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Abstract: The theory of integral equations has been an active field of research for many years and is inextricably 

related with other areas of Mathematics such as complex and mathematical analysis, function theory, integral 

transforms and functional analysis. Integral Equations arise naturally in applications, in many areas of Mathematics, 

Engineering, Science and Technology and have been studied extensively both at the theoretical and practical level. 

It is significant to note that a MathSciNet keyword search on Integral Equations returns more than eleven thousand 

items. In this paper, we do a brief survey of the existing literature on methods of solving integral equations of 

Volterra and Fredholm type of the first, second and third kind, Cauchy type singular integral equations and integral 

equations over an infinite interval. The objective is to classify the selected methods and evaluate their applicability 

while discussing challenges faced by individual researchers in this field. We also provide a rather extensive 

bibliography for the reader who would be interested in learning more about various theoretical and computational 

aspects of Integral Equations. 

Keywords: fredholm; volterra; integral equations; linear; non-linear. 
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1. INTRODUCTION 

Integral equations have been one of the essential tools for various areas of applied mathematics 

and they occur naturally in many fields of science and engineering [152]. Integral equations are 

encountered in a variety of applications which include continuum mechanics, potential theory, 
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geophysics, electricity and magnetism, kinetic theory of gases, hereditary phenomena in physics 

and biology, renewal theory, quantum mechanics, radiation, optimization, optimal control 

systems, communication theory, mathematical economics, population genetics, queuing theory, 

medicine, mathematical problems of radiative equilibrium, the particle transport problems of 

astrophysics and reactor theory, acoustics, fluid mechanics, steady state heat conduction, fracture 

mechanics, and radiative heat transfer problems. In fact, very recently, due to increasing usage of 

stochastic integral equations in applicable problems, the need to extend the numerical solution 

for this type of equation has been felt. In particular, stochastic integral equations characterized by 

fractional Brownian motion have been studied ([163], [164]). 

An integral equation is a functional equation in which the unknown function appears under one 

or several integral signs. In an integral equation of Volterra type for instance, the integrals 

containing the unknown function are characterized by a variable upper limit of integration. To be 

more precise, an integral equation of the form 

x

a

k(x,s )y( s )ds f ( x ) =          (1) 

is called a linear Volterra integral equation of the first kind and that of the form 

      (2) 

is called a linear Volterra integral equation of the second kind.  Here,  x, s and a are real 

numbers,  is a parameter,  is an unknown function, while  are given 

functions which are square integrable on  and in the domain , respectively. 

The function  is called the free term, while the function   is called the kernel. 

Volterra equations may be regarded as a special case of Fredholm equations with the Kernel 

 defined on the square  and vanishing on the triangle . 

For example 

       (3) 

is called a linear Fredholm integral equation of first kind or  

       (4) 

( ) ( ) ( ) ( )
x

a

y x k x,s y s ds f x− =

 ( )y s ( ) ( )andf x k x,s

 a,b a x b, a s x   

( )f x ( )k x,s

( )k x,s a x b, a s b    a x s b  

( ) ( ) ( )
b

a

k x,s y s ds f x=

b

a

y( x ) k( x,s )y( s )ds f ( x )− =



3111 

SOLUTION METHODS FOR INTEGRAL EQUATIONS - A SURVEY 

is called a linear Fredholm integral equation of the second kind ([120], [91]). If  in 

equation (2), then the equation is called homogenous, otherwise it is called non homogenous. For 

homogenous equations,  is an eigenvalue, because in such cases the integral equations present 

eigenvalue problems in which the objective is to determine those values of   called eigenvalues 

for which the integral equations possess non trivial solutions called eigen-functions. 

If the kernel  is continuous, then the integral equation is said to be non-singular. If the 

range of integration is infinite, or if the kernel violates the above conditions, then the equation is 

said to be singular. 

The solution of an integral equation of any type is to find the unknown function  satisfying 

that equation. In many cases however, the determination of the solution of an integral equation 

by analytical techniques is out of question, and a straight forward numerical approach, restrictive 

though to a class of well-posed integral equations, is to replace the integral equation by a set of 

linear algebraic equations solved by any matrix methods. On the other hand, an attempt to solve 

Volterra integral equations of the first kind using the above numerical approach may not be 

fruitful after all. This is so, because Volterra integral equations of the first kind, in a sense appear 

to be situated mid-way between Volterra integral equations of the second kind and those of 

Fredholm integral equations of the first kind.  Precisely, if a Volterra integral equation of the 

second kind is well-posed and can effectively be solved by any classical means, a Fredholm 

integral equation of the first kind is ill-posed, given any preconceived functional space solvable 

only by special approximate methods, and Volterra/Fredholm integral equation of the first kind, 

may, either be well-posed or ill-posed depending upon the choice of the solution space and the 

nature of the technique used ([96],[90]).  It is worthy to note that Fredholm integral equations of 

the first kind are often ill-posed problems that may have no solution, or if a solution exists, it is 

not unique and may not depend continuously on the data f ( x )  ([143],[144],[108]).  Also, first 

kind Volterra integral equations are not ill-posed problems since they can be easily converted to 

second kind Volterra integral equations which always have unique solutions. 

The ill-posedness [142] in most equations of the form (1) is the origin of frequent difficulties 

when dealing with methods for solving equation (1) numerically. The trouble with classical 

solution is that a discretization process transforms equation (1) into another equation (often a 

system of linear equations which may be solved by well-known singular value decomposition) 

( )f x 0=





( )k x,s

( )y s



3112 

I. M. ESUABANA, U. A. ABASIEKWERE, I. U. MOFFAT 

which can lead to solutions that may deviate strongly from the (minimum norm) solution of 

equation (1). 

The conditionalities for well-posed problems include the following 

(i) Existence of solution; 

(ii) The uniqueness of such a solution and 

(iii) The stability of the solution. 

