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Abstract: This paper deals with the combined harvesting of two species from a prey-predator fishery model in an 

unreserved area of a marine aquatic eco-system where in primary phase of life the prey species is in marine protected 

areas (reserved areas). In a reserved area no harvesting and no predation can occur So prey species can grow smoothly 

and after that they migrate to unreserved open access areas where harvesting and predation are permitted. These kinds 

of fisheries are a good process to maintain the prey-predator biomass level up to a good size in the long run. They can 

also prevent species extinction. Here the prey follows the Gompertz law of growth in both reserved and unreserved 

areas. Initially the dynamic behaviour of the system was studied under a deterministic case with local stability and 

bionomic equilibrium. The optimal harvesting policy is studied using Pontryagian’s maximum principle. In second 

part of the work, we investigated the stability of the model under stochastic arena using Gaussian white noise. Finally, 

a comparison has been made. Moreover, the model has also been discussed through numerical example. 
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1. INTRODUCTION  

The pioneering work for the mathematical modelling of a prey-predator relation in an ecological 

system was first introduced by Lotka [1] and Volterra [2] and since then there have been numerous 

studies considering the prey-predator interaction for fisheries and other renewable resources such 
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as Nicholson et al.[3], Gurtin and Maccamy [4], De Angelis[5], Dekker[6], Landhal and 

Hansen[7], Kapur [8] and Maynard & Smith [9,10] etc. Also in last few years researchers have 

investigated several papers regarding fisheries [11-21] etc. But in the course of time with the rapid 

changes of environment, the normal eco-system is hugely affected and for this reason, to fulfil the 

need of society with renewable resources, the researchers have to rethink the management and 

modelling of the eco-system with the help of modern day technology. As the fishes are good source 

of low budget protein specially in the developing countries, so unrestricted harvesting is 

continuously going on in adjacent coastal area. As a result the fisheries eco-system is largely 

damaged. Besides this man made situation there are also some cause due to environmental 

uncertainty. For these reasons, to prevent the extinction of some fish species nowadays Reserved-

Unreserved area fisheries is a good choice for marine fisheries management. In which from the 

time of spawning to a certain size the species will be in reserved area which is no predation and 

no harvesting zone. After that the species will migrate to unreserved area where all kinds of 

harvesting and predation may occur. It has been observed that this kind of fisheries management 

is a very good technique to maintain the biomass of the species for long run. Also since the 

harvesting is a very important part for fishery in modern day life there is also need for some 

restriction to use the natural resources for a long period of time, for which in some of the places 

harvesting is prohibited for few months of a year, especially when the species are in juvenile stage. 

Considering the harvesting of natural resources Clark [22-30] has done pioneering work 

on optimal harvesting policy, also Chaudhuri[11,12], Mesterton-Gibbons[31, 32], Ganguli and 

Chaudhuri[33] etc. in recent times have developed some papers on harvesting.  

Till now in mathematical ecology there are only very few research works [34-39] that have 

been done considering migration. But in these investigations except Kar and Mishra [35] and 

Sadhukhan et. al. [39] others have only considered single species populations. Also there is no 

such investigation considering Gompertzian law [40] of growth for prey. In our work we have 

considered Gompertz growth law for prey and Holling type-I response function in unreserved area 

with combined harvesting of both prey and predator. We also assumed that almost no migration 

occurred from unreserved zone to reserved zone. We have discussed the local stability, global 

stability, bionomic equilibrium for the system and after that we have investigated the local stability 

with time delay and finally justification of the system has been checked with numerical example 

and computer simulation using MATLAB. 
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2. MODEL FORMULATION 

Consider a fishery habitat, in an aquatic ecosystem, with reserved and unreserved areas. In reserved 

area, it is considered that no harvesting and predation will take place while the unreserved area is 

the harvesting and predation zone. Let 𝑥, 𝑦 and 𝑧 be the respective population size of the prey in 

unreserved and reserved zone and let be the biomass densities of the predator at time. Let 𝑟1 and 

