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Abstract. In this article, a new one-parameter lifetime distribution has been suggested. The distribution is a

two-component finite mixture of Rayleigh and Maxwell distribution. The various statistical properties of the

distribution such as moments, skewness, kurtosis, moment generating function, and characteristics function have

been discussed. Survival function and hazard function are also studied. The maximum likelihood estimate for the

unknown parameter under the proposed model is derived. Finally, the model is fitted to a real-life failure data, and

outcomes were compared with some standard statistical probability distributions.

Keywords: finite mixture; Rayleigh distribution; Maxwell-Boltzman distribution; life time distribution; failure

data.
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1. INTRODUCTION

The temperature of a physical system is determined by the velocity of the particles (atoms

or molecules) contributing to the system. These particles have different velocities and they

also constantly changes due to collisions among themselves. Maxwell (1860) [13] showed that

the energy of such particles exhibits a certain probability pattern. Boltzmann (1872) [4] later

simplified the probability distribution and investigated its physical origin.
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Though the initial development of Maxwell - Boltzmann distribution revolves around gas

particles, Tyagi and Bhattacharya (1989a, b) [17] [18] for the first time considered this distri-

bution to model lifetime data. They also explored its inferential properties under the Bayesian

approach and reliability function. Chaturvedi and Rani (1998) [5] generalized the distribution

through transformation on gamma random variate. Poddar and Roy (2003) [15] estimated the

parameters of Maxwell - Boltzmann distribution under modified linear exponential loss func-

tion. Bekker and Roux (2005) [3] studied Empirical Bayes estimation for Maxwell distribution.

Dey and Maiti (2010) [8] obtained the Bayes estimator of the parameter under different loss

functions. Kazmi et al. (2011) [14] obtained the maximum likelihood (ML) estimators of the

location and scale parameters of the mixture of the Maxwell distribution under Type-I censor-

ing. Al-Baldawi (2013) [1] compared the efficiency of the ML estimator of the scale parameter

of Maxwell distribution with the corresponding Bayes estimator. Hossain and Huerta (2016)

[10] used the Maxwell distribution in analyzing the different data sets taken from the literature.

Li (2016) [12] obtained the estimators of the scale parameter of the Maxwell distribution using

the Minimax, Bayesian, and ML methods. Fan (2016) [9] considered the Bayesian method to

estimate the loss and risk function for the scale parameter of the Maxwell distribution. Dey et

al. (2016) [7] obtained estimators of the location and scale parameters of the Two Parameter

Maxwell distribution via different estimation methods. See also Arslan et al. (2017) [2], where

the modified maximum likelihood (MML) estimators for the location and scale parameters of

the Maxwell distribution are obtained.

The Rayleigh distribution was introduced by Lord Rayleigh (1880) [16] to study a problem

in the field of acoustics. The distribution is related to several well-known distributions such as

Chi-Square, Exponential, Gamma, and Weibull. The distribution has a wide range of application

and hence extensive work has been done in various fields of science and technology (Johnson

et. al. 1994) [11].

A physical system, for example, industrial equipment or vehicles are comprised of many

individual and vital parts. All of these parts of a system may exhibit a completely different

failure pattern. Considering a single probability distribution to explore the survival function of

such a system may not always give us the desired outcome. A finite mixture of some known
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and suitable probability distributions can help in understanding the sub-populations of a system

with different properties. Finite mixtures are found to be useful in various fields of physics,

chemistry, biology, and social sciences.

In this study, a finite mixture of Rayleigh and Maxwell (RMM) distribution is proposed.

The various statistical properties of the mixture are discussed. The parameter of the proposed

mixture is estimated under the maximum likelihood method. Finally, the mixture is fitted to a

real-life data set.

2. ONE PARAMETER RAYLEIGH-MAXWELL DISTRIBUTION

Let us consider a two component mixture of Rayleigh distribution with parameter a and

Maxwell-Boltzmann distribution with parameter a with their mixing components 1
1+a and a

1+a

respectively. The probability distribution of the new distribution can be written as

f (x;a) =
(1+ ε x)x
(1+a)a2 e−

x2

2a2(1)

The corresponding cdf is given by

F(x) =
1− e−z

1+a
+

βa
(1+a)

γ

(
3
2
,z
)

(2)

where, ε =
√

2
π
≈ 0.8, β = 2√

π
≈ 1.13, z = x2

2a2 and γ(a,b) is the lower incomplete gamma

integral.