A number of methods have been analyzed thoroughly based on these conditionalities, but much 

were done under the assumption that the kernel  and the right-hand side or free function 

 are known without error and that the approximating equation can be exact. When, as is 

often the case, equation (1) arises in the analysis of experimental data, these assumptions may 

not manifest. As was pointed out by [84], appreciable perturbations in   can make the 

standard numerical methods useless. We also note that, with the exception of the work on simple 

Abel’s equation 

[82], the problem of solving equation (1) in the presence of data error has received some 

unprecedented attention. This is attested to in the following monographs: ([34], [53], [147], [86]). 

 

2. METHODS OF SOLVING VOLTERRA INTEGRAL EQUATIONS 

It is known that if the kernel  is a continuous function in the domain , and 

f(x) is continuous in the interval [a,b], then the integral equation (4) has a unique solution for any 

[82]. The methods of solving equation (4) use quadrature rules some of which include repeated 

trapezoidal rule, Newton-Cotes, Clenshaw-Curtis, and Simpson’s rule. Recently, other methods 

for solving equation (4) have been introduced. These include the power series method and Monte 

Carlo method for system of linear Volterra integral equations of the second kind. For non-linear 

Volterra integral equations,the methods of solution include the quadrature rule, Adomian 

decomposition technique for Volterra-Fredholm integral equations and recently, an iterative 

scheme based on the homotopy analysis method (HAM) has been used to solve non-linear 

Volterra integral equations.  These methods can as well be applied in solving both linear Volterra 

and Fredholm integral equations of the first and second kinds.   

Linear Volterra integral equations of the first kind: The identification of various important 

problems in electrical engineering, in modeling of dynamic impulse systems, and in non-linear 

( )k x,s

( )f x

( )f x

( )k x,s  R a s x b  


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dynamic system identification can be treated in terms of equation (1) which does not have 

classical continuous solutions [8]. Let us now consider equation (1), the linear Volterra integral 

equation of the first kind. Efforts in solving equation (1) numerically date back to 1953, when 

Fox and Goodwin used finite difference methods, although equation (1) was not treated 

explicitly. However, [63] was concerned with the study of the trapezoidal rule for solving first 

kind Volterra integral equation with convolution kernels 

,   (5) 

and noted that the solutions obtained oscillated about the exact solution.  [69] gave a 

convergence argument for the trapezoidal rule.  However, [79][80] considered several finite 

difference methods and showed that the mid-point rule was convergent and that high order 

Newton-Gregory formulae were not. Linz’s work was important, because of the catalytic effect it 

had on other researchers. However, [153] produced high accuracy block-by-block methods 

which proved convergent. This was followed by other researchers, notably, [48] who displayed 

six interpolatory quadrature rules which yielded convergent schemes up to order six.  However, 

[46] developed a new class of quadrature methods for solving equation (5) based on the 

following assumptions: 

C 2.1 f and k are continuously differentiable to sufficiently high order based on their arguments 

on  ,  and 

 respectively. 

C 2.2  and 

C 2.3  for all  

Holyhead, Mckee and Taylor (1975)[56] propounded a general concept of stability with an 

associated root condition. In this study, a general theorem demonstrates that consistency plus 

stability imply convergence. These results although aimed at cyclic interpolatory-type methods 

are really quite general and essentially subsume the results obtained by [57]. Furthermore, [56] 

introduced the concept of weak stability and tackled the convergence problem using generating 

functions as the essential tools. Taylor [135], in this interesting paper derived stable methods by 

“inverting” backward differentiation formulae. [67] derived a semi-explicit third order method 

(which may be viewed as a Rung-Kutta method) while Andrade, [6] derived a fourth and sixth 

( ) ( ) ( )
x

0

k x s g s ds f x− =

 1S x 0 s x a=    ( )a  

( ) 2S x, S 0 s x a ,=   

( )f 0 0 ;=

k( x,x ) 0 x S.
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order stability method for linear Volterra integral equations, the latter having all its zeros of its 

associated polynomial at the origin.  [94] unified the two papers by [56] and [58] under the 

assumption that consistency could be expressed as an asymptotic expansion and in a further 

study [6] considered the problem of solving first kind Volterra integral equation (5) directly 

when . Again, [156] considered reducible quadrature methods also based on the above 

assumptions.  [47] constructed families of methods depending on free parameters for the solution 

of equation (5). These parameters are restricted to certain regions so that a certain polynomial 

satisfies both stability and a consistency condition.  This is an optimal choice if the free 

parameters were outlined in order that the of the roots of the polynomial was 

minimized. 

Recently, [129] studied equation (5) in terms of generalized functions. A generalized solution is 

the basis of mathematical models formulated in terms of impulses theory [162]. Various well 

known electrical engineering problems can be formulated in terms of impulse theory [29]. The 

solutions consist of singular and regular components which can be constructed separately. The 

singular component is constructed as solutions of the special linear algebraic system while the 

regular component is constructed as solutions of special Volterra integral equation of the third 

kind. Most recently, [1] proposed a new method called the homotopy analysis method (HAM) 

for solving the first and second kinds linear Volterra integral equations. This method was applied 

to solve different test problems with known exact solutions and the numerical solutions obtained 

confirm the validity of the numerical method and suggest that it is an interesting and viable 

alternative to existing numerical methods for solving the problem under consideration. The 

homotopy analysis (HAM) was first introduced by Liao ([76]; [77]). In this method, the solution 

is considered to be the summation of an infinite series, which usually converge rapidly to the 

exact solution. The HAM is based on homotopy, a fundamental concept in topology and 

differential geometry. 

We shall consider another version of equation (5) expressed in the form: 

( )

( )
( ) ( ) ( )

x

a

k x s
y s ds f x ,0 1, f 0

x s


 
−

=   =
−

      (8) 

called Abel’s integral equation of the first kind. Observe that equation (8) is equivalent to 

equation (5) with . The application of product integration methods for solution of Volterra 

integral equations was carried out by [160] although he did not explicitly advocate them for first 

( )k s, s 0

2L norm−

0 =
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kind equations. [81] was probably the first researcher to suggest the use of such methods. He 

presented some high order methods and outlined the convergence arguments.  The product mid-

point and the trapezoidal rule were first theoretically justified by ([154], [153]). However, Weiss 

was only able to prove convergence for , while [30] indeed showed that the product 

trapezoidal rule was convergent for all .  [14] proved the convergence of the product 

mid-point and trapezoidal rule for the equation with the kernel  

[10] considered and proved the convergence of the product trapezoidal rule for the equation with 

the kernel  However, [57] showed that his general analysis of equation (5) could 

be extended to equation (8) and that his concepts of stability and weak stability were relevant. 

