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Abstract. In this paper, we prove two common fixed point theorems for two pairs of subcompatible mappings

which are also subsequentially continuous under different generalized contractions in S-metric spaces. We also

give examples to support our results.
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1. INTRODUCTION

In 2006, Mustafa and Sims [3] introduced G-metric spaces as a generalization of metric

spaces and proved the existence of fixed points under different contractions. In 2012, Sedghi,

Shobe and Aliouche [1] introduced a new concept called an S-metric space and studied its some

properties. They also stated that an S-metric space is a generalization of a G-metric space. But,

in 2014 Dung, Hieu and Radojevic [4] showed by an example that an S-metric space is not a

generalization of a G-metric space and conversely. Thus the class of S-metric spaces and the
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class of G-metric spaces are distinct. On the other hand, in 2011, H. Bouhadjera et al. [6]

introduced new concepts in metric spaces called subcompatibility and subsequential continuity

by generalizing occasionally weakly compatibility and reciprocal continuity respectively.

In this paper, we define subcompatibility and subsequential continuity in S-metric spaces and

establish two common fixed point theorems.

In the following, we present some definitions which are frequently used in this paper.

2. PRELIMINARIES

Definition 2.1. [1] Let X be a non empty set. Then we say that a function

S: X3→ [0,∞) is an S-metric on X iff it satisfies the following for all α , β , γ and θ ∈ X

P1) S(α , β , γ)=0 iff α = β = γ .

P2) S(α , β , γ). ≤S(α , α , θ )+S(β , β , θ )+S(γ , γ , θ ).

Here (X , S) is called an S-metric space.

Example 2.2. (X , S) is an S-metric space ,

where X = [0,1] and S(α,β ,γ)=


0, for α = β = γ

max{α,β ,γ}, otherwise
for α,β ,γ ∈ X .

Example 2.3. [2] (X , S) is an S-metric space ,

where X = R and S(α,β ,γ)=|α− γ|+|β − γ| for α , β , γ ∈ X .

Example 2.4. (X , S) is an S-metric space ,

where X = [0,4] and S(α,β ,γ)=max{|α− γ|, |β − γ|} for α , β , γ ∈ X .

Definition 2.5. [1] We say that a sequence (αn) in an S-metric space (X , S) converges to some

α ∈ X iff S(αn,αn,α)→ 0 as n→ ∞.

Lemma 2.6. [1] In an S-metric space (X , S), we have S(α , α , γ)=S(γ , γ , α) for all α , γ ∈ X .

Lemma 2.7. [1] In an S-metric space (X , S), if there exist sequences (αn) and (βn) in X such

that lim
n→∞

αn = α and lim
n→∞

βn = β , then lim
n→∞

S(αn,αn,βn)=S(α,α,β ).

Definition 2.8. We say that two self maps f and R of an S-metric space (X , S) are subcompati-

ble iff there exists a sequence (αn) in X such that lim
n→∞

R(αn)= lim
n→∞

f(αn) = γ for some γ ∈ X and

lim
n→∞

S(fRαn, fRαn, Rfβn)=0.

Example 2.9. Consider an S-metric space (X , S),

where X = [0,∞) and S(α,β ,γ)=|α− γ|+|β − γ| for α , β , γ ∈ X .
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Define two self maps f, R on X by fα = α and Rα = 1 for α ∈ X . Now consider αn = 1+ 1
n for

n ∈ N. Then fαn = 1+ 1
n and Rα = 1 for all n ∈ N. This will imply that

S(fαn, fαn, 1)=S(1+ 1
n ,1+

1
n ,1)=

2
n and S(Rαn, Rαn,1) = 0 for every n ∈ N. It follows that

fαn→ 1 and Rαn→ 1, as n→ ∞. Note that (fR)α = 1 and (Rf)α = 1 for α ∈ X . This implies

that S(fRαn, fRαn, Rfαn)=S(1, 1, 1)=0→ 0, as n→ ∞. Thus there exists a sequence (αn) in X

such that lim
n→∞

R(αn)= lim
n→∞

f(αn) = 1 ∈ X and lim
n→∞

S(fRαn, fRαn, Rfαn)=0. Therefore f and R are

subcompatible.

Definition 2.10. [5] We say that a mapping f of an S-metric sapce (X , S) into another S-metric

space (Y , S
′
) is continuous at a point α ∈ X iff (f(αn)) converges to f(α) in Y , whenever any

sequence (αn) converges to α in X .