𝑟2 are intrinsic growth rate of prey in unreserved and reserved area 𝑘1,  𝑘2are the carrying capacity 

of prey in unreserved and reserved area and 𝑟3  is the birth rate of predator. 𝛼 > 0 and 𝛽 > 0 are 

respectively Predation coefficient and conversion parameter.  Let the prey sub-population of 

unreserved area migrate into reserved area at a rate 𝜎1 and prey sub population of reserved area 

migrate into unreserved area at a rate 𝜎2. Also let ′𝐸′ be the combined harvesting effort for the fish 

population in unreserved areas and  𝑞2, 𝑞3 are catchability co-efficient of prey and predator in 

unreserved area. Again, we assume that in each area prey population follows Gompertzian law of 

growth. Therefore, with this condition in view the dynamics of the prey-predator system may be 

written in the form of a system of differential equation as: 

 

𝑑𝑥

𝑑𝑡
= 𝑟1𝑥 𝑙𝑛

𝑘1

𝑥
− 𝜎1𝑥 + 𝜎2𝑦                             

𝑑𝑦

𝑑𝑡
= 𝑟2𝑦 𝑙𝑛

𝑘2

𝑦
+ 𝜎1𝑥 − 𝜎2𝑦 − 𝛼𝑦𝑧 − 𝐸𝑞2𝑦

𝑑𝑧

𝑑𝑡
= 𝑟3𝑧 + 𝛽𝑦𝑧 − 𝐸𝑞3𝑧                                   

                                                                        (1)   

In our model we consider that almost no migration will take place unreserved zone to reserved 

zone, so 𝜎2 ≈ 0 . With this assumption model takes the form.   

𝑑𝑥

𝑑𝑡
= 𝑟1𝑥 𝑙𝑛

𝑘1

𝑥
− 𝜎1𝑥                                         

𝑑𝑦

𝑑𝑡
= 𝑟2𝑦 𝑙𝑛

𝑘2

𝑦
+ 𝜎1𝑥 − 𝛼𝑦𝑧 − 𝐸𝑞2𝑦            

𝑑𝑧

𝑑𝑡
= 𝑟3𝑧 + 𝛽𝑦𝑧 − 𝐸𝑞3𝑧                                   

                                                                         (2) 

Now the problem is to investigate the system (2) in which all the parameters are positive and 

system is to be analyzed along with the initial conditions 0 ≤ 𝑥 ≤ 𝑘1, 0 < 𝑦 ≤  𝑘2  and 𝑧 > 0. 

 

3. EXISTENCE OF STEADY STATES 

The equilibrium point of the system (2) is obtained by solving, 
𝑑𝑥

𝑑𝑡
=

𝑑𝑦

𝑑𝑡
=

𝑑𝑧

𝑑𝑡
= 0. The possible 

solutions of the above system of algebraic equations may be considered as 𝑃0(0,0,0), 
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𝑃1(0, 𝑦21, 𝑧31), 𝑃2(𝑥12, 0, 𝑧32), 𝑃3(𝑥13, 𝑦23, 0), 𝑃4(0, 0, 𝑧34), 𝑃5(0, 𝑦25, 0), 𝑃6(𝑥16, 0, 0) and 

𝑃7(𝑥∗, 𝑦∗, 𝑧∗). 

From the ecological point of view and for the co-existence of all the species of reserved and 

unreserved area we are focusing our investigation only on the equilibrium point 𝑃7(𝑥∗, 𝑦∗, 𝑧∗). 

Where 𝑃7 is the non-trivial solution of  the algebraic equations: 

𝑟1𝑥 𝑙𝑛
𝑘1

𝑥
− 𝜎1𝑥 = 0                                                                                                               (3) 

𝑟2𝑦 𝑙𝑛
𝑘2

𝑦
+ 𝜎1𝑥 − 𝛼𝑦𝑧 − 𝐸𝑞2𝑦 = 0                                                                                      (4) 

𝑟3𝑧 + 𝛽𝑦𝑧 − 𝐸𝑞3𝑧 = 0                                                                                                          (5) 

From equation (3) and (4) we have 𝑥∗ = 𝑘1𝑒
−

𝜎1
𝑟1  , 𝑦∗ =

𝐸𝑞3−𝑟3

𝛽
 , with 𝐸𝑞3 > 𝑟3 and using this  in 

(5) we get 𝑧∗ =
(𝑟2 𝑙𝑛

𝑘2
𝑦∗−𝐸𝑞2)

𝛼
+

𝜎1

𝛼

𝑥∗

𝑦∗ . 