Furthermore, [19] considered two families of methods, the so called implicit and explicit 

backward difference product integration methods (IBDPIM’S and EBDPIM’S). From a simple 

sufficient condition he was able to determine theoretically the precise range of for which the 

IBDPIM’s are convergent. 

Kosarev (1973)[72] considered the case of  and , in which equation (8) is reduced 

to the form  

( )

( )
( )

a

0

y s
ds f x , 0 x a .

x s
=  

−
      (9) 

He presented a method for the calculation of the unknown function y(x) which takes into account 

both the statistical properties of the function f(x), connected with the errors of measurement, and 

also the analytic properties of Abel’s transformation, expressed by equation (9). This method is 

based on the expansion of the unknown function y(x) in eigen-functions of the integral operators 

    (10) 

which are the power functions 

    (11) 

The corresponding eigenvalues were calculated using the recurrence formula 

    (12) 

Recently, [159] have constructed high accuracy mechanical quadrature rule for solving equation 

(8). In order to avoid the ill-posed nature of the problem, the first kind Abel integral equation 

 0.1292, 1 

( )0, 1 

( ) ( ) ( )k x, s x s x s ,0 , 1.
 

 
− −

− +  

( ) ( )
1
22 2k x, s x s .

−

−



1

2
 = ( )k x, s 1

( )x

0

y s1
Ay ds,

2 x x s
=

−


( ) n

ny x x , n 0,1, 2, .= =

( )
n 1

0 n 1
2n

1, , n 1, 2, .
1


  −= = =

+
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was transformed into the second kind Volterra integral equation with a continuous kernel and a 

smooth right-hand term expressed by weakly singular integrals. From the periodization method 

and modified trapezoidal integration rule, not only high accuracy approximation of the kernel 

and the right-hand side term could be easily computed, but also two quadrature algorithms for 

solving first kind Abel integration equation were proposed, which have the high accuracy  

and asymptotic expansion of the errors. From the Richardson extrapolation, an approximation 

with higher accuracy order  was obtained. In addition, an aposteriori error estimate for the 

algorithms was derived. 

Linear Volterra integral equations of the second kind: 

We shall consider the second kind Volterra integral equations of the form 

    (13) 

where the function f(x) and the regular kernel  are given, and y(s) is the unknown function 

to be determined. This integral equation is a mathematical model of many evolutionary problems 

with memory from biology, chemistry, engineering ([83]; [27]). 

In recent years, there are several numerical techniques using quadrature rules such as repeated 

trapezoidal rule, Newton-Cotes, Clenshaw-Curtis, and Simpsons rule. Other methods include the 

power series method and Monte Carlo method. 

However, the convection dominated problem always encountered in approximation of equation 

(13) is the spontaneous formation of non-smooth micro scale features which pose a challenge for 

high resolution computations. To overcome this problem, [98] introduced a modified method 

based on the Simpson’s quadrature formula. The idea is to approximate the solution of equation 

(13) in even number of equally spaced points (or a given mesh). 

[134] presented a numerical method for the solution of equation (13) based on power series 

method. The proposed method provides the Taylor expansion of the exact solution of the integral 

equation using simple computation with quite acceptable approximate solution. For equations 

with polynomial solutions, the proposed method gave exactly the same solutions as the analytical 

method. 

It is, in general, very difficult to find a useful solution of a linear Volterra integral equation of the 

second kind if the solution depends on several variables or if the equation is coupled with other 

( )20 h

( )30 h

( ) ( ) ( ) ( )
x

a

y x f x k x, s y s ds, a x b,= +  

( )k x, s
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integral equations. Suppose that equation (13) is a system of linear Volterra integral equations of 

the second kind where, 

 

 

 

and  are known functions and  is to be determined. Well known methods of 

solution are mostly ineffective because the amount of computation involved is too great, even for 

the latest machines. In many cases, however, especially in particular transport problems, a 

statistical procedure - the Monte-Carlo method can be used to find a solution which is 

sufficiently accurate for practical purposes [54]. The application of a well known Monte-Carlo 

method for the solution of an equation with non-negative kernel has been illustrated by ([74], 

[124], [54]). The idea by these authors was further developed by [117] and applied to the 

solutions of systems of equation (13). The result obtained showed the effectiveness of the 

method. The Monte-Carlo method is developed as iteration technique where the approximation is 

over a finite interval for the unknown function.  At each step, there is a new partition for the 

interval and such partition comes from the generation of random numbers on the interval. 

Linear Volterra integral equations of the third kind: It is worthy of note that the Volterra 

integral equation of the first kind can be transformed into Volterra integral equation of the third 

kind when the function  has zero outside the interval  0,a . This case has been investigated 

by only a few researchers [142] based on the general Volterra integral equation of the third kind 

of the form 

,      (14) 

where  is a real parameter. [121] demonstrated the existence of a one parameter family of 

solution of equation (14) in the case when These results were generalized to a 

system of such equations. The most interesting results were obtained by [105], when questions of 

the solvability of equation (14), and consequently that of equation (5) in a specially introduced 

Banach space  for an arbitrary function were considered.  However, the structure 

of the space , constructed only for the function , and the method of proof, led to the 

( ) ( ) ( )( )
T

1 my x y x , , y x ,=

( ) ( ) ( )( )
T

1 mf x f x , , f x ,=

( ) ( )i jk x, s k x, s , i 1, 2, , m, j 1, 2, , m, = = = 

( )f ( x ), k x, s ( )y x

( )k x, s

( ) ( ) ( ) ( ) ( ) ( )
x

0

g x y x k x, s y s ds f x , g 0 0− = =



( )g x x, 1 .= = −

( )C w ( )g x 0

( )C w ( )g x
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isolation of  the family of solutions. This was due to the fact that the dependence of the 

behaviour of the solutions of equation (14) on the behaviour of the function  in the 

neighborhood of zero was not completely taken into account. [87] constructed the Banach space 

and , a special form multiparameter families of solutions of equation (5) directly, and for 

a wide class of equations of the form (14),  obtained similar results as corollary. Other references 

for works on Linear Volterra integral equations of the 3rd kind are ([122], [38], [41], [42], [107], 

[18]). 