Definition 2.11. We say that two self maps f and R of an S-metric space (X , S) are reciprocal

continuous iff any sequence (αn) in X such that lim
n→∞

R(αn)= lim
n→∞

f(αn) = γ for some γ ∈ X im-

plies lim
n→∞

fR(αn)=fγ and lim
n→∞

Rf(αn)=Rγ .

Clearly if f and g are continuous, then they are reciprocal continuous. Its converse in general

need not be true.

Definition 2.12. We say that two self maps f and R of an S-metric space (X , S) are subsequen-

tially continuous iff there exists a sequence (αn) in X such that lim
n→∞

R(αn)= lim
n→∞

f(αn) = γ for

some γ ∈ X satisfying lim
n→∞

fR(αn)=fγ and lim
n→∞

Rf(αn)=Rγ .

Clearly if f and g are continuous or reciprocal continuous, then they are subsequentially contin-

uous. In general, its converse need not be true.

Example 2.13 Consider an S-metric space (X , S),

where X = [0,∞) and S(α,β ,γ)=|α− γ|+ |β − γ| for α,β ,γ ∈ X .

Now we define f, R:X → X by f(α)=


α

4 , for α ∈ [0,1]

4α−3, for α ∈ (1,∞)

and

R(α)=


α

3 , for α ∈ [0,1]

3α−2, for α ∈ (1,∞)

for α ∈ X .

Case(i): We first show that f and R are not continuous.

For this, consider αn = 1+ 1
n for n ∈ N. Then we have fαn = 1+ 4

n and Rαn = 1+ 3
n for

n ∈N. This will imply that S(αn,αn,1) = 2 |αn−1|= 2
∣∣1+ 1

n −1
∣∣→ 0, as n→∞. This shows
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that αn → 1. Note that S(fαn, fαn, 1)=S(1+ 4
n ,1+

4
n ,1)=

8
n and S(Rαn, Rαn, 1)=S(1+ 3

n ,1+
3
n ,1)=

6
n for all n∈N. This imply that f(αn)→ 1 6= 1

4=f(1) and R(αn)→ 1 6= 1
3=R(1). Thus there

exists a sequence (αn) in X such that αn converges to 1, but f(αn) does not converge to f(1) and

also R(αn) does not converge to R(1). This shows that f and R are not continuous functions on

X .

Case(ii): Now let us show that f and R are subsequentially continuous. For this, consider αn =
1
n

for n ∈N. Then we have fαn =
1

4n and Rαn =
1
3n for all n ∈N. Now look at S(fαn, fαn,0) = 2

4n

and S(Rαn, Rαn,0) = 2
3n for every n∈N. This will imply that fαn→ 0 and Rαn→ 0, as n→∞.

Also note that fRαn =
1

12n and Rfαn =
1

12n and S(fRαn, fRαn,0) = 1
6n and S(Rfαn, Rfαn,0) = 1

6n

for every n ∈ N. This will imply that fRαn→ 0=f0 and Rfαn→0=R0, as n→ ∞. Thus there

exists a sequence (αn) in X such that lim
n→∞

R(αn)= lim
n→∞

f(αn) = 0∈ X for implies lim
n→∞

fR(αn)=f(0)

and lim
n→∞

Rf(αn)=R(0). Therefore f and R are subsequentially continuous.

Case(iii): Finally, we show that f and R are not reciprocal continuous.

For this, let αn = 1+ 1
n for n ∈ N. By case(i), we have f(αn)→ 1 and R(αn)→ 1. Now look at

fR αn = 1+ 1
12n and Rfαn = 1+ 1

9n . This will imply that S(fRαn, fRαn,1) = 24
n and

S(Rfαn, Rfαn,1) = 18
n for every n ∈ N. This imply that fRαn → 1 6=f(1)=1

4 and

Rfαn →1 6=R1=1
3 , as n → ∞. Thus there exists a sequence (αn) in X such that

lim
n→∞

R(αn)= lim
n→∞

f(αn) = 1 ∈ X and lim
n→∞

fR(αn) 6=f(1) and lim
n→∞

Rf(αn) 6= R(1). Therefore f and

R are not reciprocal continuous.

3. MAIN RESULTS

Theorem 3.1. Suppose in an S-metric space X , there are four self maps f, g, R and T on X

satisfying i) S(fα , fα , gβ )≤ φ (S(Rα , Rα , Tβ )) for all α,β ∈ X , where φ : [0,∞)→ [0,∞) is a

continuous function such that φ(0) = 0 and 0 < φ(k)< k for every k > 0

ii) (f, R) and (g, T) are subcompatible

iii) (f, R) and (g, T) are subsequentially continuous.