 

4. LOCAL STABILITY ANALYSIS 

The variational matrix  can be written as: 

  𝑉(𝑥, 𝑦, 𝑧) =  [
𝑉11 𝑉12 𝑉13

𝑉21 𝑉22 𝑉23

𝑉31 𝑉32 𝑉33

]                                                                                             (6) 

Where,   

𝑉11 = (𝑟1 𝑙𝑛
𝑘1

𝑥
− 𝜎1) − 𝑟1,  𝑉12 = 0, 𝑉13 = 0, 𝑉21 = 𝜎1, 𝑉22 = (𝑟2 𝑙𝑛

𝑘2

𝑦
− 𝛼𝑧 − 𝐸𝑞2) − 𝑟2, 

 𝑉23 = −𝛼𝑦, 𝑉31 = 0, 𝑉32 = 𝛽𝑧  and 𝑉33 = 𝑟3 + 𝛽𝑦 − 𝐸𝑞3.         

Therefor for 𝑃7(𝑥∗, 𝑦∗, 𝑧∗), variational matrix is 

 𝑉(𝑥∗, 𝑦∗, 𝑧∗) =  (

−𝑟1 0 0

𝜎1 −𝑟2 − 𝜎1
𝑥∗

𝑦∗
−𝛼𝑦∗

0 𝛽𝑧∗ 0

)                                                                   (7) 

The characteristic equation for (7) can be written as 𝜆3 + 𝐴𝜆2 + 𝐵𝜆 + 𝐶 = 0  

Where,  𝐴 = 𝑟1 + (𝑟2 + 𝜎1
𝑥∗

𝑦∗
), 𝐵 = 𝑟1 (𝑟2 + 𝜎1

𝑥∗

𝑦∗
) + 𝛼𝛽𝑦∗𝑧∗ and 𝐶 = 𝑟1𝛼𝛽𝑦∗𝑧∗. 

So, by Routh-Hurwitz condition, 𝑃7  will be stable if |
𝐴 𝐶
1 𝐵

| = 𝐴𝐵 − 𝐶 > 0. 

Now, 𝐴𝐵 − 𝐶 = {𝑟1 + (𝑟2 + 𝜎1
𝑥∗

𝑦∗)} {𝑟1 (𝑟2 + 𝜎1
𝑥∗

𝑦∗) + 𝛼𝛽𝑦∗𝑧∗} − 𝑟1𝛼𝛽𝑦∗𝑧∗ 
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                        =  𝑟1
2 (𝑟2 + 𝜎1

𝑥∗

𝑦∗) + 𝑟1 (𝑟2 + 𝜎1
𝑥∗

𝑦∗)
2

+ 𝛼𝛽𝑦∗𝑧∗ (𝑟2 + 𝜎1
𝑥∗

𝑦∗) 

Since, all the parameters and 𝑥∗, 𝑦∗, 𝑧∗ are positive, so from the above expression it is clear that 

 𝐴𝐵 − 𝐶 =  𝑟1
2 (𝑟2 + 𝜎1

𝑥∗

𝑦∗
) + 𝑟1 (𝑟2 + 𝜎1

𝑥∗

𝑦∗
)

2

+ 𝛼𝛽𝑦∗𝑧∗ (𝑟2 + 𝜎1
𝑥∗

𝑦∗
) > 0.                       (8) 

 Therefore, the interior equilibrium point 𝑃7(𝑥∗, 𝑦∗, 𝑧∗) is always asymptotically stable. 