Nonlinear Volterra integral equations of the second kind: Consider the non-linear Volterra 

integral equations of the second kind, 

,   (15) 

where the kernel k is at least continuous on , and that the solution y 

exists uniquely and is continuous on I. The general Volterra-Rung-Kutta methods have been 

employed to solve equation (15).   

In order to introduce the discretization of equation (15) by (implicit or explicit) Rung-Kutta 

methods, let with  and denote by  any approximation 

to .  Furthermore, define 

,  (16) 

and let be an approximation to . An m-stage (implicit) Volterra Rung-Kutta method 

for equation (16) has been given by Aparo (1959) to be 

   (17) 

where  

.   (18) 

( )k x, s

yB x ,

q , yM 

( ) ( ) ( )( )  
x

0

y x f x k x, s, y s ds, x I : a, b= +  =

ns x R , ( ) S : x, s : a s x b=   

nx a nb, n 0,1, 2, , N ,= + = ( )
b a

h N 1 ,
N

−
=  ny

( )ny x

( ) ( ) ( )( )
nx

n

a

F x : f x K x, s, y s ds= +  ( )nx x n 0,1, , N 1 = −

( )nF x ( )nF x

( ) ( ) ( )( )

( ) ( ) ( )( )

m
n n

i n n i ij n ij j n j j

i 1

m
n n

n 1 m 1 n n i n i i n i j

i 1

Y F x h h a k x d h x c h,Y

y Y F x h h b k x e h x c h,Y

i 1, m,


=

+ 

=


= + + + +




= = + + + +

 =







( )
m

i ij

j 1

c a i 1, , m
=

= =
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The method for equation (17) is completely characterized by the parameters The 

two terms on the right-hand side of equation (17) are called the lag term and the Runge-Kutta 

part of the Rung-Kutta method. Let us consider two special subclasses of this method: 

(a) The Pouzet-type method (PRK-method) which was proposed by [111].   

The method is as follows: 

If , we obtain 

   (19) 

This is the implicit version of Pouzet’s Runge-Kutta method for equation (15); in the explicit 

case the upper limit of the summation is replaced by I=1 in the first formula of equation (19).  In 

order that the argument of k in equation (19) lies in  It is expected that 

.   (20) 

For explicit methods this condition is satisfied if . Equation (20) is referred to as 

the kernel condition.  

(b) The Bel’tyukov-Type method (BRK-method)which was introduced by [13]. It is as follows: 

If , then 

   (21) 

For this type of method, the kernel condition is  

.   (22) 

It is worthy of note that the Runge-Kutta theory for Volterra integral equations of the second 

kind was given a solid foundation by [17] when the order conditions were derived from the 

theory of V-series.  The results were then applied to the subclasses introduced by Pouzet and 

Bel’tyukov as earlier mentioned. 

Let us consider a non-linear Volterra integral equation of the form 

.   (23) 

ij ij i i ia , d , b , e , .

( ) ( )ij i i i id c i, j 1, , m , e 1, c i 1, ,m= = = = =

( ) ( ) ( )( )

( ) ( ) ( )( )

m
n n

i n n i ij n in n j j

i 1

m
n n

n 1 m 1 n n i n n i j

i 1

Y F x c h h a k x c , x c h,Y

y Y F x h h b k x h, x c h,Y

i 1, m

=

+ 

=


= + + + +




= = + + + +

 =







nS R .

i j ijc c if a 0 

1 2 mc c c 1   

( ) ( )iij j i id e i, j 1, , m , c i 1, , m= = = =

( ) ( ) ( )( )

( ) ( ) ( )( )

m
n n

i n n i ij n \ j n j j

i 1

m
n n

n 1 m 1 n n i n i n j i

i 1

Y F x c h h a k x e h, x c h,Y

y Y F x h h b k x e h, x c h,Y

=

+ 

=


= + + + +



 = = + + + +






i ie c , i 1, , m =

( ) ( )( ) ( ) ( )
x

0

y x K x, s, y s ds g x , x 0= + 
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Weiss (1972) derived two schemes called implicit block by block method based on interpolatory 

quadrature rules such that 

   (24) 

and 

,   (25) 

where 

    (26) 

,   (27) 

and 

   (28) 

for the solution of equation (23) and proved the convergence of the method.  [88] extended this 

method to the solution of the nonlinear Volterra integro-differential equation of the form 

( ) ( ) ( )( )
x

0

y x G x, y x , k x, t , y t dt , x 0.
 

 =  
 

          (29) 

The convergence of this method was proved and the rate of convergence was also found. The 

convergence results obtained were analogous to those obtained by [153]. 

Let us now consider the nonlinear Volterra-Fredolm integral equations from the modeling of 

many applications 

( ) ( ) ( ) ( )( )
x

1 1 1

a

y x f x k x, s g y s ds= +  ( ) ( )( )
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where  and  are the kernels,  and  are nonlinear functions of  and f(x), a 

given function. In recent times [2], Adomian polynomial algorithm has been proposed for the 

solution of equation (30). The algorithm (a decomposition method) assumes a series solution for 

the unknown quantity. It has been shown by [22] that the series converge fast, and with only few 

terms, this series approximates the exact solution with a fairly reasonable error. [26] adapted the 

algorithm and a modification version of the algorithm by [151] to the solution of equation (30).  
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The scheme was shown to be highly accurate, and only few terms were required to obtain 

accurate computable solutions. 