Then f, g, R and T have a unique common fixed point.

Proof : Since (f, R) is subcompatible, we can find a sequence (αn) in X such that
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lim
n→∞

Rαn= lim
n→∞

fαn = γ for some γ ∈ X and lim
n→∞

S(fRαn, fRαn, Rfαn)=0. Now (g, T) is sub-

compatible implies that there exists a sequence (βn) in X such that lim
n→∞

gβn= lim
n→∞

Tβn = δ for

some δ ∈ X and lim
n→∞

S(gTαn, gTαn, Tgαn)=0. Since (f, R) is subsequentially continuous,

(fαn) and (Rαn) converge to γ , we have lim
n→∞

fRαn=fγ and lim
n→∞

Rfαn=Rγ .Similarly, since (g,

T) is subsequentially continuous, (gαn) and (Tαn) converge to δ , we have lim
n→∞

gTαn=gδ and

lim
n→∞

Tgαn=Tδ .

Now lim
n→∞

fRαn=fγ , lim
n→∞

Rfαn=Rγ and lim
n→∞

S(fRαn, fRαn, Rfαn)=0 imply that S(fγ , fγ , Rγ)=0 and

hence fγ=Rγ . Since lim
n→∞

gTαn=gδ , lim
n→∞

Tgαn=Tδ and lim
n→∞

S(gTαn, gTαn, Tgαn)=0, S(gδ , gδ ,

Tδ )=0 and hence gδ=Tδ . For each n ∈ N, we consider

S(fαn, fαn, gβn)≤ φ (S(Rαn, Rαn, Tβn)).

Letting n→ ∞, we have

S(γ , γ , δ )≤ φ (S(γ , γ , δ ))=φ(0) = 0, since φ is continuous. This implies S(γ , γ , δ )= 0 and

hence γ=δ . Now let us show that fγ=γ . For each n ∈ N, we consider

S(fγ , fγ , gβn) ≤ φ (S(Rγ , Rγ , Tβn)).

Now letting n→ ∞, we have

S(fγ , fγ , δ ) ≤ φ (S(Rγ , Rγ , δ ))

=φ (S(fγ , fγ , δ )).

Therefore S(fγ , fγ , δ ) ≤ φ (S(fγ , fγ , δ )). This will imply that S(fγ , fγ , γ) ≤ φ (S(fγ , fγ , γ)),

since

γ = δ . If S(fγ , fγ , γ) 6= 0 , then by definition of φ , S(fγ , fγ , γ) < S(fγ , fγ , γ)-contradiction.

Therefore, we must have S(fγ , fγ , γ)=0 and hence fγ = γ .

Now we show that gγ = γ . Note that S(fγ , fγ , gγ)≤ φ (S(Rγ , Rγ , Tγ)). Since fγ=Rγ , we have

S(fγ , fγ , gγ)≤ φ (S(fγ , fγ , gγ)). This will imply that S(γ , γ , gγ)≤ φ (S(γ , γ , gγ)), since fγ=γ .

If S(γ,γ , gγ) 6= 0, then S(γ,γ , gγ) > 0. By definition of φ , we have φ (S(γ , γ , gγ))< S(γ , γ ,

gγ). This will imply that S(γ,γ , gγ) <S(γ,γ , gγ) -contradiction. Therefore S(γ,γ , gγ) = 0 and

hence gγ = γ . Since fγ=Rγ and fγ=γ , then fγ=Rγ = γ and hence γ is a common fixed point of f

and R. Similarly, gγ=γ and gγ=Tγ imply that gγ=Tγ=γ and hence γ is a common fixed point of

g and T. Therefore γ is a common fixed point of f, R, g and T.

Let us now show the uniqueness of common fixed point of f, g, R and T. For this, let θ be
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another common fixed point of f, g, R and T.Then fθ=gθ=Rθ=Tθ=θ and fγ=gγ=Rγ=Tγ=γ .

Now we consider S(θ , θ , γ)=S(fθ , fθ , gγ) ≤ φ (S(Rθ , Rθ , Tγ))=φ (S(θ , θ , γ)). If S(θ , θ , γ)

6= 0, then we must have S(θ , θ , γ) < S(θ , θ , γ)-contradiction. Therefore θ = γ and the result

is proved.