 

5. BIONOMIC EQUILIBRIUM 

The biological equilibrium of the system (2) is given by the solution of  
𝑑𝑥

𝑑𝑡
=

𝑑𝑦

𝑑𝑡
=

𝑑𝑧

𝑑𝑡
= 0. Now 

for bionomic equilibrium (in which the net revenue obtained by selling the harvested species 

equals to the total cost of harvesting) we have to solve the given system (2) together with the 

equation in which economic rent is zero for a combine steady state. So if  c  be the constant fishing 

cost per unit effort with  and , which are the constant prices per unit biomass of the landed prey 

and predator respectively from the unreserved area, then the economic rent i.e. the revenue at any 

time  is given by 

𝜋(𝑥, 𝑦, 𝑧, 𝐸) = (𝑝2𝑞2𝑦 + 𝑝3𝑞3𝑧 − 𝑐)𝐸                                                                                 (9) 

 

6. OPTIMAL HARVESTING POLICY 

In this present discussion of optimal harvesting policy, let the present value 𝐽 of continuous time-

stream of revenues is given by  

𝐽 = ∫ 𝑒−𝛿𝑡𝜋(𝑥, 𝑦, 𝑧, 𝐸, 𝑡)𝑑𝑡
∞

0
                                                                                               (10) 

Where 𝜋(𝑥, 𝑦, 𝑧, 𝐸, 𝑡) = (𝑝2𝑞2𝑦 + 𝑝3𝑞3𝑧 − 𝑐)𝐸 and 𝛿 denotes the annual discount rate. Now we 

need to maximize 𝐽 subject to the system of differential equations (2) with the help of Pontryagin’s 

Maximal Principle [41]. Here the harvesting effort 𝐸(𝑡) is the control variable and is subjected to 

the constraints  0 ≤ 𝐸(𝑡) ≤ 𝐸𝑚𝑎𝑥, so that 𝑉𝑡 = [0, 𝐸𝑚𝑎𝑥] is the control set with 𝐸𝑚𝑎𝑥 is the feasible 

upper limit for the harvesting effort. 

The Hamiltonian for this model can be written as 

𝐻 = 𝑒−𝛿𝑡(𝑝2𝑞2𝑦 + 𝑝3𝑞3𝑧 − 𝑐)𝐸 + 𝜇1(𝑡) [𝑟1𝑥 𝑙𝑛
𝑘1

𝑥
− 𝜎1𝑥] + 𝜇2(𝑡) [𝑟2𝑦 𝑙𝑛

𝑘2

𝑦
+ 𝜎1𝑥 − 𝛼𝑦𝑧 −

𝐸𝑞2𝑦] + 𝜇3(𝑡)[𝑟3𝑧 + 𝛽𝑦𝑧 − 𝐸𝑞3𝑧]                                                                                     (11) 

The corresponding adjoint equations are 
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𝑑𝜇1

𝑑𝑡
= −

𝜕𝐻

𝜕𝑥
,

𝑑𝜇2

𝑑𝑡
= −

𝜕𝐻

𝜕𝑦
,

𝑑𝜇3

𝑑𝑡
= −

𝜕𝐻

𝜕𝑧
                                                                                  (12) 

Therefore using (11) and (12) and with the help of the biological equilibrium 𝑃7 by omitting super 

script we have 

 

𝑑𝜇1

𝑑𝑡
=  𝑟1𝜇1 − 𝜎1𝜇2                            

𝑑𝜇2

𝑑𝑡
= 𝜎1𝜇2𝑥 − 𝜇3𝛽𝑧 − 𝑝2𝑞2𝐸𝑒−𝛿𝑡

𝑑𝜇3

𝑑𝑡
=  𝛼𝑦𝜇2 − 𝑝3𝑞3𝐸𝑒−𝛿𝑡               

                                                                                   (13) 

The solution of the above system of linear differential equation can be written as 

𝜇1 = 𝐴1𝑒𝑚1𝑡 + 𝐴2𝑒𝑚2𝑡 + 𝐴3𝑒𝑚3𝑡 +
𝑀1

𝑁
𝑒−𝛿𝑡                                                                    (14) 

In which 𝑚1, 𝑚2 and 𝑚3 are the roots of the cubic equation 

𝑎0𝑚3 + 𝑎1𝑚2 + 𝑎2𝑚 + 𝑎3 = 0                                                                                        (15) 

Where, 

𝑎0 = 1, 𝑎1 = −(𝑟1 + 𝜎1𝑥), 𝑎2 = 𝑟1𝜎1𝑥 + 𝛼𝛽𝑦𝑧, 𝑎3 = −𝑟1𝛼𝛽𝑦𝑧          

𝜇1 is bounded 𝑚𝑖 < 0 , 𝑖 = 1, 2, 3 or 𝐴𝑖
′𝑠 = 0. 