Most recently, [1] has developed an iterative scheme based on the homotopy analysis method 

(HAM) for nonlinear Volterra integral equations of the form  

    (31) 

This scheme was applied to the solution of different test problems with known exact solutions 

and the numerical solutions obtained confirmed the validity of the numerical method and suggest 

that it is an interesting and viable alternative to existing numerical methods for solution of the 

problem under consideration.  Convergence was also observed. 

 

3. METHODS OF SOLVING FREDHOLM INTEGRAL EQUATIONS 

We shall now consider linear Fredholm integral equation of the first kind 

   (32) 

and of the second kind 

,   (33) 

where the functions f(x) and the kernel  are known and y(s) is the unknown function. 

For equations in the form of equation (32), their ill-posedness nature is the origin of the 

frequently occurring difficulties when dealing with methods for solving them numerically. The 

trouble with the collocation methods is that a discretization process transforms equation (32) into 

another problem (often a system of linear equations probably solvable by the well-known 

singular value decomposition) which can lead to solutions and may or may not deviate strongly 

from the (minimum norm) solution of equation (32).  On the other hand, regularization methods 

(e.g. Tikhonov’s method) may suffer from the fact that approximate solutions obtained by these 

methods are dependent on the chosen regularization parameter [141]. There is also the 

regularized collocation method for the solution of equation (32). 

Methods of solution of equation (33) can be subdivided into two classes. The first class includes 

the quadrature methods. For example, Nystrom methods and product integration methods 

otherwise called multi-step methods. The second class constitutes projection methods. Examples 

( ) ( ) ( ) ( )( )
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k x, s y s ds f x=
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
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of such methods are collocation methods and Galarkin methods [116]. A method using cubic 

spline approximation for the numerical solution of equation (33) has also been used.  Recently, 

other methods such as the cubic spline collocation [113], adaptive solution and homotopy 

analysis method (HAM) have also been applied to the numerical solution of equation (33). 

Linear Fredholm integral equations of the first kind:  

Let us now consider equation (32).  For notational convenience, equation (32) can be phrased 

abstractly as 

     (34) 

where K is a compact linear operator from a Hilbert space  into a Hilbert space . We do not 

assume that equation (34) has a unique solution; by the value of y, we mean the solution with 

minimum norm, that is, the unique solution which is orthogonal to the null space of K. It is well 

known that for non-degenerate kernels equation (34) is ill-posed, that is, the minimum norm 

solution y does not depend continuously on the right-hand side f. Recognizing the inherent 

computational difficulties when f is not precisely known, [143] proposed what has become 

known as the regularization method for the solution of equation (34).  The method involves 

taking as an approximation to y the minimizer of the so called Tikhonov functional [95]. 

,   (35) 

where  is a positive parameter, the regularization parameter of , being the minimize of 

over an infinite dimensional space is not effectively computable.  ([92], [100], [93]) obtained a 

computable approximation  by minimizing  over a finite dimensional subspace  of . 

However, [52] related  to m in such a way that  converges to y as  and also studied 

the asymptotic order of convergence of . It is important to define algorithms giving in a 

way that does not crucially depend on the intuition of the user of a regularization method. 

However, some a priori knowledge of the shape or smoothness of the minimum norm solution of 

equation (34) will probably always be needed if ill-posed problems are to be solved. [93] showed 

that Sobolev spaces may serve as a tool for a partial regularization of equations in the form of 

equation (34), where the Sobolev space  for magnetic integers m and on the real open 

interval (0,1) is defined as the completion of the set  of bounded continuous and m-times 

bounded continuously differentiable real functions on (0, 1) based on the Sobolev norm given by 

Ky f=

1H 2H
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( ) ( ) ( )

1
21m

2i m

m
i 0 0

f f t dt , f C 0,1
=

 
=  
 
 .    (36) 

Recently, [99] have shown that, if the priori information mentioned above is not available, then a 

combination of collocation with Tikhonov regularization can be the method of choice.  They 

analyzed the regularized collocation in a rather general setting, when a solution smoothness is 

given as a source condition with an operator monotone index function.  This setting covered all 

types of smoothness studied in the theory of Tikhonov regularization.  They also discussed on a 

posteriori choice of the regularization parameter, which allows an optimal order of accuracy for 

deterministic noise model to be reached without any knowledge of solution smoothness. 

Linear Fredholm integral equations of the second kind: 

Generally speaking, Fredholm integral equations of the second kind are the most studied among 

all integral equations.  For thesolution of such equations, various numerical methods have been 

constructed and their classification has been carried out. The first thing to mention here is the 

work by [74] where a general theory of approximate algorithms for well-posed problems in 

operator form was constructed. 

Again, consider the Fredholm integral equation of the second kind 

,   (37) 

where 

,   (38) 

and d is a positive real number occurring in the problem of determining the capacity of a circular 

plate condenser as was considered by Love (1949). He showed, by analytical methods, that there 

exists a unique, continuous, real and even solution, and that it can be expressed as a convergent 

series of the form: 

,   (39) 

where the iterated kernels are given by 

.   (40) 
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This method of solution is somewhat laborious and numerical solutions to this problem were 

found by several researchers ([35]; [160]; [32]; [155]; [31]). [109] investigated the problem only 

for the case d = 1.0. He has discussed the problem even for smaller values of d which it was 

more interesting. [119] studied equation (37) by the trapezoiodal and the Chebyshev series 

method and the result obtained showed that application of these methods is easy only for the case 

d = 1.0. In search of an efficient method, [119] also solved equation (37) using cubic spline 

method and compared his result with those obtained using trapezoidal and Chebyshev series 

method. It was found that the method is unsuitable for finding the solution for larger values of d 

as the convergence is rather slow. The numerical result also showed that the cubic spline method 

is potentially useful. 