Corollary 3.2. Suppose in an S-metric space X , there are two self maps f and R on X satisfying

i) S(fα , fα , fβ )≤ φ (S(Rα , Rα , Rβ )) for all α,β ∈ X , where φ : [0,∞)→ [0,∞) is a continuous

function such that φ(0) = 0 and 0 < φ(k)< k for every k > 0

ii) (f, R) is subcompatible

iii) (f, R) is subsequentially continuous.

Then f and R have a unique common fixed point.

Proof : Follows from the Theorem 3.1 by taking g=f and T=R on X .

Corollary 3.3. Suppose in an S-metric space X , there are four self maps f, g, R and T on X

satisfying i) S(fα , fα , gβ )≤ q(S(Rα , Rα , Tβ )) for all α,β ∈ X and for some q∈ [0,1)

ii) (f, R) and (g, T) are subcompatible

iii) (f, R) and (g, T) are subsequentially continuous.

Then f, g, R and T have a unique common fixed point.

Proof : Let φ : [0,∞)→ [0,∞) be a function defined by φ(k) =qk for k ∈ [0,∞). Clearly it is

continuous function on [0,∞) such that φ(0) = 0 and 0 < φ(k)< k for all k > 0. Therefore all

the conditions of Theorem 3.1 are satisfied and hence the result proved.

Corollary 3.4. Suppose in an S-metric space X , there is a self map f on X satisfying

i) S(fα , fα , fβ )≤ q(S(α , α , β )) for all α,β ∈ X and for some q∈ [0,1)

ii) (f, I) is subcompatible

iii) (f, I) is subsequentially continuous, where I is the identity self map on X .

Then f has a unique fixed point.

Proof : Let φ : [0,∞)→ [0,∞) be a function defined by φ(k) =qk for k ∈ [0,∞).Clearly it is

continuous function on [0,∞) such that φ(0) = 0 and 0 < φ(k) < k for all k > 0. Now we set

g=f and R=T=I on X in the Theorem 3.1 and hence the result proved.

Theorem 3.5. Suppose in an S-metric space X , there are four self maps f, g, R and T on X

satisfying
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i) (f, R) and (g, T) are subcompatible

ii) (f, R) and (g, T) are subsequentially continuous

iii) Ψ(S(fα , fα , gβ ))≤Ψ(χ(α,β ))−φ(χ(α,β )) for all α,β ∈ X , where φ : [0,∞)→ [0,∞) is a

continuous function such that φ(0) = 0 and 0 < φ(k)< k for every k > 0 and Ψ : [0,∞)→ [0,∞)

is a continuous function such that Ψ(0) = 0 and

χ(α,β )=max{S(Rα,Rα,Tβ ),S(Rα,Rα, fα),S(Tβ ,Tβ ,gβ ),S(Rα,Rα,gβ ),S(Tβ ,Tβ , fα)}

for α,β ∈ X .

Then f, g, R and T have a unique common fixed point.

Proof : Suppose that (f, R) is subcompatible. Then we can find a sequence (αn) in X such that

lim
n→∞

Rαn= lim
n→∞

fαn = γ for some γ ∈ X and lim
n→∞

S(fRαn, fRαn, Rfαn)=0. Now (g, T) is

subcompatible implies that there exists a sequence (βn) in X such that lim
n→∞

gβn= lim
n→∞

Tβn = δ

for some δ ∈ X and lim
n→∞

S(gTαn, gTαn, Tgαn)=0. Since (f, R) is subsequentially continuous,

(fαn) and (Rαn) converge to γ , we have lim
n→∞

fRαn=fγ and lim
n→∞

Rfαn=Rγ . Similarly, since (g,

T) is subsequentially continuous, (gβn) and (Tβn) converge to δ , we have lim
n→∞

gTβn=gδ and

lim
n→∞

Tgβn=Tδ .

Now lim
n→∞

fRαn=fγ , lim
n→∞

Rfαn=Rγ and lim
n→∞

S(fRαn, fRαn, Rfαn)=0 imply that S(fγ , fγ , Rγ)=0

and hence fγ=Rγ .Since lim
n→∞

gTβn=gδ , lim
n→∞

Tgβn=Tδ and lim
n→∞

S(gTβn, gTβn, Tgβn)=0, we have

S(gδ , gδ , Tδ )=0 and hence gδ=Tδ . Now we show that γ = δ . For each n ∈ N, we have

