means that the time required to perform

the operations vary depending on the job positions in the processing sequence. When the time

variations are a consequence of operation repetitions, they are known as learning effect or de-

terioration effect in the scheduling literature. If it decreases as the job position grows then it

is possible to consider that there is a learning effect, while if it increases it is possible to con-

sider that there is a deterioration effect. Hence, the variation in the operation times due to job

positions is regarded as either of these effects.

Many researchers have been studied extensively the deterioration and learning effects. In the

literature have found only the problems in which it is assumed that there are no setup times or

that they depend only on the job that is going to be processed that can be included in the job

processing times. De facto, the studies have been carried out only on the processing times of

the jobs. Having said that, we address single machine scheduling problems with STsd , where

both, setup times and processing times, may be affected by position-dependent learning effects.

We consider two manufacturing environments. In the first one, the jobs are processed auto-

matically, while the machine settings between different types of jobs are executed manually (the
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position affects only the setup times). In the second one, the operators modify the machine set-

tings between jobs and operate the machine to process the jobs (the position affects both setup

and processing times). Two performance measures, maximum completion time (makespan,

Cmax) and total completion time (TCT ), are used. The former is focused on the efficient use of

machines and the latter focused on the maximisation of the production flow and the minimisa-

tion of the work-in-process inventories.

In this work, we will validate the assumption that prime solutions of the problems that reck-

oned without job position effect on STsd are also prime solutions for the problems reckon with

the effect. It is less obscure to obtain quality solutions when the job position effect is ignored.

Then, if the assumption were true we could take those solutions and simply evaluate them us-

ing the corresponding job position factor to obtain the true values of the objective functions.

Otherwise, it would be necessary to consider job position effect in the production programming

process to obtain high-quality solutions.

This study will get through the decision makers to decide whether or not to include this kind

of learning effect in the production planning to make more efficient the production process. For,

we propose four mathematical formulations, one formulation for each combination of manufac-

turing environment and objective function. The effectiveness of the models are verified by

carrying out extensive computational experiments on the models.

To the best of our knowledge, this is the first time that:

- mathematical formulations have been proposed for scheduling problems where setup

times simultaneously depend on the sequence and on the positions of the jobs in the

processing order.

- investigate how the quality of the solutions is affected by the positions of the jobs in the

processing order when setup times are sequence-dependent.

- both STsd and processing time are affected by the positions of the jobs in the processing

order.

In the next section, we will discuss the related literature. In section 3 the mathematical formu-

lations of the problem are presented, then the computational tests followed by the conclusions.
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2. LITERATURE REVIEW

The seminal work of learning effect in scheduling problems was presented by [6], hereinafter

a myriad of works have been published about the learning effects on the processing times in

scheduling problems. The approaches to tackle the problem have been distinguished [20] as:

time-dependent [10], position-dependent [7] and cumulative [14].

In the time-dependent approach, the time needed to produce a unit decrease depends on the

starting time of the job. [10] presents a comprehensive description of scheduling models with

this effect. While, in the position-dependent approach, the time required to produce a unit

decrease rely on the number of repetitions of jobs [6]. Here, processing time p jr of job j in

position r is calculated by: p jr = p j · f (a,r), where p j is the processing time without learning

effect (normal processing time), a is a constant learning factor and f is a decreasing function

with respect to r.

In the cumulative approach, the time required to produce a unit decrease is depending on the

normal processing time p j and on an accumulated value of a parameter. Typically, it decreases

depending on the sum of the processing times of the all jobs already scheduled [14]. Here, pro-

cessing time p jr is calculated by: p jr = p j · f
(

a,
r−1
∑

k=1
p[k]

)
, where p[k] is the normal processing

time of job in position k, and f is inversely proportional to
r−1
∑

k=1
p[k]. This effect is also known as

the time-dependent learning effect or sum-of-processing-times-based learning effect.

Numerous studies use these approaches to investigate the effect of learning on various sched-

uling problems. Some recent works addressing single machine scheduling problems are [18,

8, 15, 13, 11, 23]. For more details about scheduling problems with learning effects see the

surveys by [7, 19, 5].