The Huriwtz matrix for the above cubic equation (15) is  

(
𝑎1 1 0
𝑎3 𝑎2 𝑎1

0 0 𝑎3

) and ∆1= 𝑎1 (< 0),  ∆2= 𝑎1𝑎2 − 𝑎3, ∆3= 𝑎3(𝑎1𝑎2 − 𝑎3)                     (16) 

 Therefore, the roots of the cubic equation are all real negative or complex conjugate having 

negative real part if and only if ∆1,  ∆2 and ∆3 are positive. But since ∆1< 0, so it is quite difficult 

to check whether 𝑚𝑖 < 0, so we take 𝐴𝑖 = 0 (𝑖 = 1, 2, 3). 

Hence from (14)  

𝜇1(𝑡) =
𝑀1

𝑁
𝑒−𝛿𝑡                                                                                                                  (17) 

So, by similar process we have 

𝜇2(𝑡) =
𝑀2

𝑁
𝑒−𝛿𝑡                                                                                                                  (18) 

And 

𝜇3(𝑡) =
𝑀3

𝑁
𝑒−𝛿𝑡                                                                                                                  (19) 

Where,  

𝑀1

𝑁
=  

𝜎1[𝛿𝑝2𝑞2+𝛽𝑧𝑝3𝑞3]𝐸

(𝑟1+1)(𝛿2+𝛿𝜎1𝑥+𝛼𝛽𝑦𝑧)
                                                                                                  (20) 

𝑀2

𝑁
=

[𝛿𝑝2𝑞2+𝛽𝑧𝑝3𝑞3]𝐸

(𝛿2+𝛿𝜎1𝑥+𝛼𝛽𝑦𝑧)
                                                                                                           (21) 
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𝑀3

𝑁
=  

{𝑝3𝑞3(𝛿+𝜎1𝑥)−𝛼𝑝2𝑞2𝑦}𝐸

(𝛿2+𝛿𝜎1𝑥+𝛼𝛽𝑦𝑧)
                                                                                               (22) 

For positive biological equilibrium 𝑃7, 𝛿2 + 𝛿𝜎1𝑥 + 𝛼𝛽𝑦𝑧 ≠ 0. Also the shadow price 

𝜇𝑖(𝑡)𝑒𝛿𝑡 , 𝑖 = 2, 3. for two species of unreserved area remain bounded as 𝑡 → ∞ and hence they 

satisfy the transversality condition at ∞. 

 So, the Hamiltonian must be maximized for 𝐸 ∈  [0, 𝐸𝑚𝑎𝑥]. Assuming that the control 

constraint 0 ≤ 𝐸(𝑡) ≤ 𝐸𝑚𝑎𝑥 are not binding that means the optimal equilibrium does not occur at 

𝐸 = 0 𝑜𝑟 𝐸 = 𝐸𝑚𝑎𝑥. Therefor we consider singular control. 

So,  

 
𝜕𝐻

𝜕𝐸
= 𝑒−𝛿𝑡(𝑝2𝑞2𝑦 + 𝑝3𝑞3𝑧 − 𝑐) − 𝜇2𝑞2𝑦 − 𝜇3𝑞3𝑧 = 0                                       (23) 

Or,   

 𝑒−𝛿𝑡 𝑑𝜋

𝑑𝐸
=  𝜇2𝑞2𝑦 + 𝜇3𝑞3𝑧                                                                                    (24) 

Also we have from (9) that 

 
𝑑𝜋

𝑑𝐸
= (𝑝2𝑞2𝑦 + 𝑝3𝑞3𝑧 − 𝑐)                                                                                   (25) 

This equation (25) explains that the total user cost of harvest per unit effort must be equal to the 

discounted value of the future profit at the steady-state effort level [41]. 