 [60] analyzed and applied an interpolation scheme based on piecewise cubic to the solution of 

equation (33). An experimental comparison of Nystrom and collocation methods showed that the 

collocation method is faster than that of Nystrom for problems with smooth solutions and non-

smooth kernels.  [101] discussed the adaptive solution of 

   (41) 

where  is a regular kernel.  The method is based on the trapezoidal rule for obtaining the 

numerical solution of equation (41).  The idea is to start with a given number of equally spaced 

points (or a given mesh).   The solution at this stage is obtained by the solution of a linear system 

of algebraic equations. The program then decides if the mesh should be refined and where.  This 

is done in such a way that both change in the approximate solution and its gradient is equi-

distributed. 

[23] proposed a quadrature scheme called Clenshaw-Curtis quadrature scheme for the 

approximate solution of the equation 

,   (42) 

where the kernel is smooth.  This method is a variation of the Chebyshev series method. 

The method provides the solution as a Chebyshev expansion by [32].  It was found that 

Clenshaw-Curtis quadrature scheme gives better accuracy than the Chenyshev series method.  

[66] also developed a new highly accurate numerical approximation scheme based on a Gauss-

type Clenshaw-Curtis quadrature for the solution of equation (42) in the range [a,b].  They 
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considered a case where the kernel  is either discontinuous or not smooth along the main 

diagonal.  They discovered that the scheme is of spectral accuracy when  is infinitely 

differentiable away from the diagonal x = t.  They related the result to singular value 

decomposition and also applied it to the solution of integro-differential Schrodinger equations 

with non-local potentials. 

Recently, [104] applied cubic spline collocation to the solution of integral equations in the form 

of equation (33).  Three cubic spline collocation methods are proposed namely, Chebyshev, 

orthogonal and equally spaced cubic spline collocation methods.  They were applied to some 

Fredholm integral equations after the integrals had been evaluated.  Numerical computations 

were carried out in order to compare the three methods on the basis of computational costs, 

efficiency and accuracy.  The three techniques produced good numerical solutions to the integral 

equation but a comparison of the three methods reveals that Chebyshev cubic spline collocation 

method gives the best result with minimum error. 

The following monographs  are  also  devoted  to  the  study of numerical methods for solving 

Fredholm integral equations of the second kind: ([73], [50], [123]). 

Linear Fredholm integral equations of the third kind: The theory of linear Fredholm integral 

equations of third kind 

b

a

( x )u(x) K( x,s)u(s)ds f ( x ), x [ a,b ], + =   

where ( x )  is continuous and vanishes at some but not all points in [ a,b ] , K is a continuous 

function, ( )  1

2u x W a,b , and ( )  1

2W bf x a, , with  1

2W a,b being defined in the work by [45]. 

Such integral equations contain a variable coefficient, multiplying the identity operator, and 

vanishing at a number of points in the domain of definition of the equation. Fredholm Integral 

equations of the third kind are widely investigated in theory and used in applications. A number 

of important problems in elasticity, neutron transport, particle scattering lead to such equations. 

The third kind Fredholm integral equations of the form above arises in the theories of singular 

integral equations with degenerate symbol and boundary value problems for mixed type partial 

differential equations. Therefore, the investigations in this area are of great interest. Integral 

equations of the third kind were the object of special investigations by Bateman, Picard, Fubini, 

and Platrier. [36] performed, in the Hilbert space, spectral analysis of the operator corresponding 

( )k x, s

( )k x, s
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to the above equation under the assumption that ( )x x = . [12] investigated the solvability of the 

equation in the class of generalized functions. [126] discussed the solvability of the equation in 

the class of Holder functions assuming that ( )x has a simple zero. However, as we know, there 

are a few valid methods for solving Fredholm integral equations of the third kind. [39] studied 

the equations using a new direct method and a special collocation method. [127;125] investigated 

the equations basing on the ideas of the theory of spectral expansions. 

 

Nonlinear Fredholm integral equations of the second kind: Let us consider a nonlinear 

operator equation 

,     (43) 

where K is a completely continuous operator defined on a Banach space Y and y is the solution to 

be determined.  Equation (43) is the nonlinear integral equation 
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y x Ky x k x, s, y s ds, x 0,1 ,

y c 0,1

= = 




   (44) 

with  sufficiently smooth on  so that Ky C[0,1] .  The discrete 

Galarkin scheme [9] for the integral equation (44) is given by  
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.   (46) 

Song (1992)[133] showed that the approximate  converges under suitable conditions to an 

exact solution  of equation (43) and also analyzed the rate of this convergence.  He also 

showed that, under mild conditions,  has a higher order of convergence than the discrete 

Galarkin approximation  converging to .  This phenomenon is known as super convergence 

and was studied by [9]. 

We shall now consider a non-linear Fredholm integral equation of the form 
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where the kernel function  is continuous, but its partial derivatives have finite jump 

discontinuities across .  A quadrature method that has been used for such equation is one 

based on the trapezoidal rule that has a low accuracy ( [11]; [27]).  [128] added suitable 

correction terms to the trapezoidal rule derived by analysis of the corresponding Euler-Maclaurin 

expansion.  They also proved an existence and uniqueness theorem for the quadrature method of 

solutions. 

 

4. METHOD OF SOLVING SINGULAR INTEGRAL EQUATIONS 

An integral equation is said to be singular if the range of integration is infinite or if the kernel 

becomes infinite in the range of integration and is said to be weakly singular if its kernel ( )k x,s

has a singularity on the diagonal s x= of order not  higher  than  0s x ,   a d−     (d being the 

dimension of the equation), including the kernels of the form  ( )k x,s log x s= − . In the case of 

a higher order singularity, the equation will be singular. ([70]; [131]; [89]; [110]).   Examples of 

singular integral equations are the equations with Cauchy kernels, equations of Wiener-Hoff 

types and various dual integral equations arising in the solution of boundary value problems of 

mathematical physics. 