A particular case of learning effect on processing times so-called past-sequence-dependent

(p-s-d) setup time approach, is introduced by [12]. In p-s-d setup time approach the processing

time p jr is obtained as the normal processing time plus a value that depends on the sum of

the processing times of the all already scheduled jobs; that is, p jr = s[r]+ p j, where s[1] = 0,

s[r] = br−1 ·
r−1
∑

k=1
p[k], for r = 1,2,3, · · · ,n and b is a constant. The s[r] is interpreted as a setup time

that depends upon the sum of the processing times of the all already scheduled jobs. [24, 21, 22]
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used p-s-d approach and [1] presented a comprehensive survey on scheduling problems with p-

s-d setup times.

All the works does not consider setup times for the machines or they depend only on the job

to be processed and therefore they can be included in the job processing times. However, in

practical industrial scenario, it is indispensable to consider the setup time explicitly. Despite the

growing interest in scheduling problems involving sequence-dependent setup times, we only

found one paper studying learning effect with this kind of setup times in single-machine sched-

uling problems. Recently, [16] addressed a scheduling problem on a single machine with STsd .

They considered a position-dependent learning effect only on processing times and their goal

was to minimise total tardiness.

In this paper, we address the minimisation of the Cmax and the TCT in single machine sched-

uling problems with sequence-dependent setup times. We analyse position-dependent learning

effects in two contexts: when the job positions affect only the setup times, and when they affect

both setup times and processing times. The main objective is to investigate when it is necessary

to consider the job positions in the production programming process to acquire finest solutions.

3. FORMULATION OF THE PROBLEMS

We consider a set of n independent jobs to be processed on a single machine. Each job j

has a processing time p j and there is a machine setup time si j, which is incurred when job j

immediately follows job i. In general, si j 6= s ji. At the beginning, the machine is at an initial

state 0 (or dummy job 0), and there are setup time s0 j, prior to process the first job in the

machine. All the jobs are available initially, there is an STsd between jobs, and the preemption

is not allowed. The objective function is the minimisation of the Cmax or the TCT for each

manufacturing environment, considering position-dependent learning effects.

A learning effect is represented, in general, by the function y = f (b,r), which depends on the

number of r (setups) that have already been done in the machine and on a parameter b (learning

factor) associated with the learning rate. In the first manufacturing environment, we assume

that the position affects only the setup times. Then the total time, tr
i j, required for processing
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the job j in position r just after job i in position r−1 is defined as:

tr
i j = sr

i j + p j = f (b,r) · si j + p j(1)

where sr
i j denotes the machine setup time from job i in position r−1 to job j in position r.

In the second manufacturing environment, we assume that both the setup times and the pro-

cessing times are affected. Then the total time, tr
i j, required to process the job j in position r

just after job i in position r−1 is defined as:

tr
i j = sr

i j + pr
j = f (b,r) · (si j + p j)(2)

where pr
j denotes the processing time of job j in position r. The function f (b,r) = br−1, b ∈

(0,1], represents the learning rate that is inversely proportional to the learning factor b.

In the four formulations, the objective is to find a sequence of jobs P that minimises the

corresponding objective function (Cmax or TCT ). In order to evaluate the objective functions,

the solutions are represented by a sequence of n jobs;

P =

{
0, [1], [2], · · · , [r−1], [r], [r+1], · · · , [n]

}
(3)

where, [r] denotes the job in the position r in the sequence P.

For a given sequence P, the makespan considering learning effect can be calculated by:

CLE
max(P) = t1

0[1]+ t2
[1][2]+ · · ·+ tn−1

[n−2][n−1]+ tn
[n−1][n](4)

However, the TCT for a sequence P without learning effect can be calculated by [3]:

TCT (P) = nt0[1]+(n−1)t[1][2]+ · · ·+2t[n−2][n−1]+ t[n−1][n](5)

where, t[i][ j] = s[i][ j]+ p[ j]. Further, when the learning effect is considered, it can be calculated

by:

TCT LE(P) = nt1
0[1]+(n−1)t2

[1][2]+ · · ·+2tn−1
[n−2][n−1]+ tn

[n−1][n](6)

In expressions (4) and (6) the contribution of each job to the objective function depends on

its position in the sequence. Consequently, we should define decision variables that consider

the position of the jobs in the sequence. Moreover, the time-dependent formulations for the

minimum latency problem [3] can be adapted to this problem.
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To formulate the mathematical models, we define the decision variables xr
i j as:

(7) xr
i j =

1, if and only if jobs i and j occupy positions r and (r+1) in the sequence

0, otherwise

Note that xr
i j = 1 means that there are (n− r) jobs after job i in the sequence. Using these

variables, it is possible to define the objective functions with learning effect as follows. For the

makespan:

min CLE
max =

n

∑
i=1

t1
0i

n

∑
j=1
j 6=i

x1
i j +

n−1

∑
r=1

n

∑
i=1

n

∑
j=1
j 6=i

tr+1
i j xr

i j(8)

and for the total completion time:

min TCT LE = n
n

∑
i=1

t1
0i

n

∑
j=1
j 6=i

x1
i j ++

n−1

∑
r=1

n

∑
i=1

n

∑
j=1
j 6=i

(n− r)tr+1
i j xr

i j(9)

The values of tr
i j are calculated by (1) or (2) according to the manufacturing environment under

consideration.

Note that, variables x1
i j appear in these two expressions, (8) and (9), of the objective functions.

In the first expression, the variables x1
i j are used to calculate the contribution of the job in the

first position of the processing order. While in (9) they are used to calculate the contribution of

the job in the second position.

The set of constraints is defined as follows:

n

∑
i=1

n

∑
j=1
j 6=i

x1
i j = 1(10)

n

∑
l=1
l 6=i

xr−1
li −

n

∑
j=1
j 6=i

xr
i j = 0; (i = 1,2 . . . ,n(11)

r = 2,3, . . . ,n−1)

n

∑
i=1

n

∑
j=1
j 6=i

xn−1
ji = 1(12)



2040 FRANCISCO ANGEL-BELLO, JOBISH VALLIKAVUNGAL, ADA ALVAREZ

n

∑
j=1
j 6=i

x1
i j +

n−1

∑
r=1

n

∑
i=1
i 6= j

xr
ji = 1 (i = 1,2 . . . ,n)(13)

xr
i j ∈ {0,1} (i, j = 1,2, . . . ,n; j 6= i;(14)

r = 1,2, . . . ,n−1)

Constraints (10) guarantee that a single job occupies position 1 in the sequence, while con-

straints (12) guarantee that a single job occupies the last position in the sequence. The flow

conservation constraints (11) establish the sequence continuity. They state that a job i in posi-

tion r of the sequence can have a successor in position (r+1) if and only if it has a predecessor

in position (r−1). Constraints (13) assure each job to occupy a single position in the sequence.

Constraints (14) establish the binary nature of the variables xr
i j.

The studied problems can be seen as particular cases of time-dependent Asymmetric Travel-

ling Salesman Problems (ATSPs). In addition, for b = 1, the problems for minimising the Cmax

can be transformed into ATSPs and the problems for minimising the TCT can be transformed

into Asymmetric Minimum Latency Problems (AMLPs). Both the ATSP and the AMLP are

NP-hard problems in a strong sense [17, 9].

Considering the objective functions and the manufacturing environments, we obtain 4 integer

linear formulations that share the set of constraints (10)-(14). We will refer to these models

according to the nomenclature presented in Table 1.

Table 1: Characteristics of the proposed models

Cmax TCT

tr
i j = br−1si j + p j Model I Model III

tr
i j = br−1(si j + p j) Model II Model IV

The proposed models will be used with different set of instances to study the impact of the

learning effects on solution quality when the setup times are sequence-dependent.
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4. COMPUTATIONAL EXPERIMENTS

To analyse the impact of the position-dependent learning effect, we conducted two types

of experiments. First, we tested how the different levels of the learning factor b affect the

processing job’s order. Second, we analyse how good the solution is, ignoring learning effects,

when it is evaluated for different values of b. All experiments are performed in a system with

Intel Core 2 Duo CPU at 3.00 GHz and 3.21 GB of RAM under Windows OS. The formulations

are implemented in C++, and solved using concert technology of professional solver CPLEX

12.9.

A subset of instances generated by [4] with number of jobs n = {15,20,25,30}, which is

available at http://www.cima.uadec.mx/investigacion/instancias/, is used. The processing times

p j are generated using the uniform distribution in the interval [1-99], and the setup times are

generated in three intervals: [1-49], [1-99] and [1-124], denoted by R1, R2, and R3 respectively.

Each class of instances contains 20 variants with each possible combination of number of jobs

and range of setup times, that results in a total of 240 instances. First machine data has been

taken since we are studying the single machine scenario. The values of b vary between 0.1 and

1.0 with a step of 0.1. We set b = 1 to obtain the optimal solutions without learning effect.

