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Abstract. In this paper, we have developed a public key cryptosystem by using large abelian group of general linear

group over bounded distributive lattice. We have defined automorphisms on lattice matrices by the definition lattice

automorphisms. We have replaced the exponentiation by conjugation automorphisms, which are mainly used to

define the public and private keys and which allows the calculations to be fast and effective. We also talk about

different security aspects against known attacks and it is shown that the cryptosystem is highly secure. We have

given the proposed scheme with counter example.
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1. INTRODUCTION

Public-key cryptosystem was introduced by Whitfield Diffie and Martin Hellman [3] in 1976.

After that many PKC have been proposed and broken. In 1978, Rivest-Shamir-Adleman [10]

introduces the first practical Public key cryptosystem (RSA). In 1985, another practical PKC

introduced by ElGamal [4]. Later many other PKCs introduced by many authors which can be

seen in [7, 8 and 9]. In 2019, Z.Y. Karatas, E. Luy and B.Gonen [12] introduces a PKC based
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on abelian group

(
H =

{


a1 0 0 . . . 0

a2 a1 0 . . . 0
... . . . . . . . . . 0

ak−1 . . . a2 a1 0

ak ak−1 . . . a2 a1


/ ai ∈ Zn, ak

1 ∈ Z∗n, 1 ≤ i ≤ k

})
of

general linear group GL(k,Zn)) where Zn is the residue ring and Z∗n is the set of elemnts in Zn

with a multiplicative inverse. In this cryptosysetems, the author choose randomly two matrices

from the abelian group and define encryption and decryption using this matrices but they did

not use any exponentiation of matrices.

In present work, we have proposed Public Key Cryptosystem by using abelian subgroup of

general linear group over distributive latttice with 0 and 1. We define public and private keys

by using commutative automorphisms on lattice matrices.

In Sect. 2, we will discuss some terms used in public key cryptography and some basic defini-

tions of lattice as well as orthogonal matrix which will be used in next sections.

In section 3. As a different approach to Shmatkov V D [11], we have defined automorphisms

on matrices over distributive lattices with 0 and 1.

In section 4. we have given the proposed scheme of PKC on lattice matrices.

In section 5. we have given a counter example for our proposed scheme.

In section 6. we have discussed the security analysis of the cryptosystem.

2. PRELIMINARIES

Throughout this paper N denotes the set of non zero natural numbers.

We recall some basic definitions on cryptography. For details see [2].

Public-key cryptography is a cryptographic system that uses pairs of keys: public keys and

private keys.

Public key encryption, in which a message is encrypted with a recipient’s public key. The

message cannot be decrypted by anyone who does not possess the matching private key, who is

thus presumed to be the owner of that key and the person associated with the public key. This

is used in an attempt to ensure confidentiality.

A public-key encryption scheme has six components:
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(1) Plaintext: Which is a message in a form that is easily readable by humans.

(2) Encryption algorithm: Which is the process of encoding a message or information

(Plaintext) in such a way that only authorized parties can access it.

(3) Public key: Which are known to every one.

(4) Private key: Which are known only to the owner.

(5) Cipher text: Which is the result of encryption performed on plaintext.

(6) Decryption algorithm: Which is the process of converting message (Ciphertext) into

its original form (Plaintext).

We recall some basic definitions and results on lattice theory, lattice matrices. For details see

[1], [5] and [6].

Definition 2.1 (1). A partially ordered set (L,≤) is a lattice if for all a,b ∈ L, the least upper

bound of a,b and the greatest lower bound of a,b exist in L. For any a,b ∈ L, the least upper

bound and the greatest lower bound are denoted by a∨ b and a∧ b (or ab), respectively. An

element a ∈ L is called greatest element of L if α ≤ a, for all α ∈ L. An element b ∈ L is called

least element of L if b≤ α , for all α ∈ L. We use 1 and 0 to denote the greatest element and the

least element of L, respectively. A lattice L is a distributive lattice, if for any a,b,c ∈ L,

a∨ (b∧ c) = (a∨b)∧ (a∨ c)

a∧ (b∨ c) = (a∧b)∨ (a∧ c)

Throughout this paper, unless otherwise stated, we assume that L is a distributive lattice with

the greatest element 1 and the least element 0.

