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Abstract:  A parametric study exploring the fall out of MHD and stretching parameter on a viscous incompressible 

fluid through a vertical porous plate with heat absorption is described. The MHD boundary layer equations with low 

pressure gradient, controlled by a system of non-linear partial differential equations are work out by adopting 

Homotopy Perturbation method (HPM). The influence of different relevant physical characteristics are presented 

and discussed graphically.  
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1. INTRODUCTION 

MHD is the science of movement in which all the characteristics of fluid with the 

magnetic benefits under the conduction of electric current. There are lots of applications of MHD 

principles in Engineering, Plasma Physics, and Biotechnology etc. The effects of MHD in 

different problems of energy and mass in transit with mixed convection are applied by numerous 

authors initiated in refs. [1] and [2]. 
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Due to stretching of an elastic flat sheet the flow moves in its plane with velocity varies 

with the distance from a fixed point due to the implementation of a stress are termed as 

stretching flow. Glass blowing, continuous casting and spinning of fibers are cases in point so far 

as the flow of a stretching surface is concerned. The pioneer work regarding the study of heat 

generation on a stretching surface was introduced in refs.  [3] to [5] by taking into account of 

different aspects of the problem.    

In fluid mechanics, the discussion of flow related problems to stagnation point is of great 

scientific importance due to its numerous applications in technology and engineering. The 

pioneer work has been made in this area which is shown in refs. [6] to [8], [11].  

In the present paper we have introduce a semi-exact method which is called Homotopy 

Perturbation Method (HPM) and applied in MHD boundary layer flow with low pressure 

gradient over a flat plat. The initial work in HPM was studied by J. H. He [9]. This investigation 

inspired many researchers to solve nonlinear differential equations. The main objective of the 

present investigation is to study the effect of stretching parameter of MHD flow related 

problems to stagnation point by Homotopy Perturbation Method (HPM). 

 

2. FORMULATION OF THE PROBLEM 

The model which describes the substantial circumstances with initial velocity 
wu ,

wT  be 

the  temperature whereas ( )wu x  , ( )T x  are the velocity and temperature of the flow external to 

the boundary layer is given in Figure 1. 

     

 

Figure 1: Physical model of the problem 
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Choudhary et.al. [10] prepared some standard assumptions with the help of those, the 

following governing equations are considered, describing the physical situations:  

0 (1)
u v

x y

 
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 
 

 
22

0

2
( ) (2)

B uu u dU u
u v U U x u

x y dx y K






  
+ = + + − −

  
 

2

2
( ) (3)p

T T T
C u v k Q T T

x y y
 

   
+ = + − 

   
 

Where, symbols used above have their usual meaning expressed in [10]. 

The boundary conditions of the present problem are given by: 

( )
( ) , 0; 0

4
( ) ;

w w

e

u u x cx v T T for y

u u x ax T T for y

= = = = = 


= = = →
 

With reference to the stream function ψ(x,y) in the continuity equation (1), we obtain 

, (5)u v
y y

  
= =−
 

 

To normalize the flow model the following non dimensional terms are introduced: 

        
( , ) ( ), , ( ) ( ) (6)w

c
x y c x f y T T T T     


 = = = + −  

The following nonlinear coupled differential equations are produced by applying (5), (6) 

in (2), (3): 

2( ) ( ). ( ) ( ) ( ) ( ) .( ) 0 (7)f f f f M f C C         + − − + + + =  

( ) Pr. ( ). ( ) Pr. . 0 (8)f B      + + =  

With reference to the following qualifying limitations:  
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Where 
c K


 =  is the porosity parameter, 

2

0B
M

c




=  is the magnetic parameter, Pr

pC

k


=  is the 

Prandtl number,
c

C
a

=  is the stretching parameter and 
p

Q
B

c C
=  is the heat absorption parameter. 

The nonlinear coupled differential equations can be rewritten as: 
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2

1 2. . 0 (10)f f f f M f M   + − − + =  

3Pr. . 0 (11)f M   + − =  

Applying HPM, the equations (10), (11) can take the following form: 

( )2
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Using (14) in (12) and (13) we obtain: 
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Equating the terms free from ‘p’ and containing ‘p’, equations (15), (16) reformed as: 

1 1 2
0 1 2 3

1

( ) (17)
M M M

f C C e C e
M

 
 

−
= + + +  

3 3

0 4 5( ) (18)
M M

C e C e
 

 
−

= +
 

1 1 1 1

1 1 1 1

2 22 3

1 6 7 8 10 11 12 15 16

2

1 2 17 18

( )

(19)

M M M M

M M M M

f C C e C e A A A A e A e

E e E e A e A e

   

   

   

 

− −

− −

 = + + + + + − −
 

   − + + +
   

3 3 3 3 3 3

5 54 4

2

1 9 10 39 40 35 36

31 32 33 34

( )

(20)

M M M M M M

M MM M

C e C e A e A e A e A e

A e A e A e A e

     

  

   
− − −

−−

   = + + + − −
   

  − − + −   
 

With the location to the subsequent qualifying restrictions: 
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( →were replaced by those at η=6 in concurrence with standard practice in the boundary layer 

theory). 