The models are tested with each set of instances and for each value of b, which results in 9600

experiments. The results obtained for each objective is presented below.

4.1. Results for the makespan. In this section we analyse the impact of the learning effect

on the job processing order when the objective is to minimise the makespan.

In Table 2 we show the optimal sequences given by CPLEX using Model I and Model II on

the instances with number of jobs 15 and for different levels of b . We can observe that different

processing orders have been obtained for different learning levels. In the last column we show

the quality of the optimal solution (obtained without learning effect) when it is implemented for

the different levels of b. The gap for each value of b is calculated by:

gap(b)% =
SolValwithoutLE(b)−OptimalVal(b)

OptimalVal(b)
∗100(15)
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where OptimalVal(b) is the optimal solution value for a given value of b, and SolValwithoutLE(b)

is the value of the solution without learning effect that is evaluated for the same b value.

Table 2: Optimal solutions obtained by Model I and Model II for

Cmax when number of jobs is 15

Model b optimal sequences gap(b)%

I 0.1 10 6 1 9 13 14 4 5 3 8 12 7 15 2 11 0.1171

0.2 2 14 4 5 3 8 7 6 1 9 13 12 10 15 11 0.1689

0.3 2 14 4 3 8 7 6 1 9 13 10 12 5 15 11 0.2861

0.4 2 14 4 3 8 7 6 1 9 5 12 10 11 15 13 0.4342

0.5 2 14 4 3 8 7 6 1 9 13 15 11 5 12 10 0.6191

0.6 2 14 4 3 8 7 6 1 9 13 15 11 5 12 10 0.8406

0.7 2 14 4 3 8 7 6 1 9 13 15 11 5 12 10 1.0735

0.8 2 14 4 3 8 7 6 1 9 13 15 11 5 12 10 1.2133

0.9 2 14 4 3 8 7 6 1 9 13 15 11 5 12 10 0.9550

1.0 2 15 11 14 4 5 3 8 7 6 1 9 13 10 12 0.0000

II 0.1 4 1 6 12 9 15 11 14 5 3 13 10 8 2 7 335.2847

0.2 6 4 1 9 12 11 14 5 7 10 15 8 3 13 2 298.3196

0.3 6 4 1 9 15 12 11 14 5 3 7 10 8 13 2 275.7893

0.4 6 4 1 9 15 12 11 14 5 3 7 8 10 2 13 245.8289

0.5 6 1 9 4 7 14 12 10 15 11 5 3 8 2 13 212.0319

0.6 6 1 9 4 7 14 12 10 15 11 5 3 8 2 13 172.7909

0.7 6 1 9 4 7 14 12 10 15 11 5 3 8 2 13 122.5872

0.8 6 1 9 4 7 14 12 10 15 11 5 3 8 2 13 67.3731

0.9 1 9 4 7 6 12 11 14 5 3 8 10 2 15 13 23.0378

1.0 2 15 11 14 4 5 3 8 7 6 1 9 13 10 12 0.0000

Observe in the last column that implementing the solution without learning effect (b = 1)

for the first manufacturing environment with Cmax as objective function has little influence over
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the makespan, whereas in the second manufacturing environment the opposite happens. In

other words, using solutions obtained without considering learning effects lead us to implement

mediocre sequences in the second manufacturing environment.

The behaviour observed in Table 2 is common for all tested instances as shown in Table 3.

The first column in Table 3 displays the number of jobs, then the levels of the learning factor

b. Columns corresponds to Ri gives the gaps for each setup range for Model I and Model II

respectively. The gap values are calculated using the expression (15). Each class is a subset

of 20 instances based on number of jobs (n), setup range (R) and learning factor (b) and the

average value of each class is given.