 Now using (24) and (25) we have   

𝑒−𝛿𝑡(𝑝2𝑞2𝑦 + 𝑝3𝑞3𝑧 − 𝑐) = 𝜇2𝑞2𝑦 + 𝜇3𝑞3𝑧                                                                  (26) 

Therefore substituting the values of 𝜇2 and 𝜇3 from equation (18) and (19) respectively to (26) we 

get 

(𝑝2 −
𝑀2

𝑁
) 𝑞2𝑦 + (𝑝3 −

𝑀3

𝑁
) 𝑞3𝑧 = 𝑐                                                                               (27) 

Above equation (27) together with the system (2) gives the optimal equilibrium population 

densities at 𝑥 = 𝑥𝛿 , 𝑦 = 𝑦𝛿 and 𝑧 = 𝑧𝛿. So, when 𝛿 → ∞, above equation (27) leads to the result 

𝑝2𝑞2𝑦∞ + 𝑝3𝑞3𝑧∞ = 𝑐                                                                                                     (28) 

Which gives 𝜋(𝑥∞, 𝑦∞, 𝑧∞, 𝐸) = 0 

Therefore using (27) we have, 

𝜋 = (𝑝2𝑞2𝑦 + 𝑝3𝑞3𝑧 − 𝑐) =
(𝑀2𝑞2𝑦+𝑀3𝑞3𝑧)𝐸

𝑁
                                                                   (29) 

Since 
𝑀2

𝑁
 and 

𝑀3

𝑁
 are of 𝜊(𝛿−1), so 𝜋 is a decreasing function of 𝛿 (≥ 0). We then conclude that 

𝛿 = 0, leads to the maximization of 𝜋. 



2289 

GOMPERTZIAN LAW OF GROWTH FOR RESERVED AREA FISHERY MODEL 

7. STOCHASTIC MODEL 

Now to incorporate stochasticity in our existing system, we are going to perturbed the variables  

around their respective values corresponding to the positive equilibrium point 𝑃7(𝑥∗, 𝑦∗, 𝑧∗) in ℝ+
3 , 

assuming the feasibility and local asymptotic stability of 𝑃7. In our work local asymptotic stability 

of the system for the non-trivial equilibrium  is obvious by the condition of existence of , which 

we have already checked in previous section. So, using white noise type stochastic perturbation of 

the variables 𝑥, 𝑦, 𝑧 around their equilibrium values 𝑥∗, 𝑦∗, 𝑧∗, which is proportional to the distance 

of 𝑥, 𝑦, 𝑧 from the values 𝑥∗, 𝑦∗, 𝑧∗ respectively and with this the system (2) can be represented as 

𝑑𝑥 = (𝑟1𝑥 𝑙𝑛
𝑘1

𝑥
− 𝜎1𝑥  ) 𝑑𝑡 + 𝜈1(𝑥 − 𝑥∗)𝑑𝜉𝑡

1                            

𝑑𝑦 =  (𝑟2𝑦 𝑙𝑛
𝑘2

𝑦
+ 𝜎1𝑥 − 𝛼𝑦𝑧 − 𝐸𝑞2𝑦) 𝑑𝑡 + 𝜈2(𝑦 − 𝑦∗)𝑑𝜉𝑡

2

𝑑𝑧 = (𝑟3𝑧 + 𝛽𝑦𝑧 − 𝐸𝑞3𝑧)𝑑𝑡 +  𝜈3(𝑧 − 𝑧∗)𝑑𝜉𝑡
3                          

                                         (30) 

Where 𝑑𝜉𝑡
𝑖 = 𝜉𝑖(𝑡), 𝑖 = 1, 2, 3  are standard wiener process [42- 44] independent to each other,  

along with the real constants 𝜈𝑖, 𝑖 = 1, 2, 3. In the next section we investigate the asymptotic 

stability of the equilibrium point (𝑥∗, 𝑦∗, 𝑧∗) under stochasticity for the Ito stochastic differential 

system (30). 

 

8. STOCHASTIC STABILITY OF THE POSITIVE EQUILIBRIUM 

Since 𝑃7(𝑥∗, 𝑦∗, 𝑧∗)  is the positive co-existential equilibrium point in ℝ+
3 , then the Ito stochastic 

differential system (30) can be centred at this positive equilibrium (𝑥∗, 𝑦∗, 𝑧∗), considering the 

change of variables as 

𝑢1 = 𝑥 − 𝑥∗, 𝑢2 = 𝑦 − 𝑦∗, 𝑢3 = 𝑧 − 𝑧∗                                                                            (31) 