A singular integral equation with wide application is the equation with Cauchy kernel, otherwise 

called Cauchy singular integral equations.  These equations arise most naturally and directly 

from boundary value problems from elasticity, aerodynamics, hydrodynamics, electro-magnetic 

theory, etc ([97]; [150]; [162]).  In the last three decades or more, several researchers have 

studied the numerical solution of these equations and among the methods used are the 

quadrature, Galerkin, collocation, spline and the trigonometric polynomial with Cauchy kernels 

that are non-linear, but there has been little or no literature in the area. 

Several methods also exist for the solution of singular integral equations where the range of integration is 

infinite.  These methods include the Wiener-Hopf technique, the preconditioned conjugate gradient 

(PCG) methods, Galarkin method and the quadrature methods.  For equations with weakly singular 

kernels, Galarkin and iterated Galarkin methods are most widely used [75]. 

Cauchy-type singular integral equations:  An equation of the form 

( ) ( )
( ) ( )

( ) ( )
1 1

1 1

b x y s 1
a x y x k ds k x, s y s ds f ( x ),

s x 
− −

+ + =
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( )g x, s
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where the functions , ,  and are assumed to be known, and  is the 

unknown function is called Cauchy-type singular integral equation.  The first integral in equation 

(48) is termed the Cauchy principal value.  The functions a(x) and b(x) are real, and b(x) is 

assumed not to be zero.  If a(x) = 0, then equation (47) is said to be of the first kind and for 

, , an equation of the second kind.  If , equation (48) is called a 

dominant equation,  otherwise it is known as a complete equation. 

Equation (48) can be solved numerically either directly through the use of an appropriate 

numerical integration rule and reduction to a system of linear equations, or indirectly by 

reduction of a singular integral equation to an equivalent Fredholm integral equation (FIE) of the 

second kind and solution of the resulting FIE by numerical techniques ([62]; [68]).  Presently, 

methods of direct numerical solutions to singular integral equations of the form of equation (48) 

without transformation to Fredholm integral equations are preferred and are being intensively 

investigated and developed ([68]; [24]).  It is well known that the unknown function y(s) in 

equation (48) possesses singularities at endpoints  and is possibly unbounded at these 

points ([97]; [5]).  Therefore, it is appropriate to express it as  where  is a 

regular function and w(s) is the weight, , . 

The Jacobi numerical integration rule [71] well known for regular integrals is most widely 

applied to the solution of the Cauchy singular integral equation (47).  [138] used Gauss-Jaocbi 

numerical integration rule together with the application of the resulting approximate equation at 

a certain number of properly selected points  of the integration interval (-1,1), thereby 

reducing equation (48) to a system of linear equations of the form 

( )
( ) ( ) ( )

n
r
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k 1 x r
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
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+ = 

−  

=

    (49)  

where, in most cases, m = n-1, n or n + 1.  [136] solved equation (48) in the case of  

and ( )a x 0.=  [137] also solved equation (48) in the case of .  They also solved equation 

(48) in the case of , where x is an integer number and a(x) and b(x) are constants.  It 

was proved by [62] that the numerical results of the unknown function y(s) in equation (48) at 

the nodes using direct Gauss-Chebyshev quadrature method are the same with those obtained 

using the Gauss-Chebyshev method for the numerical solution of the corresponding Fredholm 

( )a x ( )b x ( )k x, s ( )f x ( )y s

( )a x 0 ( )b x 0 ( )k x, s 0=

s 1= 
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integral equation.  The same was also proved by [138;139] for The Labatto-Chebyshev 

quadrature method. Furthermore, [141] introduced a natural interpolation formula based on the 

error term of the quadrature rule for the numerical solution of equation (48).   Finally, [62] 

investigated the weighted Galerkin method for the numerical solution of equation (47).  It was 

shown that the systems of linear algebraic equations and the numerical results obtained were 

similar on application of this method to equation (48) or its equivalent Fredholm integral 

equation.  This permits the automatic transfer of the result obtained by the weighted Galerkin 

method when applied to Fredholm integral equation to the case of equation (48). 

We remark that there are regularization methods for the solution of equation (48), which 

effectively transform the original integral equation into a new integral equation with compact 

operators involving double integrals ([62]; [44]).  For the regularized equations obtained, several 

iterative methods are known to be readily applicable, although this regularization approach is 

expensive.  It has been reported that the direct approach to the solution of singular integral 

equations is more efficient than first regularizing the equation and then solving the regularized 

equation, because the direct approach requires less numerical integration.  Moreover, the 

solutions obtained from the direct and the regularized approach may be similar in the case of 

Cauchy singular integral equation (48) ([62], [21]).  However, there has been little work done on 

direct iterative methods. [3] attempted to devise a modification of a two-grid method that yielded 

good results for the case of hyper-singular integral equations (HSIE’s).  Chen (1994) [21] 

considered the direct solution of non-compact integral operator equation by iterative methods.  

The result obtained was applicable to the direct solution of equation (48) and HSIE’s.  The idea 

is based on the introduction and identification of suitable splitting of singular integral operators 

into the most singular (but bounded) part and the compact part.  [21] and [157] proposed the use 

of inverse of the bounded operator as a preconditioner for the equation.  Numerical discretization 

revealed that the preconditioned equation can be solved efficiently and that iterative methods are 

applicable.  The numerical experiments on equation (48) showed that the proposed method is 

very effective. 

Let us consider theFredholm-type integral equation with logarithmic kernel 

( ) ( ) ( )
1 1

1 1

b
a y s ds y s log x s ds f x , 1 x 1.


− −

+ − = −       (50) 
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The above integral equation can be transformed into a Cauchy singular integral equation of the 

form: 

,   (51) 

where 

 

and 

. 

There exist many methods for the numerical solution of equation (51) ([64], [112]).  [20] 

proposed a numerical method which consists of a consideration of the interpolation of the known 

function f and in the substitution of this in the expression of the solution y.  Then, with the aid of 

the invariance properties of the orthogonal polynomials for the Cauchy integral equations, they 

obtained an approximate solution of the function y.  They also gave weighted norm estimates for 

the error of this method.  [65] studied the system of equation (48) in the case where a and b are 

given piecewise continuous functions using collocation method, based on the Chebyshev nodes 

of second kind as collocation points and on approximation of the solution by polynomials 

multiplied by the Chebyshev weight of second kind.  They gave necessary and sufficient 

conditions for the stability of operator sequence  belonging to a algebra, which is 

generated by the sequence of the collocation method for equation of type of equation (48). 