Table 3: Gaps (%) of optimal solutions for Cmax without learning

effect regarding learning levels

Model I Model II

n b R1 R2 R3 R1 R2 R3

15 0.1 0.2172 0.6450 0.7309 127.7368 91.4103 119.5835

0.2 0.2494 0.7235 0.8188 129.0850 85.7219 107.6149

0.3 0.2987 0.8245 0.9259 128.4908 78.8185 96.2292

0.4 0.3629 0.9547 1.0624 124.6238 70.8520 85.5784

0.5 0.4550 1.1166 1.2507 115.5320 61.8241 75.0923

0.6 0.5797 1.3073 1.4955 100.1633 51.4803 63.2126

0.7 0.7204 1.4723 1.7547 76.8231 38.8813 48.0305

0.8 0.7921 1.3832 1.7743 46.5222 23.8488 29.0306

0.9 0.5136 0.7797 1.0028 17.4165 8.8433 10.5954

20 0.1 0.1691 0.1779 0.4589 245.3804 70.2386 130.5053

0.2 0.1923 0.2094 0.5165 231.9967 72.8259 124.7613

0.3 0.2217 0.2531 0.5937 214.607 74.5855 118.4178

0.4 0.2597 0.3121 0.6945 194.6465 74.6831 111.8462

0.5 0.3115 0.3931 0.8407 171.9072 72.4727 103.2431

0.6 0.3848 0.5117 1.0379 144.6652 67.0290 92.6586

0.7 0.4810 0.6866 1.2877 110.9587 56.6477 76.5562
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0.8 0.5605 0.8386 1.4450 69.0802 38.9729 51.1544

0.9 0.4316 0.6212 0.9745 26.4555 16.0844 20.0073

25 0.1 0.0955 0.1397 0.3906 250.7117 115.1427 127.6952

0.2 0.1015 0.1699 0.4581 241.9626 117.4986 124.9340

0.3 0.1133 0.2102 0.5373 233.6208 117.9886 120.9140

0.4 0.1308 0.2623 0.6334 223.1144 116.8636 116.7138

0.5 0.1585 0.3342 0.7591 207.5627 113.9188 110.3505

0.6 0.2048 0.4433 0.9320 184.6238 107.1859 100.8466

0.7 0.2802 0.6194 1.1866 150.8183 93.4388 86.1978

0.8 0.3820 0.8364 1.5040 100.6101 67.6190 62.2399

0.9 0.3549 0.7917 1.4260 41.2693 28.7953 27.0196

30 0.1 0.0630 0.2644 0.1412 169.4356 265.4605 145.0042

0.2 0.0704 0.2728 0.1599 167.8989 249.3493 137.5331

0.3 0.0827 0.2887 0.1868 167.9713 231.4849 133.1857

0.4 0.0992 0.3119 0.2283 167.7002 210.2488 128.4251

0.5 0.1249 0.3479 0.2936 164.4083 185.2614 122.0126

0.6 0.1639 0.4068 0.4026 155.2849 156.9281 112.3899

0.7 0.2259 0.5086 0.5826 136.7524 125.3460 97.4379

0.8 0.3214 0.6816 0.8765 102.3536 87.2831 73.5631

0.9 0.3614 0.7245 1.0642 46.7779 39.0982 34.7186

A graphical representation of behaviour of the gaps (on average) for each level of learning

factor b and each setup range R is presented in Figure 1.
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FIGURE 1. Average gaps for each setup time range and each b value.

It can be observed that in the first manufacturing environment the learning has very little

effect on the production process duration, since the solution obtained without learning effect

generally provides job sequences of good quality for all levels of the learning factor. Having

said that, in the second manufacturing environment, we note that the sequence obtained without

learning has low quality for the different levels of the learning factor. Therefore, in this case if

we look for quality sequences it is quintessential to consider the learning effect in the production

programming.

For the Model I (learning effect only on the setup times), the gaps grow along with the setup

range, for each b. That is, the quality of the solution without learning effect is inferior when

the range of variation of the setup times is greater than the range of variation of the processing

times (R3) for all levels of the learning factor. However, for Model II (learning effect on both

the setup times and the processing times), the opposite happens. That is, the solutions without

learning effect are degraded when the range of variation of the processing times is greater than

the range of variation of the setup times (R1). In addition, it can be observed that the gaps grow

as the b values decrease, i.e., the gaps grow with the learning rate.