Ψ(S(fαn, fαn, gβn))≤ Ψ(χ(αn,βn))−φ(χ(αn,βn)), where

χ(αn,βn)=max{S(Rαn,Rαn,Tβn),S(Rαn,Rαn, fαn),

S(Tβn,Tβn,gβn),S(Rαn,Rαn,gβn),S(Tβn,Tβn, fαn)}

for every n ∈ N. Now letting n→ ∞, we have

lim
n→∞

χ(αn,βn))=max{S(γ,γ,δ ),S(γ,γ,γ),S(δ ,δ ,δ ),S(γ,γ,δ ),S(δ ,δ ,γ)}=S(γ,γ,δ ). Then we

have

Ψ(S(γ , γ , δ ))≤ Ψ(S(γ , γ , δ ) )-φ (S(γ , γ , δ )). This will imply that φ (S(γ , γ , δ )) ≤ 0 and hence

φ (S(γ , γ , δ ))=0.

By definition of φ , we must have S(γ , γ , δ )=0 and hence γ = δ . Now let us show that fγ = γ .

For each n ∈ N, we have

Ψ(S(fγ , fγ , gβn))≤ Ψ(χ(γ,βn))−φ(χ(γ,βn)), where
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χ(γ,βn)=max{S(Rγ,Rγ,Tβn),S(Rγ,Rγ, fγ),

S(Tβn,Tβn,gβn),S(Rγ,Rγ,gβn),S(Tβn,Tβn, fγ)}

for every n ∈ N.Now letting n→ ∞, we have

lim
n→∞

χ(γ,βn)=max{S(Rγ,Rγ,γ),S(Rγ,Rγ, fγ),S(γ,γ,γ),S(Rγ,Rγ,γ),S(γ,γ, fγ)}

=max{S(fγ, fγ,γ),S(fγ, fγ, fγ),S(γ,γ,γ),S(fγ, fγ,γ),S(γ,γ, fγ)}=S(fγ, fγ,δ ).

Then we have Ψ(S(fγ , fγ , γ))≤ Ψ(S(fγ , fγ , γ) )-φ (S(fγ , fγ , γ)). This will imply that φ (S(fγ , fγ ,

γ)) ≤ 0 and hence φ (S(fγ , fγ , γ))=0.By definition of φ , we must have S(fγ , fγ , γ)=0 and hence

fγ = γ = Rγ . Now we show that gγ = γ . For this, we have

Ψ(S(fγ , fγ , gγ))≤ Ψ(χ(γ,γ))−φ(χ(γ,γ)), where

χ(γ,γ)=max{S(Rγ,Rγ,Tγ),S(Rγ,Rγ, fγ), S(Tγ,Tγ,gγ),S(Rγ,Rγ,gγ),S(Tγ,Tγ, fγ)}

=max{S(γ,γ,gγ),S(γ,γ,γ), S(gγ,gγ,gγ),S(γ,γ,gγ),S(gγ,gγ,γ)} =S(gγ,gγ,γ).

Therefore Ψ(S(fγ , fγ , gγ))≤ Ψ(S(gγ , gγ , γ) )-φ (S(gγ , gγ , γ)). This will imply that

Ψ(S(γ , γ , gγ))≤ Ψ(S(gγ , gγ , γ) )-φ (S(gγ , gγ , γ)). It follows that φ (S(gγ , gγ , γ))≤ 0. This

implies that φ (S(gγ , gγ , γ))=0 and hence gγ = γ=Tγ .

Now let us show the uniqueness of common fixed point of f, g, R and T. For this, let ρ ∈ X be

another common fixed point of f, g, R and T.Then fρ=gρ=Rρ=Tρ=ρ and fγ=gγ=Rγ=Tγ=γ .

Note that Ψ(S(γ , γ , ρ))≤ Ψ(χ(γ,ρ))−φ(χ(γ,ρ)), where

χ(γ,ρ)=max{S(Rγ,Rγ,Tρ),S(Rγ,Rγ, fγ),S(Tρ,Tρ,gρ),S(Rγ,Rγ,gρ),S(Tρ,Tρ, fγ)}

=max{S(γ,γ,ρ),S(γ,γ,γ),S(ρ,ρ,ρ),S(γ,γ,ρ),S(ρ,ρ,γ)}=S(γ,γ,ρ).

Therefore Ψ(S(γ , γ , ρ))≤ Ψ(S(γ , γ , ρ) )-φ (S(γ , γ , ρ)). This will imply that φ (S(γ , γ , ρ))≤ 0

and hence φ (S(γ , γ , ρ))=0. Then by definition of φ , S(γ , γ , ρ)=0 and therefore γ = ρ . Hence

the result is proved.