Furthermore, [25] considered the case where  and  for equation (48) and solved 

the equation based on interpolation processes.  The method was found to be stable and 

convergent.  Error estimates and numerical test were also provided.  Recently, [107] also solved 

equation (48) in the case where ,   and  based on Lagrange 

interpolation and Gauss-Jacobi quadrature, with the Jacobi polynomial  of degree n

adopted as interpolation nodes. 

It is worthy of mention at this juncture that, the application of the aforementioned methods of 

solution (in the case of real coefficients) of equations with complex coefficients is very difficult.  

This difficulty is as a result of the fact that the singular integral equations with complex 

coefficients which abound in many boundary-value problems of mathematical physics, have 

highly oscillatory solutions when the argument, x, approaches the boundary points [61].  [33] 
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first made an effort to develop an algorithm for the solution of equation (48), in which the 

coefficient in the dominant part of the equation is not necessarily restricted to be constant.  

However, [61] developed a principally new algorithm for the solution of equation (48) where the 

coefficients are purely imaginary. 

It is necessary to further take note of the following works in singular integral equations: ([148], 

[118], [78], [115], [106], [132], [158]).  Here, in particular, some effective versions of fully 

discrete projection and collocation methods for various singular equations were studied. 

Integral equations over an infinite interval:In their analysis of the incompressible vision flow 

near the leading edge of a flate plate, [149] encountered the integral equation: 

( ) ( ) ( )
1
2

1

0

f x 2 log x s f s ds x ,


−
= − +    (52) 

where the function ( )f x is related to the slip velocity on the plate.  An exact solution of equation 

(52) presented by [16] was obtained by means of complex Fourier transforms and the Wiener-

Hopf technique.  The major problem encountered by Brown is that the Fourier transform of the 

kernel log x  does not exist.  Therefore, Brown introduced a suitable convergence factor which, 

in fact, amounts to solution of the related integral equation 

( ) ( ) ( )
1
2

1 x s x

0

f x 2 log x s e f s ds x e
 


− −− − −= − +    (53) 

for 0  , and then taking the limit of the solution as 0 → . 

In view of this difficulty, [15] solved equation (52) using a function-theoretic method developed 

by [55].  It is worthy of note, that, no attempts have so far been made in solving equation (52) 

numerically. 

Let us now consider the Weiner-Hopf equations defined on the half-time  )0,  

( ) ( ) ( ) ( )
0

y x a x s y s ds f x , 0 x



+ − =    ,   (54) 

where ( ) ( )1a x L R  and ( )  )2f x L 0,   are given functions. 

Wiener-Hopf equations have a variety of practical applications in mathematics and engineering, 

especially in the solutions of inverse problems.  Typical examples are linear prediction problems, 

and scattering problems [51].  [49] solved equation (54) by the projection method, where the 

solution y(x) of equation (54) is approximated by the solution ( )Ty x  of the finite-section equation 
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( ) ( ) ( ) ( )
T

T T

0

y x a x s y s ds f x , 0 x T .= − =      (55) 

They showed that 

 )p
T L 0,TT

lim y y 0, 1 p
→

− =    . 

Finally, [37] solved equation (54) using high-order quadrature rules by preconditioned conjugate 

gradient (PCG) methods.  They proposed the use of convolution operator as preconditioners for 

these equations.  They also showed that with the proper choice of kernel functions for the 

preconditioners, the preconditioned equation would have clustered spectra and therefore can be 

solved by the PCG method with super-linear convergence rate.   Moreover, the discretization of 

these equations by high-order quadrature rules leads to matrix systems that involve only Toeplitz 

or diagonal matrix-vector multiplications.  Numerical results were given to illustrate the fast 

convergence of the method and the improvement on accuracy using higher order quadrature rule.  

Also considered was the performance of their preconditioners with the circulent integral 

operators. 

Let us now consider an integral equation of the form 

( ) ( ) ( ) ( )
0

y x f x k x, s y s ds.



= +     (56) 

[130] gave convergence proof and error analysis of equation (56) for the Nystrom method.  Two 

particular examples of the Nystrom method were discussed in detail, namely. that based on 

Gauss-Laguerre quadrature and that based on mapping the infinite interval to a finite interval 

using Gauss quadrature.  For all of the methods considered, the rate of convergence was the same, 

apart from a constant factor, as that of the quadrature approximation to the integral equation.  

Recently, [102] presented the exact solution of equation (56) with degenerate kernel.  Thereafter, 

they applied Galerkin method with Laguerre polynomial to get the approximate solution of 

equation (56).  Numerical examples were given to show the validity of the method presented. 

 

5. CONCLUSION 

We have reviewed a number of methods for solving Volterra and Fredholm problems of the first, 

second and third kind, Cauchy type singular integral equations and integral equations over an 

infinite interval.  Painstakingly, we have outlined various researchers’ contributions in obtaining 

solutions to each category of integral equations, amidst the challenges and difficulties associated 
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with their findings. In many cases, however, solving an integral equation by analytical 

techniques is out of question, and a straight forward numerical approach, restrictive though to a 

class of well-posed integral equations, is to replace the integral equation by a set of linear 

algebraic equations solved by any of the known matrix methods.  We have seen regularization 

methods as involving the transformation of a first kind integral equation to second kind equation. 

These methods are observed to suffer from the fact that approximate solutions obtained by them 

are dependent on the chosen regularization parameter.  

Interestingly, open problems (and conjectures) may arise in the discretization of Volterra integral 

equations, including equations with weakly singular kernels and delay arguments, by collocation 

methods in piecewise polynomial spaces. They focus on questions of stability versus accuracy; 

extrapolation on regular and graded meshes; and equations with certain variable delays. 
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