Let Mn(L) be the set of n×n (n ∈N) matrices over L, the elements of Mn(L) denoted by capital

letters and suppose A ∈ Mn(L), then the (i, j)th entry of A is denoted by ai j. Giveon [5] calls

them lattice matrices.

The following are due to Giveon [5] for the lattice matrices A= [ai j],B= [bi j],C = [ci j]∈Mn(L),

where ai j,bi j,ci j ∈ L ,1≤ i, j ≤ n

• A≤ B if and only if ai j ≤ bi j
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• A+B =C if and only if ci j = ai j∨bi j

• A∧B =C if and only if ci j = ai j∧bi j = ai jbi j

• A ·B = AB =C if and only if ci j = ∨n
k=1(aik∧bk j)

• AT =C if and only if ci j = a ji

• for α ∈ L,αA = α ·A =C, if and only if ci j = αai j

• A0 = I, where I is the identity matrix, AK+1 = AKA, O = [0i j],0i j = 0, E = [ei j],ei j = 1,

1≤ i, j ≤ n,

• A(BC) = (AB)C,AI = IA = A,AO = OA = O.

• A(B+C) = AB+AC,(A+B)C = AC+BC,if A≤ B and C ≤ D then AC ≤ BD.

• (A+B)T = AT +BT ,(A∧B)T = AT ∧BT ,(AB)T = BT AT ,((A)T )T = A.

• Mn(L) is a distributive lattice with least element zero as O and greatest element one as

E with respect to ∧ and ∨.

Definition 2.2 (5). A matrix A ∈Mn(L) is orthogonal if and only if each row and each column

is orthogonal decomposition of 1 in L.

Theorem 2.3 (5). A ∈Mn(L) is invertible if and only if A is orthogonal.

Definition 2.4 (5). The set of all invertible order-n square matrices over L is a group under

lattice matrix multiplication. This group is called the general linear group of degree n and is

denoted GL(n,L), here for our connivent we denote it as G.

Definition 2.5 (5). Let (L,≤,∧,∨) be a lattice. Then a mapping φ : L→ L is automorphism if

for all a,b ∈ L it satisfy:

(1) φ(0) = 0.

(2) φ(1) = 1.

(3) φ(a∨b) = φ(a)∨φ(b).

(4) φ(a∧b) = φ(a)∧φ(b).

(5) if a≤ b, then φ(a)≤ φ(b).

(6) φ is one - one

(7) φ is onto



2412 RAJESH GUDEPU, DPRV SUBBA RAO

3. AUTOMORPHISMS ON Mn(L)

In this section, we construct the general linear group and abelian subgroups of Mn(L) with

matrix multiplication operator. As a different approach to V.D.Shmatkov [11], we have pro-

posed an automorphism on Mn(L) and we have discussed about commutative automorphism on

Mn(L).

Let us denote the following:

Mn(L) = The set of all n×n matrices over L =

{
A = [ai j]n×n/ai j ∈ L

}
.

G = The set of all invertible (orthogonal) matrices over Mn(L) =
{

P ∈ L / PPT = PT P = I

}
C = The subset of G in which matrix multiplication is commutative.

Theorem 3.1. If L is a distributive lattice with 0 and 1. Then

(1) G forms a group (general linear group)

(2) C forms an abelian subgroup of G with the operation matrix multiplication.

Proof. Suppose L is a distributive lattice with 0 and 1 and Mn(L) is the set of all n×n matrices

over L.

(1) Let G be The set of all invertible (orthogonal) matrices over Mn(L).

• If P,Q∈G, then PQ∈G (Since the product of orthogonal matrices is again orthog-

onal.)