Corollary 3.6. Suppose in an S-metric space X , there are three self maps f, g and R on X

satisfying

i) (f, R) and (g, R) are subcompatible

ii) (f, R) and (g, R) are subsequentially continuous

iii) Ψ(S(fα , fα , gβ ))≤Ψ(χ(α,β ))−φ(χ(α,β )) for all α,β ∈ X , where φ : [0,∞)→ [0,∞) is a

continuous function such that φ(0) = 0 and 0 < φ(k)< k for every k > 0 and Ψ : [0,∞)→ [0,∞)

is a continuous function such that Ψ(0) = 0 and
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χ(α,β )=max{S(Rα,Rα,Rβ ),S(Rα,Rα, fα),S(Rβ ,Rβ ,gβ ),S(Rα,Rα,gβ ),S(Rβ ,Rβ , fα)}

for α,β ∈ X .

Then f, g and R have a unique common fixed point.

Proof : Follows from the Theorem 3.5 by taking T=R.

Now we give examples in support of main results.

Example 3.7. Consider an S-metric space (X , S),

where X = [0,1] and S(α,β ,γ)=


0, for α = β = γ

max{α,β ,γ}, otherwise
for all α,β ,γ ∈ X .

Define four self maps f, g, , R and T on X as follows:

For α ∈ X , fα = α

6 , gα = α

6 , Tα = α and Rα = α

2 . We also define φ : [0,∞) → [0,∞)

by φ(α) = α

2 for α ∈ [0,∞). Clearly φ is continuous on [0,∞) satisfying φ(0) = 0 and

0 < φ(α)< α for all α > 0. Let α,β ∈ X . Now consider the following cases.

Case(i): Let α < β . Then we have

S(fα , fα , gβ )=max{α

6 ,
α

6 ,
β

6 }=
1
6 max {α,α,β ,}= β

6

and φ (S(Rα , Rα , Tβ ))=1
2S(Rα , Rα , Tβ )=1

2 max{α

2 ,
α

2 ,β} =β

2 , since α

2 < β

2 < β .

Therefore S(fα , fα , gβ )≤ φ (S(Rα , Rα , Tβ )).

Now consider the case α > β . This will imply that

S(fα , fα , gβ )=max{α

6 ,
α

6 ,
β

6 }=
1
6 max {α,α,β}= α

6

and φ (S(Rα , Rα , Tβ ))=1
2S(Rα , Rα , Tβ )=1

2 max{α

2 ,
α

2 ,β}.

subcase(i) : Let α

2 > β . Then we must have

φ (S(Rα , Rα , Tβ ))=1
2(

α

2 ) =
α

4 ≥ S(Rα , Rα , Tβ ).

subcase(ii) : Let α

2 < β . Then we have

φ (S(Rα , Rα , Tβ ))=β

2 > α

6 = S(Rα , Rα , Tβ ). From both cases, we conclude that

S(fα , fα , gβ )≤ φ (S(Rα , Rα , Tβ )) for all α,β ∈ X .

Case(ii):Consider αn =
1
n for n∈N. Then fαn =

1
6n and Rαn =

1
2n for n∈N. This will imply that

S(fαn, fαn,0)=max{ 1
6n ,

1
6n ,0} =

1
6n and S(Rαn, Rαn,0)=max{ 1

2n ,
1

2n ,0} =
1

2n for n ∈ N. This

shows fαn→ 0 and Rαn→ 0, as n→ ∞. Now look at fRαn =
1

12n and Rfαn =
1

12n for n ∈ N.

It follows that S(fRαn, fRαn, Rfαn)=0 for all n ∈ N. This will imply that S(fRαn, fRαn, Rfαn)

→ 0, as n→ ∞. Thus there exists a sequence (αn) in X such that lim
n→∞

R(αn)= lim
n→∞

f(αn) = 0 ∈ X
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and lim
n→∞

S(fRαn, fRαn, Rfαn)=0. Therefore (f, R) is subcompatible.

Also note that fRαn→f(0)=0 and Rfαn→R(0)=0. Thus there exists a sequence (αn) in X such

that lim
n→∞

R(αn)= lim
n→∞

f(αn) = 0 ∈ X and also lim
n→∞

fR(αn)=f(0) and lim
n→∞

Rf(αn)=R(0). Therefore

(f, R) is subsequentially continuous.