2.1. Moments of RMM Distribution. The rth raw moment is given by

µ
′
r =

2
r
2 ar

1+a

[
Γ

(
r+2

2

)
+βaΓ

(
r+3

2

)]
r = 1,2,3, ...(3)

Replacing particular values of r (r = 1,2,3,4) in (3) we get the first four raw moments as

µ
′
1 =

a
1+a

(1.2533+1.5958a) = Mean(4)

µ
′
2 =

a2

1+a
(2+3a)(5)
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FIGURE 1. Probability density function of the RMM distribution for different

values of the parameter.

µ
′
3 =

a3

1+a
(3.7599+6.3831a)(6)

µ
′
4 =

a4

1+a
(8+15a)(7)

The corresponding central moments are

µ2 =
a2

(1+a)2 (0.43a2 +a+0.4375) =Variance(8)

µ3 =
a3

(1+a)3 [4.93a3 +12.20a2 +10.02a+2.6840](9)

µ4 =
a4

(1+a)4 [0.63a4 +2.8a3 +4.24a2 +2.73a+0.6](10)
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FIGURE 2. Cumulative distribution function of the RMM distribution for differ-

ent values of the parameter.

2.1.1. Skewness and Kurtosis. The skewness and kurtosis of RMM distribution were found

out to be

Skewness =
µ2

3

µ3
2
=

[4.93a3 +12.20a2 +10.02a+2.6840]2

[0.43a2 +a+0.4375]3
(11)

Kurtosis =
µ4

µ2
2
=

[0.63a4 +2.8a3 +4.24a2 +2.73a+0.6]
[0.43a2 +a+0.4375]2

(12)

2.1.2. Harmonic Mean. The harmonic mean of RMM distribution is

Harmonic Mean(
1
H
) = E[

1
X
]

=
∫

∞

0

1
x

f (x)dx

=
1.25+0.8a

a(1+a)

(13)

2.1.3. Mode of RMM distribution. The mode of a distribution is obtained by solving the equa-

tion

∂

∂x
log[ f (x)] = 0(14)



OPRM DISTRIBUTION 1953

On simplification, the equation to obtain mode of RMM distribution reduces to

0.8x3 + x2−1.6a2x−a2 = 0(15)

2.2. Generating Functions.

2.2.1. Moment Generating Function. The moment generating function (mgf) of RMM distri-

bution is

MX(t) = E[etX ]

=
∫

∞

0
etx f (x)dx

=
∫

∞

0

∞

∑
r=0

trxr

r!
f (x)dx

=
∞

∑
r=0

tr

r!
2r/2ar

1+a

[
Γ(

r+2
2

)+
2a√

π
Γ(

r+3
2

)

]
(16)

2.2.2. Characteristic Function. The characteristic function (cf) of RMM distribution is

ΦX(t) = E[eitX ]

=
∫

∞

0
eitx f (x)dx

=
∫

∞

0

∞

∑
r=0

(it)rxr

r!
f (x)dx

=
∞

∑
r=0

(
(it)r

r!

)
2r/2ar

1+a

[
Γ(

r+2
2

)+
2a√

π
Γ(

r+3
2

)

]
(17)

2.3. Survival Function. The survival function of our proposed RMM model is given by

S(x) = 1−F(x)

=
a+ e−z−acγ(3/2,z)

1+a

(18)

Where,

c =

√
2
π

, z =
x2

2a2 and γ(a,x) =
∫ x

0 e−tta−1dt, lower incomplete gamma integral.
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FIGURE 3. Survival function of the RMM distribution for different values of the parameter.

2.4. Hazard Function. The hazard function of RMM distribution is obtained as

h(x) =
f (x)
S(x)

=
f (x)

1−F(x)

=
x(1+ cx)e−z

a2[a+ e−z−acγ(3/2,z)]
; x > 0

(19)

The reverse hazard rate function of RMM distribution is

Φ(x) =
f (x)
F(x)

=
x(1+ cx)e−z

a2[1− e−z +acγ(3/2,z)]
; x > 0

(20)



OPRM DISTRIBUTION 1955

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

X > 0

H
az

ar
d 

F
un

ct
io

n

a= 0.5

a= 0.6

a= 0.7

a= 0.8

a= 0.9

a= 1

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

X > 0

H
az

ar
d 

F
un

ct
io

n

a= 1

a= 1.5

a= 2

a= 2.5

a= 3

a= 3.5

FIGURE 4. Hazard function of the RMM distribution.