• If P,Q and R ∈ L, then P(QR) = (PQ)R.

(Since the matrix multiplication is associative in Mn(L) )

• If P ∈ G, then PI = IP = P. (Since I is the identity matrix in Mn(L))

• If P ∈G, then there exist a unique matrix PT ∈G such that PPT = PT P = I (where

PT is the inverse of P)

Therefore G forms a group with matrix multiplication.

(2) Let C be the subset of G in which the matrix multiplication is commutative i.e., P,Q∈C

such that PQ = QP, then we can obtain that P = QT PQ = QPQT and Q = PT QP =

PQPT
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• If P,Q ∈C, then PQ ∈C (Since (PQ)R = P(RQ) = R(PQ), for all R ∈C)

• If P ∈C, then PT ∈C (Since PT Q = PT (PQPT ) = QPT , for all Q ∈C)

Therefore C forms an abelian subgroup of G with matrix multiplication.

�

Definition 3.2. A square matrix A ∈ Mn(L) is said to be left meet-distributive if it satisfy

A(X ∧Y ) = AX ∧AY , for all X ,Y ∈Mn(L) and is said to be right meet-distributive if it satisfy

(X ∧Y )A = XA∧YA, for all X ,Y ∈Mn(L). A matrix is said to be meet-distributive if which is

both left meet and right meet distributive.

Example 3.3. Consider the lattice L = {0, a, b, c, d,1 } where the Hasse diagram of L is shown

below:

FIGURE 1

Let A =

 d a

a b

, X =

 a d

c b

, Y =

 a c

1 d


So, A(X ∧Y ) =

 d a

a b

 a b

c b

 =

 a b

c b


and AX ∧AY =

 a d

c b

 ∧
 a b

c c

 =

 a b

c b


Clearly A is left meet-distributive matrix.

(X ∧Y )A=

 a b

c b

 d a

a b

 =

 0 c

b c


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and XA∧YA =

 0 c

b c

 ∧
 a c

d c

 =

 o c

b c


Clearly A is right meet-distributive matrix.

Therefore A is meet-distributive matrix.

Theorem 3.4. A square lattice matrix P = [pi j] over L is left meet-distributive if and only if, for

all i, pi j∧ pik=0, j 6= k.

Theorem 3.5. A square lattice matrix P = [pi j] over L is right meet-distributive if and only if,

for all j, pi j∧ pk j=0, i 6= k.

Since Mn(L) is a distributive lattice. Then we propose an automorphism on Mn(L) by us-

ing the definition of lattice automorphism. We will use these automorphism, in section 4, for

encryption and decryption in our proposed public key cryptosystem scheme.

Proposition 3.6. For P∈G and A∈Mn(L), the mapping φ : Mn(L)→Mn(L) defined by φ(A) =

PAPT is an automorphism of Mn(L).

Proof. Suppose φ : Mn(L)→Mn(L) defined by φ(A) = PAPT , for all P ∈ G,A ∈Mn(L). Then

(1) φ(O) = POPT = O, O is the zero matrix in Mn(L).

(2) φ(E) = PEPT = E, E is the one matrix in Mn(L).

(3) φ(A∧B) = P(A∧B)PT = (PAPT )∧(PBPT ) = φ(A)∧φ(B). (Since P is meet distributive)

(4) φ(A∨B) = P(A∨B)PT = (PAPT )∨ (PBPT ) = φ(A)∨φ(B).

(5) φ(AB) = P(AB)PT = (PAPT PBPT ) = φ(A)φ(B).

(6) If A≤ B, then φ(A)≤ φ(B).

Therefore φ is homomorphism.

(7) φ is one - one:
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Let

φ(A) = φ(B)

PAPT = PBPT

PT PAPT P = PT PBPT P

A = B

(8) φ is onto: Let B ∈Mn(L).

For P ∈ G, So that PT BP ∈Mn(L)

Consider,

B = PPT BPPT

= PAPT (sayPT BP = A)

= φ(A)

Therefore φ is an automorphism.