Case(iii):Now we show that the pair (g, T) is both subcompatible and subsequentially continu-

ous. For this, we consider αn =
1

1+n for n ∈ N. Then gαn =
1

6(n+1) and Tαn =
1

n+1 for n ∈ N.

This will imply that S(gαn, gαn,0)=max{ 1
6(n+1) ,

1
6(n+1) ,0}=

1
6(n+1) and

S(Tαn, Tαn,0)=max{ 1
1+n ,

1
1+n ,0} =

1
1+n for n ∈ N.T his shows gαn→ 0 and Tαn→ 0. Now

look at gTαn = 1
6(n+1) and Tgαn = 1

6(n+1) for n ∈ N. It follows that S(gTαn, gTαn, Tgαn)=0

for all n ∈ N.This will imply that S(gTαn, gTαn, Tgαn) → 0, as n→ ∞. Thus there exists a

sequence (αn) in X such that lim
n→∞

g(αn)= lim
n→∞

T(αn) = 0 ∈ X and lim
n→∞

S(gTαn, gTαn, Tgαn)=0.

This shows that (g T) is subcompatible. Also note that gTαn →g(0)=0 and Tgαn →T(0)=0.

Thus there exists a sequence (αn) in X such that lim
n→∞

T(αn)= lim
n→∞

g(αn) = 0 ∈ X and also

lim
n→∞

gT(αn)=g(0) and lim
n→∞

Tg(αn)=T(0). Hence (g, T) is subsequentially continuous.Therefore

the hypothesis of the Theorem 3.1 is satisfied and f, g, R and T have a unique common fixed

point, namely zero.

Example 3.8. Consider an S-metric space (X , S),

where X = [2,13) and S(α,β ,γ)=|α− γ|+ |β − γ| for α,β ,γ ∈ X .

Now we define f, g, R and T:X → X by f(α)=


2, for α ∈ {2}∪ (3,13)

8, for α ∈ (2,3]
,

g(α)=


2, for α ∈ {2}∪ (3,13)

3, for α ∈ (2,3]
, R(α)=


2, for α = 2

9, for α ∈ (2,3]

α+3
2 , for α ∈ (3,13)

and

T(α)=


2, for α = 2

7, for α ∈ (2,3]

α−1, for α ∈ (3,13)

for α ∈ X .

Also we define φ ,Ψ : [0,∞)→ [0,∞) by φ(k) = 2k and Ψ(k) = 2k
7 for k ∈ [0,∞). Note that

χ(α,β )=max{S(Rα,Rα,Tβ ),S(Rα,Rα, fα),S(Tβ ,Tβ ,gβ ),S(Rα,Rα,gβ ),S(Tβ ,Tβ , fα)}
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for α,β ∈ X . Clearly φ and Ψ are continuous satisfying φ(0) = 0 = Ψ(0) and 0 < φ(k)< k for

every k > 0. Now consider the following cases.

Case(I):Consider the first sub case for α = β = 2. Then we have

Ψ(S(fα, fα,gβ )) = Ψ(S(2,2,2)) = 0≤Ψ(χ(α,β ))−φ(χ(α,β )) = 2χ(α,β )− 2
7 χ(α,β ).

Subcase(ii) : Let α = 2 and β ∈ (2,3]. Then Ψ(S(fα, fα,gβ )) = 2S(fα, fα,gβ )) = 4 and

χ(α,β )=max{S(2,2,7),S(2,2,2),S(7,7,3),S(2,2,7),S(7,7,2)}=2|2−7| = 10. This will

imply that Ψ(χ(α,β )) = 2(10) = 20 and φ(χ(α,β )) = 2
7(10). Therefore

Ψ(S(fα, fα,gβ )) = 4 < 20− 20
7 = Ψ(χ(α,β ))−φ(χ(α,β )).

Subcase(iii) : Let α = 2 and β ∈ (3,13). Then we have

Ψ(S(fα, fα,gβ )) = Ψ(S(2,2,2)) = 0≤Ψ(χ(α,β ))−φ(χ(α,β )) = 2χ(α,β )− 2
7 χ(α,β ).

Subcase(iv) : Let α ∈ (2,3] and β = 2. Then

Ψ(S(fα, fα,gβ )) = 2S(fα, fα,gβ )) = 2S(8,8,2) = 24 and

χ(α,β )=max{S(9,9,2),S(9,9,8),S(2,2,2),S(9,9,2),S(2,2,8)}=2|9−2| = 14. This will

imply that Ψ(χ(α,β )) = 2(14) = 28 and φ(χ(α,β )) = 2
7(14) = 4.