TABLE 1. Descriptive statistics for different values of the parameter

Parameter Mean Variance Harmonic Mean Skewness Kurtosis

0.5 0.6837 0.1161 2.2000 113.0907 3.1266

0.6 0.8290 0.1677 1.8021 118.1770 3.1309

0.7 0.9760 0.2286 1.5210 123.0796 3.1361

0.8 1.1244 0.2988 1.3125 127.7937 3.1418

0.9 1.2740 0.3783 1.1520 132.3193 3.1478

1.0 1.4246 0.4669 1.0250 136.6599 3.1541

1.5 2.1882 1.0458 0.6533 155.8035 3.1845

2.0 2.9633 1.8478 0.4750 171.3434 3.2109

2.5 3.7449 2.8699 0.3714 184.1038 3.2327

3.0 4.5305 4.1105 0.3042 194.7252 3.2506

3.5 5.3189 5.5685 0.2571 203.6830 3.2654
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3. INFERENTIAL PROCEDURES

The likelihood equation corresponding to (1) is

L(x;a) =
{

1
(1+a)a2

}n n

∏
i=1

xi (1+ cxi)e
−∑

n
i=1

x2
i

2a2(21)

Where, c=

√
2
π
w 0.8

The log likelihood function is

(22) logL =−2nlog(a)−nlog(1+a)+
n

∑
i=1

logxi +
n

∑
i=1

log(1+ cxi)−
1

2a2

n

∑
i=1

x2
i

Differentiating (22) w.r.t. a and equating to zero we get

3a3 +2a2− (1+a)Tx = 0(23)

Where, Tx =
1
n

∑
n
i=1 x2

i

Solving (23) for a numerically, we can get the maximum likelihood estimate of the parameter.

4. APPLICATION

The proposed model is fitted to a data set related to the number of miles to the first major

motor failure of 191 buses operated by a large city bus company (Davis [6]). The outcomes

are compared with Rayleigh, Maxwell-Boltzman, Gamma, Chi-square, and Exponential distri-

butions. To compare the performance of our proposed model with other distributions, different

discrimination criteria such as AIC, BIC, AICC, HQIC, and CAIC are constructed under the

log-likelihood function. Table (2) presents the data related to the motor failure of 191 buses.

Table (3) presents the discriminating criteria under different distributions.
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TABLE 2. Data related to motor failure of 191 city buses

Distance Interval
Number of Failures

(in Thousands of Miles)

0 - 20 6

20 - 40 11

40 - 60 16

60 - 80 25

80 - 100 34

100 - 120 46

120 - 140 33

140 - 160 16

160 - 180 2

180+ 2

Total 191

TABLE 3. Results of AIC, AICC, HQIC and CAIC for different probability dis-

tribution considering the data related to motor failure of city buses

Test RMM Rayleigh Maxwell Gamma Chi-Square Exponential

AIC 1945.70 1963.46 1947.30 1977.73 3377.02 2130.36

BIC 1948.95 1966.72 1950.56 1984.23 3380.27 2133.61

AICC 1945.72 1963.49 1949.32 1977.79 3377.04 2130.38

HQIC 1947.01 1964.78 1950.62 1980.36 3378.33 2131.68

CAIC 1949.95 1967.72 1953.56 1986.23 3381.27 2134.61

Our proposed model is performing better in explaining the data set than the remaining dis-

tributions since the values of AIC, AICC, HQIC, and CAIC are less compare to Rayleigh,

Maxwell - Boltzman, Gamma, Chi-square and Exponential distribution.

5. CONCLUSION

The superior performance of our proposed model can be confirmed from the different dis-

crimination criteria since the best model is the one that gives the minimum values of those

criteria. The distribution can be used in cases where we observed a high rate of failure as we
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move towards the mode of the data and then failure rate decreases drastically. The various sta-

tistical properties of the proposed model were also discussed. Further extension of the proposed

model was also possible and will be studied in future work.
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