So, after linearization, the linearized stochastic differential equations around (𝑥∗, 𝑦∗, 𝑧∗) is of the 

form 

𝑑𝑢(𝑡) = 𝑓(𝑢(𝑡))𝑑𝑡 + 𝑔(𝑢(𝑡))𝑑𝜉(𝑡)                                                                                (32) 

Where, 𝑢(𝑡) = 𝑐𝑜𝑙(𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡)) and  

𝑓(𝑢(𝑡)) = (

−𝑟1 0 0

𝜎1 −𝑟2 − 𝜎1
𝑥∗

𝑦∗ −𝛼𝑦∗

0 𝛽𝑧∗ 0

) 𝑢(𝑡)                                                                  (33) 

And 
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𝑔(𝑢) = (
𝜈1𝑢1 0 0

0 𝜈2𝑢2 0
0 0 𝜈3𝑢3

)                                                                                          (34) 

In equation (32) the positive equilibrium (𝑥∗, 𝑦∗, 𝑧∗) corresponds to a trivial solution 𝑢(𝑡) = 0. 

Let 𝑈 be the set 𝑈 =  (𝑡 ≥ 𝑡0) × ℝ3, 𝑡0 ∈  ℝ+. Hence 𝑉 ∈ 𝐶2
0(𝑈) is a twice continuously 

differentiable function with respect to 𝑡 (cf. Afanas’ev [45]). 

So, in connection with the above equation (32),  

𝑳 𝑉(𝑡, 𝑢) =
𝜕𝑉(𝑡,𝑢)

𝜕𝑡
+ 𝑓𝑇(𝑢)

𝜕𝑉(𝑡,𝑢)

𝜕𝑢
+

1

2
𝑇𝑟 [𝑔𝑇(𝑢)

𝜕2𝑉(𝑡,𝑢)

𝜕𝑢2 𝑔(𝑢)]                                       (35) 

where  
𝜕𝑉

𝜕𝑢
= 𝑐𝑜𝑙 (

𝜕𝑉

𝜕𝑢1
,

𝜕𝑉

𝜕𝑢2
,

𝜕𝑉

𝜕𝑢3
 ) and 

𝜕2𝑉

𝜕𝑢2 = (
𝜕2𝑉

𝜕𝑢𝑖 𝜕𝑢𝑗
) ;  𝑖, 𝑗 = 1,2,3 and T denotes transposition. 

Theorem-1: Suppose there exists a function 𝑉(𝑡, 𝑢) ∈ 𝐶2
0(𝑈)  satisfying the inequalities  

𝐾𝟏|𝑢|𝒑 ≤ 𝑉(𝑡, 𝑢) ≤ 𝐾𝟐|𝑢|𝒑, 𝑳 𝑉(𝑡, 𝑢) ≤-𝐾𝟑|𝑢|𝒑, 𝐾𝒊 > 0, 𝑝 > 0.                                     (36) 

Then the trivial solution of (32) is exponentially  𝑝 − 𝑠𝑡𝑎𝑏𝑙𝑒 for 𝑡 ≥ 0.  

If in (36), 𝑝 = 2, then the trivial solutions of (32) is globally asymptotically stable in probability 

(cf. Afanas’ev [45]). 

Theorem-2: If 𝑟1 >
1

2
𝜈1

2 and 𝑟2 >
1

2
𝜈2

2, then the zero solution of (32) is asymptotically mean 

square stable. 

Proof: Let us consider the Lyapunov function 𝐿(𝑢) =
1

2
 [𝑤1𝑢1

2 + 𝑤2𝑢2
2 + 𝑤3𝑢3

2]          (37) 

Where 𝑤𝑖 are real positive constants. Then the first inequality of (36) is true for 𝑝 = 2. 

Now, 

𝑳 𝐿(𝑢) = 𝑤1(−𝑟1𝑢1)𝑢1 + 𝑤2(𝜎1𝑢1 − 𝑟2𝑢2−𝛼𝑦∗𝑢3)𝑢2 + 𝑤3(𝛽𝑧∗𝑢2)𝑢3 

+
1

2
𝑇𝑟 [𝑔𝑇(𝑢)

𝜕2𝐿

𝜕𝑢2 𝑔(𝑢)]                                                                                                     (38)  

In which, 
𝜕2𝐿

𝜕𝑢2 = (
𝑤1 0 0
0 𝑤2 0
0 0 𝑤3

), so 𝑔𝑇(𝑢)
𝜕2𝐿

𝜕𝑢2 𝑔(𝑢) = (

𝑤1𝜈1
2𝑢1

2 0 0

0 𝑤2𝜈2
2𝑢2

2 0

0 0 𝑤3𝜈3
2𝑢3

2

). 