Therefore Ψ(S(fα, fα,gβ )) = 24≤ 28−4 = Ψ(χ(α,β ))−φ(χ(α,β )).

Subcase(v) : Let α,β ∈ (2,3]. Then Ψ(S(fα, fα,gβ )) = 2S(fα, fα,gβ )) = 2S(8,8,3) = 20

and χ(α,β )=max{S(9,9,7),S(9,9,8),S(7,7,3),S(9,9,3),S(7,7,8)}=2|9−3|= 12. This will

imply that Ψ(χ(α,β )) = 2(12) = 24 and φ(χ(α,β )) = 2
7(12) = 24

7 .

Therefore Ψ(S(fα, fα,gβ )) = 20 < 24− 24
7 = Ψ(χ(α,β ))−φ(χ(α,β )).

Subcase(vi) : Let α ∈ (2,3] and β ∈ (3,13). Then

Ψ(S(fα, fα,gβ )) = 2S(fα, fα,gβ )) = 2S(8,8,2) = 24 and

χ(α,β )=max{S(9,9,β − 1),S(9,9,2),S(β − 1,β − 1,2),S(9,9,2),S(β − 1,β − 1,8)}=20.

This will imply that Ψ(χ(α,β )) = 2(20) = 40 and φ(χ(α,β )) = 2
7(40) = 80

7 . Therefore

Ψ(S(fα, fα,gβ )) = 24 < 40− 80
7 = Ψ(χ(α,β ))−φ(χ(α,β )).

Subcase(vii) : Let α ∈ (3,13) and β = 2. Then we have

Ψ(S(fα, fα,gβ )) = Ψ(S(2,2,2)) = 0≤Ψ(χ(α,β ))−φ(χ(α,β )) = 2χ(α,β )− 2
7 χ(α,β ).

Subcase(viii) : Let α ∈ (3,13) and β ∈ (2,3]. Then we have

Ψ(S(fα, fα,gβ )) = 2S(fα, fα,gβ )) = 2S(2,2,3) = 4 and

χ(α,β )=max{S(α+3
2 , α+3

2 ,7),S(α+3
2 , α+3

2 ,2),S(7,7,3),S(α+3
2 , α+3

2 ,3),S(7,7,2)}=12. This
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will imply that Ψ(χ(α,β )) = 2(12) = 24 and φ(χ(α,β )) = 2
7(12) = 24

7 . It follows that

Ψ(S(fα, fα,gβ )) = 4 < 24− 24
7 = Ψ(χ(α,β ))−φ(χ(α,β )).

Subcase(ix) : Let α,β ∈ (3,13).Then we have

Ψ(S(fα, fα,gβ )) = Ψ(S(2,2,2)) = 0≤Ψ(χ(α,β ))−φ(χ(α,β )) = 2χ(α,β )− 2
7 χ(α,β ).

From all sub cases, we conclude that

Ψ(S(fα, fα,gβ ))≤Ψ(χ(α,β ))−φ(χ(α,β ))) for all α,β ∈ X .

Case(II):Now let us show that the pairs (f, R) and (g, T) are subcompatible. For this, we choose

αn = 2 for all n ∈N. Then we have fαn = 2 and Rαn = 2 for all n ∈N. Also we have fRαn = 2

and Rfαn = 2 for n ∈ N. This will imply that fαn→ 2 and Rαn→ 2 and also

S(fRαn, fRαn, Rfαn)→ 0, as n→ ∞. Thus there exists a sequence (αn) in X such that

lim
n→∞

R(αn)= lim
n→∞

f(αn) = 2 ∈ X and lim
n→∞

S(fRαn, fRαn, Rfαn)=0. Therefore (f, R) is subcompat-

ible. Similarly, we can easily show that the pair (g, T) is also subcompatible.

Case(III):Now we show that the pairs (f, R) and (g, T) are both subsequentially continuous.

Clearly fRαn →f(2)=2 and Rfαn →R(2)=2 and also fαn → 2 and Rαn → 2, as n→ ∞. Thus

there exists a sequence (αn) in X such that lim
n→∞

R(αn)= lim
n→∞

f(αn) = 2 ∈ X and lim
n→∞

fR(αn)=f(2)

and lim
n→∞

Rf(αn)=R(2). Therefore (f, R) is subsequentially continuous. Similarly, we can show

that the pair (g, T) is subsequentially continuous. Therefore the hypothesis of the Theorem 3.5

is satisfied and f, R, g and T have a unique common fixed point, namely 2.
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