4.2. Results for the total completion time. Here we analyse the impact of the learning effect

on the job order when the objective is to minimise the total completion time. Firstly, it is

presented the results given by CPLEX solver for Model III and Model IV using instances with

number of jobs 15.
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Table 4: Optimal solutions obtained by Model III and Model IV

for TCT using a 15-job instance

Model b optimal sequence gap(b)%

III 0.1 2 1 11 9 13 6 4 12 5 8 7 3 10 15 14 15.6155

0.2 2 1 11 9 13 6 4 12 5 8 7 3 10 15 14 14.0834

0.3 2 1 11 9 13 6 4 12 5 8 7 3 10 15 14 12.2025

0.4 2 1 11 9 13 4 6 12 5 8 7 3 10 15 14 9.9546

0.5 2 5 1 11 9 13 4 6 12 8 7 3 10 15 14 8.4385

0.6 2 5 1 11 9 13 4 6 12 8 7 3 10 15 14 6.4854

0.7 2 5 1 8 9 11 13 4 12 6 7 3 10 15 14 4.6285

0.8 2 5 1 8 9 11 13 4 12 3 6 7 10 15 14 2.9048

0.9 2 5 1 8 9 11 13 4 12 3 6 7 14 10 15 0.1816

1 2 5 6 1 8 9 13 4 12 3 11 10 15 7 14 0.0000

IV 0.1 2 1 11 9 13 4 12 8 6 7 5 10 15 3 14 10.0557

0.2 2 1 11 9 13 4 12 8 6 7 5 15 3 14 10 15.9879

0.3 2 1 11 9 13 4 12 8 6 7 5 15 3 14 10 18.2681

0.4 2 1 8 9 11 5 6 12 4 15 13 3 14 7 10 18.5263

0.5 2 1 8 9 11 5 6 12 4 15 13 3 14 7 10 17.8733

0.6 2 1 8 9 11 5 6 12 4 15 13 3 14 7 10 15.7253

0.7 2 1 8 9 11 5 6 12 4 15 7 14 13 3 10 11.9088

0.8 2 1 8 9 11 5 12 4 15 6 7 14 13 3 10 6.6076

0.9 2 1 8 9 11 5 12 4 15 6 7 14 13 3 10 1.0962

1 2 5 6 1 8 9 13 4 12 3 11 10 15 7 14 0.0000

The last column gives the gaps of the optimal sequence ignoring the learning effect regarding

optimal solutions obtained for each b value. These gap values are calculated using expression

(15) for the TCT objective function. The gaps have similar pattern for both manufacturing

environments and they increase as b values decrease. Thus, both environments can be affected
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in a similar tone by the learning effects. In order to refute or endorse this statement we show

the results for all tested instances.

Table 5: Gaps (%) of optimal solutions for TCT without learning

effect regarding learning levels

Model I Model II

n b R1 R2 R3 R1 R2 R3

15 0.1 6.1103 11.3390 9.4763 20.3764 6.2276 13.9493

0.2 5.7949 10.6910 8.8852 17.4676 7.1035 13.6800

0.3 5.4789 9.9187 8.1433 15.4775 7.5417 12.6743

0.4 5.1246 9.0211 7.1655 13.6905 7.6043 11.1685

0.5 4.7052 8.0269 6.1133 11.2852 7.2802 9.3493

0.6 4.0679 6.7245 4.9972 8.5842 6.4496 7.3038

0.7 3.1224 4.9213 3.7362 5.9611 4.9298 5.0095

0.8 2.0394 2.8022 2.0618 3.3743 2.8347 2.8082

0.9 0.8367 0.8288 0.5609 1.0245 0.8850 0.6782

20 0.1 6.4371 8.8005 10.8290 55.7083 13.8469 21.2778

0.2 6.1681 8.3507 10.306 48.1192 14.6689 19.6754

0.3 5.8133 7.9582 9.7336 40.0923 15.0687 18.3611

0.4 5.4159 7.5540 9.1023 32.5878 14.8299 17.2057

0.5 5.0203 7.0093 8.2665 25.7075 13.8188 15.4862

0.6 4.5118 6.1175 7.0491 19.1963 11.9541 13.4599

0.7 3.7495 4.8691 5.5179 12.8249 9.14257 10.8345

0.8 2.5826 3.1717 3.6202 6.9536 5.63898 6.8125

0.9 1.0175 1.0446 1.3362 2.0585 1.7728 2.6426

25 0.1 4.7195 9.2083 10.9102 38.0189 21.1471 43.8776

0.2 4.5470 8.9036 10.6019 37.3522 20.9828 34.5930

0.3 4.3534 8.5460 10.2314 35.6298 20.0289 28.5904

0.4 4.1317 8.1890 9.7719 32.8405 18.5098 25.4502

0.5 3.8501 7.6828 9.1469 28.5379 16.8207 22.1215
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0.6 3.4658 6.9167 8.2511 22.6150 14.6360 18.3096