Therefore 
1

2
𝑇𝑟 [𝑔𝑇(𝑢)

𝜕2𝐿

𝜕𝑢2 𝑔(𝑢)] =
1

2
[𝑤1𝜈1

2𝑢1
2 + 𝑤2𝜈2

2𝑢2
2 + 𝑤3𝜈3

2𝑢3
2]                             (39) 

Now choosing 𝑤2𝛼𝑦∗𝑢2𝑢3 =  𝑤3𝛽𝑧∗𝑢2𝑢3 + 𝑤2𝜎1𝑢1𝑢2 +
1

2
𝑤3𝜈3

2𝑢3
2 in (38) and using (39) in (38) 

we have 

 𝑳 𝐿(𝑢) = − (𝑟1 −
1

2
𝜈1

2) 𝑤1𝑢1
2 − (𝑟2 −

1

2
𝜈2

2) 𝑤2𝑢2
2                                                           (40) 

This completes the proof of the theorem. 
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9. NUMERICAL EXPERIMENTS 

Let,  𝑟1 = 6.09, 𝑟2 = 4.07, 𝑟3 = 2, 𝑘1 = 300, 𝑘2 = 500, 𝛼 = 0.05, 𝛽 = 0.005, 𝑞2 = 0.001,  

𝑞3 = 0.3, 𝜎1 = 0.5, 𝑝2 = 50, 𝑝3 = 100, 𝑐 = 20, 𝛿 = 0.5 and  𝐸 =  10. 

With these set of data, the biological equilibrium point for this problem is 

(276.40, 200.00, 88.20), corresponding bionomic and optimal equilibrium points are respectively 

(276.4, 8.92, 12.33) and (276.4, 10.19, 28.46).  

Also the stability diagram and Phase diagram of system (2) are respectively depicted in Figure-1 

& 2. 

 

Figure-1: Stability diagram of the system with initial value 𝑥 = 10, 𝑦 = 10, 𝑧 = 10 . 

 

 

Figure-2: Phase-Space trajectory. 
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CONCLUSION 

In this study a prey-predator model is formulated in marine aquatic ecosystem considering a 

reserved lake area adjacent to the sea, in which the prey fish species can spend some time in their 

juvenile stage. As in this age-stage, there is no harvesting and predation in reserved area so the 

species can grow normally and attained a high level of bio-mass and after that the prey species 

migrated to open access fisheries zones, where they have to face predation, harvesting and other 

natural hazards due to environmental fluctuation. 

 In this work we consider Gompertzian law of growth for prey species, both for reserved 

and un-reserved area, this growth law is much suitable specially for fish species and Holling type-

I response function for prey-predator interaction. Then we check local stability for the system 

about the interior equilibrium point and find that for any feasible parametric value the system is 

always stable, which is a very good justification for this kind of fisheries. Also we discuss about 

the bionomic equilibrium, to justify the system under harvesting phenomena.  Then to investigate 

the effect of combined harvesting in un-reserved area, we study optimal harvesting policy with the 

help of Pontryagin’s Maximal Principle and find the optimal equilibrium point numerically. Also 

we discuss our model through a numerical example, stability and phase diagram (Figure-1 & 2) 

under deterministic environment. 

 Finally using Gaussian white noise we perturb the system to study its stability behavior 

under environmental fluctuation and with the use of suitable Lyapunov function we find that the 

system is asymptotically mean square stable under some conditions, which is also justified in real 

life scenario, because any system which is stable under deterministic environment may not be so 

under fluctuation and which is one of the main cause for marine species extinction due to  Global 

Warming.  

 However, to make the model much more closer to the real life situation one can introduce 

extra complexity to this system by incorporating time delay, fuzziness or randomness etc. in some 

or all parameters in our model.     
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