Neglecting higher order perturbed terms we finally obtain:

 

0 1( )f f pf = +

 
0 1( ) p   = +  

The terminologies for viscous drage in terms of skin friction (  ) and the coefficient of rate of 

heat transfer (Nu) are articulated as:  

2
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3. FINDINGS 

 The present analysis reveals the expressions of boundary layer equations with viscous 

drag and co-efficient of rate of heat transfer are piled up to get a variety of graphs with their 

substantial interprtations by taking some random values of different parameters implicated in the 

problem.  

 

 

 
Figure 2: Velocity versus  under =3, 

P=0.0002 

Figure 3: Velocity versus  under M=.25, 

=3, P=0.0002 
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 Figures 2 and 3 depicts the variation of  magnetic intensity and homotopy parameter on 

fluid velocity. It is seen from figure 2 that the motion of the fluid gets its highest and lowest 

values for C=1.5 and C=0.5 due to Hartmann number far away from the plate. Furthermore, 

accleration of velocity profile on account of stretching parameter is observed in figure 3. In 

addition, it is found from both the figures that the fluid velocity is nullified initially but it shows 

distinct variation as we move far away from the plate. 

 

 

  

 

Figures 4 and 5 illustrate the effects of Hartman number and stretching parameter on temperature 

distribution. It is noticed that the temperature distribution of the flow is raised and reduced for 

varying the stretching parameter under magnetic intensity and stretching parameter brings down 

the fluid temperature. The two figures also demonstrated the fact that the temperature 

distribution is not disturbed initially but the variation of the distribution is observed as we move 

further away from the plate. 

 

 

Figure 4: Temperature versus  under  

=3, Pr = 1, B  =0.1, P =0.0002 

Figure 5: Temperature versus  under 

M=0.25, =3, Pr =1, B =0.1, P =0.0002 

Figure 6: Skin friction versus   under C=1.5, 

P=1 

 

  

Srs=2, =0.5, t=0.15 
 

Figure 7: Skin friction versus   under 

M=0.25, P=1 

 

  

Srs=2, =0.5, t=0.15 
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 The variation of viscous drag against magnetic field and stretching parameter are 

demonstrated in figures 6 and 7. It is explained from both the figures that the magnetic parameter 

reduces the friction and it is raised by virtue of stretching parameter.  

 

 

 

Figures 8 and 9 elaborate that the Nusselt Number gets enhanced due to the strength of 

the applied magnetic field and minimized on account of stretching parameter. 

 

 

 

 

Figure 8: Nusset number versus   under 

C=1.5, P=1, Pr =0.1, B =0.1, P =1 

 

  

Srs=2, =0.5, t=0.15 
 

Figure 9: Nusset number versus   under 

M=0.25, P=1, Pr =0.1, B =0.1, P =1 

 

  

Srs=2, =0.5, t=0.15 
 

Figure 10: Temperature versus  under  

M=0, Pr = 0.7, B  =0.1, P =0.0002 

Figure 11: Temperature versus  under  

M=0, Pr = 0.7, B  =0.1, P =0.0002 
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4. COMPARISON OF RESULTS  

To compare the results of the present paper, the work of Kazem S. et al.[11] is considered.  

 Comparing figures 10, 11and 12 with figure 13 (Figure 11 of the work done by Kazem S. 

et al.[11]), we observe that the effect of  (which is symbolized as M in the work done by 

Kazem S. et al.[11]) on temperature profile depends on C. As we can see, increasing   

decreases   for C >1 while, the inverse behavior is shown for C < 1. The figures are almost 

Figure 12: Temperature versus  under  

M=0, Pr = 0.7, B  =0.1, P =0.0002 

Figure 13(Fig 4 of Kazem S. et al.[11]): Temperature versus  under Pr = 0.7, B=0 
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identical in nature as the behavior of the fluid temperature versus normal coordinate  is 

concerned. That is there is an excellent agreement between the results obtained by Kazem S. et 

al. [11] and the present authors. 

 

5. CONCLUDING REMARKS 

1. The motion of the fluid gets its highest and lowest values for the stretching parameter 

greater than and less than one due to Hartmann number far away from the plate. whereas 

the fluid motion is accelerated  due to stretching parameter. 

2. The temperature distribution of the fluid flow is raised and reduced for varying the 

stretching parameter under magnetic intensity and stretching parameter brings down the 

fluid temperature. 

3. The magnetic parameter reduces the viscous drag and it is enhanced by virtue of 

stretching parameter. 

4. Nusselt number gets elevated due to the strength of the applied magnetic field and 

minimized on account of stretching parameter. 
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APPENDIX 
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