�

Remark 3.7. The inverse of an automorphism is an automorphism, and composition of two

automorphisms is again an automorphism.

Next we have proposed the case of commutativity for above automorphisms. In section 4, we

will use these commutative automorphisms for generating the key in our proposed public key

cryptosystem scheme.

Proposition 3.8. If P,Q ∈ C and A ∈ Mn(L), the mapping φ ,ψ : Mn(L)→ Mn(L) defined by

φ(A) = PAPT , ψ(A) = QAQT , then φ and ψ commutative automorphisms of Mn(L).

Proof. Let P,Q ∈C and A ∈Mn(L).

Suppose φ : A→ PAPT , ψ : A→ QAQT are two mappings on Mn(L).

From the proposition 3.2, clearly φ and ψ are automorphisms on Mn(L).

Now consider,
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φψ(A) = φ(QAQT ) = PQAQT PT = PQA(PQ)T and

ψφ(A) = ψ(PAPT ) = QPAPT QT = QPA(QP)T = PQA(PQ)T (Since P,Q ∈C)

Therefore, φ and ψ commutative automorphisms. �

4. MAIN RESULT

Public key cryptosystem based on lattice matrices

In this section, we have proposed a public key cryptosystem scheme, in which the key gen-

eration depends on the commutative automorphism on Mn(L) and encryption depends on the

automorphism on Mn(L) .

The proposed scheme

Key Generation

(1) Choose two matrices P and Q in the subgroup C with P 6= Q.

(2) Define two commutative inner product automorphisms of Mn(L). φ : A→ PAPT and

ψ : A→ QAQT for every A ∈Mn(L). Clearly φ and ψ commute as P and Q commute

(By proposition 3.4).

(3) Compute the following automorphisms of Mn(L) : ρ = φ 2ψ and σ = φψ2 which are

given by

ρ : A→ (P2Q)A(P2Q)T , σ : A→ (PQ2)A(PQ2)T .

Note that ρ and σ commute (By remark 3.3), and ρ = φψ−1σ , σ = φ−1ψρ .

(4) Select a random invertible matrix N ∈ G which does not belong to group C.

(5) Compute the matrices NT ,ρ(N) and σ(NT ).

(6) The public key is (ρ(N),σ(NT )) and the private key is (P,Q).

Encryption

(1) Represent the plaintext M as a matrix over L, that is, M ∈Mn(L).

(2) Choose a random matrix X ∈C. (Similarly, we choose a new random matrix for every

plaintext.)

(3) Define the automorphism υ : A→ XAXT , where A ∈Mn(L).

(4) Compute the matrices υ(ρ(N)),υ(σ(NT )).

(5) Send the ciphertext: C = (C1,C2) = (υ(σ(NT )),Mυ(ρ(N))).



A PUBLIC KEY CRYPTOSYSTEM BASED ON LATTICE MATRICES 2417

Decryption

(1) Compute d = φψ−1(C1) = φψ−1(υ(σ(NT ))) = υ(ρ(NT )).

(2) Compute C2d =Mυ(ρ(N))φψ−1(υ(σ(NT ))) = M.

5. EXAMPLE

In this section, we have constructed an example in 3× 3 case, to our mentioned public key

cryptosystem .

Consider the lattice L = {0,a,b,c,d,e, f ,g,h, i, j,k, l,m,n,o, p,q,r,s, t,u,v,1} where the Hasse

diagram of L is shown below:

FIGURE 2

Key Generation

(1) Choose two matrices P =


j 0 m

m j 0

0 m j

 and Q =


c t 0

0 c t

t 0 c

 in the subgroup C

with P 6= Q

.

(2) Define two commutative inner product automorphisms of M3(L)

φ : A→ PAPT and ψ : A→ QAQT for every A ∈M3(L).
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(3) Compute the following automorphisms of Mn(L) :

ρ = φ 2ψ and σ = φψ2 which are given by

ρ : A→ (P2Q)A(P2Q)T , σ : A→ (PQ2)A(PQ2)T .