0.7 2.9227 5.6916 7.0393 15.7494 11.3399 13.5898

0.8 2.0447 3.9916 5.2446 8.5825 6.7671 8.2751

0.9 0.7964 1.8524 2.4622 2.5271 2.2770 2.7962

30 0.1 4.5748 7.5836 8.6234 55.8829 33.5297 16.9680

0.2 4.4401 7.3500 8.3754 49.5072 27.7576 17.3627

0.3 4.3107 7.1037 8.1304 43.9779 23.5592 18.1673

0.4 4.1544 6.8147 7.8632 38.6838 20.385 18.1070

0.5 3.9541 6.4499 7.5415 32.5252 17.6698 16.9912

0.6 3.6682 5.9232 7.0117 25.3518 15.0343 14.6416

0.7 3.2200 5.0920 6.0973 17.4078 12.0248 11.1572

0.8 2.5077 3.7320 4.5605 9.5027 7.9056 6.9127

0.9 1.1902 1.7558 2.0321 2.8323 2.9166 2.5581

Table 5 has the same structure as of Table 3. The gap values are calculated using the expres-

sion (15). Each class is a set of 20 instances, based on the number of jobs (n), setup range (R),

and level of learning factor (b), and then the average of each class is given. The gaps are shown

in columns Ri corresponding to both models and that are averaged over each class. From these

results we can conclude that the learning effect affects in a different way to each manufacturing

environment. While it is true that, in both environments, the gap is inversely proportional to b

they are much larger for Model IV. This can be better observed when n = 25 and 30.

A graphical representation of the gaps behaviour (on average) for each level of b and each

setup range R for the TCT objective function is presented in Figure 2. Then, the gaps are

calculated by the expression (15) and have been grouped into subsets of 80 values according to

R and b.



SEQUENCE AND POSITION-DEPENDENT SETUP TIMES IN SINGLE MACHINE SCHEDULING 2049

FIGURE 2. Average gaps for each setup time range and each b value.

For Model III (learning effect only on the setup times), the gaps are proportional to the setup

range, for each level of b. In other words, the solution without learning effect is degraded when

the range of variation of the setup times is greater than the range of variation of the processing

times (R3) for all levels of the learning factor. However, for Model IV (learning effect on both

the setup times and the processing times), the quality of the solutions without learning effect is

lower when the range of variation of the processing times is greater than the range of variation

of the setup times (R1). It can be observed that the lower values of the gaps are obtained when

the processing times and setup times have the same range of variation (R2). In addition, in both

manufacturing environments, the gaps is inversely proportional to b values, i.e., the gaps grow

with the learning rate.

Thus, from the experimental study, on the one hand, we can conclude that for the makespan

the job position effect on setup times could be ignored and the effect on the quality of the

solution would be minute, while for the TCT it is vital to consider the job position effect on

setup times in the production programming process. On the other hand, when the job position

effect affects both setup times and processing times, the solutions obtained without taking into

account this effect, for both the Cmax and the TCT, have an inferior solution. The effects are

more pronounced for the makespan. In the manufacturing environment our study suggests,

for Cmax and TCT, that the job positions should be considered in the production programming

process. Additionally, it was observed that, the solutions worsen as the range of setup times

decreases.
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The results of this study allow decision makers to decide whether or not to include the

position-dependent learning effect in the production planning to make more efficient the pro-

duction process. If inclusion is necessary, the proposed models can be used to obtain prime

solutions when the number of batches to be scheduled is 30 or less.

5. CONCLUSIONS

Single machine scheduling problem with sequence-dependent setup times is studied in this

article. The setup times and the processing times are affected by the job positions in the pro-

cessing order. We studied the cases of the position-dependent learning effect affects only the

setup times, and affects both setup times and processing times. Two performance measures, the

makespan and the total completion time, are employed. To tackle the problem, four mathemat-

ical formulations are proposed and validated the efficiency of the models over a set of instances

adapted from the literature.

In future work, we will extend design of a heuristic algorithms to tackle for larger instances

considering position-dependent learning effect in the production programming process. The

generalisation of this study to other scheduling problems with sequence-dependent setup times

is also another realm of research.
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