Note that ρ and σ commute (By remark 3.3), and ρ = φψ−1σ , σ = φ−1ψρ .

(4) Select a random matrix N =


d c m

m 0 j

c t 0

 ∈ G which does not belong to group C.

(5) Compute the matrices NT =


d m c

c 0 t

m j 0

 ,ρ(N) =


0 j m

t 0 c

c m d

 and

σ(NT ) =


0 m j

c d m

t c 0

.

(6) The public key is (ρ(N),σ(NT )) and the private key is (P,Q).

Encryption

(1) Represent the plaintext M =


e i k

h l f

p n u

 as a matrix over L, that is, M ∈Mn(L).

(2) Choose a random matrix X =


s d 0

0 s d

d 0 s

 ∈C. (Similarly, we choose a new random

matrix for every plaintext.)
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(3) Define the automorphism υ : A→ XAXT , where A ∈Mn(L).

(4) Compute the matrices υ(ρ(N)) =


0 c t

m d c

j m 0

 ,υ(σ(NT )) =


d m c

c 0 t

m j 0

.

(5) Send the ciphertext: C = (C1,C2)

where C1 = υ(σ(NT )) =


d m c

c 0 t

m j 0

,

C2 = Mυ(ρ(N))) =


e o e

l f h

u n p

.

Decryption

(1) Compute d = φψ−1(C1) = φψ−1(υ(σ(NT ))) = υ(ρ(NT )) =


0 m j

c d m

t c 0

.

(2) Compute C2d =Mυ(ρ(N))φψ−1(υ(σ(NT ))) =


e i k

h l f

p n u

.

6. SECURITY ANALYSIS

6.1. A Chiphertext Only Attack. Assume that (C1,C2) is the ciphertext of the plaintext M.

So, the attacker needs to solve the system

C1 =Xσ(NT )XT

C2 =MXρ(N)XT .
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The attacker can compute C2C1 = MXρ(N)σ(NT )XT , and more conveniently, try to solve

this system for X and M.

Thus, if L is large bounded distributive lattice not having long sub chain and n ∈ N is chosen

large enough, then it is infeasible to compute X , and hence M.

Here, the security in the proposed scheme increases significantly as any size of matrices can

be chosen which will increase the dimension of the system.

6.2. A Known-Plaintext Attack. Note that for each plaintext M, a specific matrix X is used

in the scheme. Hence, it does not matter how many pairs of plaintexts and ciphertexts someone

knows, it is infeasible to obtain a plaintext from a corresponding ciphertext. Thus, this attack

will not be efficient as well.

6.3. A Chosen Chiphertext Attack. By using this attack, someone can obtain an unknown

plaintext. Assume that C = (C1,C2) is the corresponding ciphertext of the desired plaintext M.

The attacker can choose a random invertible matrix M∗ and be given access to the plaintext of

the ciphertext (C1,M∗C2) which is M∗M. Then the attacker obtains(M∗)T M∗M = M.

However, an elementary modification on the proposed system can be used in order to prevent

this type of attack. It is the same idea given in [12]. This problem can be solved by the change

C2 = Xρ(N)XT MXρ(N)XT . In decryption, the plaintext can be obtained by M = dC2d with

d = φψ−1(C1). This change will prevent the proposed system from this type of attack since the

matrices M and X do not commute in general.

Conclusion. In this paper, We have defined automorphisms on lattice matrices by the defini-

tion lattice automorphism. we have developed a public key cryptosystem by using large abelian

group of general linear group over distributive lattice with 0 and 1. We have defined commu-

tative automorphisms to obtain the public key and private key. One can choose the best size

for the security and computation time depending on the needs. Also, since exponentiation is

not used, the encryption and decryption will be more simple and faster. A counter example has

given in section 5.
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