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Abstract. In this paper, the concepts of r-fuzzy `-open, r-fuzzy semi-`-open, r-fuzzy pre-`-open, r-fuzzy α-`-

open and r-fuzzy β -`-open sets are introduced in a fuzzy ideal topological space (X ,τ, `) based on the sense of

Šostak. Also, the relations of these sets with each other are investigated with the help of examples. Moreover, the

concepts of fuzzy upper (resp. lower) `-continuous, almost `-continuous and weakly `-continuous multifunctions

are introduced and some properties of these multifunctions along with their mutual relationships are specified.
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1. INTRODUCTION AND PRELIMINARIES

The theory of fuzzy sets provides a framework for mathematical modeling of those real world

situations, which involve an element of uncertainty, imprecision, or vagueness in their descrip-

tion. Since its inception thirty years ago by Zadeh [14], this theory has found wide applications
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in engineering, economics, information sciences, medicine, etc.; for details the reader is re-

ferred to [6, 15]. A fuzzy multifunction is a fuzzy set valued function [2, 7, 12, 13]. Fuzzy

multifunctions arise in many applications, for instance, the budget multifunction occurs in eco-

nomic theory, noncooperative games, artificial intelligence, and decision theory. The biggest

difference between fuzzy functions and fuzzy multifunctions has to do with the definition of an

inverse image. For a fuzzy multifunction there are two types of inverses. These two definitions

of the inverse then leads to two definitions of continuity. Ramadan and Abd El-latif [9], intro-

duced and studied the concepts of fuzzy upper and lower almost continuous, weakly continuous

and almost weakly continuous multifunctions where the domain of these functions is a classical

topological space with their values as arbitrary fuzzy sets in fuzzy topological space. Al-shami

and Noiri [3, 4], defined and studied new generalization of open set.

In this work, a new forms of sets called r-fuzzy `-open, r-fuzzy semi-`-open, r-fuzzy pre-`-

open, r-fuzzy α-`-open and r-fuzzy β -`-open sets are introduced on a fuzzy ideal topological

space (X ,τ, `) in Šostak sense. Also, the relations of these sets with each other are investigated

with the help of examples. Moreover, the concepts of fuzzy upper (resp. lower) `-continuous,

almost `-continuous and weakly `-continuous multifunctions are introduced and some interest-

ing properties of them are specified. Throughout this paper, X refers to an initial universe. The

family of all fuzzy sets in X is denoted by IX and for λ ∈ IX , λ c(x) = 1−λ (x) for all x ∈ X

(where I = [0,1] and I◦ = (0,1]). For t ∈ I, t(x) = t for all x ∈ X . The fuzzy difference between

two fuzzy sets [11] λ ,µ ∈ IX defined as follows:

λ ∧ µ =

 0, if λ ≤ µ,

λ ∧µc, otherwise.

All other notations are standard notations of fuzzy set theory. Now, we recall that a fuzzy idea `

on X [8], is a map ` : IX −→ I that satisfies the following conditions: (i) ∀ λ ,µ ∈ IX and λ ≤ µ

⇒ `(µ)≤ `(λ ). (ii) ∀ λ ,µ ∈ IX ⇒ `(λ ∨µ)≥ `(λ )∧ `(µ). Also, ` is called proper if `(1) = 0

and there exists µ ∈ IX such that `(µ)> 0. The simplest fuzzy ideals on X , `0 and `1 defined as
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follows:

`0(λ ) =

 1, if λ = 0,

0, otherwise
and `1(λ ) = 1 ∀ λ ∈ IX .

If `1 and `2 are fuzzy ideals on X , we say that `1 is finer than `2 (`2 is coarser than `1), denoted

by `2 ≤ `1, iff `2(λ )≤ `1(λ ) ∀ λ ∈ IX .

Let (X ,τ) be a fuzzy topological space in Šostak sense [10], the closure and the interior of

any fuzzy set λ ∈ IX denoted by Cτ(λ ,r) and Iτ(λ ,r). Let (X ,τ, `) be a fuzzy ideal topological

space, λ ∈ IX and r ∈ I◦, then the r-fuzzy local function [11] λ ∗r of λ defined as follows:

λ ∗r =
∧
{µ ∈ IX : `(λ ∧ µ) ≥ r, τ(µc) ≥ r}. If we take ` = `0, for each λ ∈ IX we have

λ ∗r =
∧
{µ ∈ IX : λ ≤ µ, τ(µc)≥ r}=Cτ(λ ,r). Also, if we take `= `1 (resp. `(λ )≥ r), for

each λ ∈ IX we have λ ∗r = 0. Moreover, we define an operator C∗τ : IX × I◦→ IX as follows:

C∗τ (λ ,r) = λ ∨ λ ∗r .

A mapping F : X ( Y is called a fuzzy multifunction [5] iff F(x) ∈ IY for each x ∈ X . The

degree of membership of y in F(x) is denoted by F(x)(y)=GF(x,y) for any (x,y)∈X×Y . Also,

F is Normalized iff for each x ∈ X , there exists y0 ∈ Y such that GF(x,y0) = 1 and F is Crisp

iff GF(x,y) = 1 for each x ∈ X and y ∈ Y . The upper inverse Fu(µ), the lower inverse F l(µ) of

µ ∈ IY and the image F(λ ) of λ ∈ IX are defined as follows: Fu(µ)(x) =
∧

y∈Y [G
c
F(x,y)∨µ(y)],

F l(µ)(x) =
∨

y∈Y [GF(x,y)∧ µ(y)] and F(λ )(y) =
∨

x∈X [GF(x,y)∧ λ (x)]. All definitions and

properties of image, lower and upper are found in [1] .

2. ON r-FUZZY `-OPEN AND r-FUZZY α -`-OPEN SETS

Definition 2.1. Let (X ,τ, `) be a fuzzy ideal topological space, λ ∈ IX and r ∈ I◦. Then, λ is

said to be:

(1) r-fuzzy `-open iff λ ≤ Iτ(λ
∗
r ,r).

(2) r-fuzzy semi-`-open iff λ ≤C∗τ (Iτ(λ ,r),r).

(3) r-fuzzy pre-`-open iff λ ≤ Iτ(C∗τ (λ ,r),r).

(4) r-fuzzy α-`-open iff λ ≤ Iτ(C∗τ (Iτ(λ ,r),r),r).
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(5) r-fuzzy β -`-open iff λ ≤Cτ(Iτ(C∗τ (λ ,r),r),r).

The following implications hold:

r-fuzzy open⇒ r-fuzzy α-`-open⇒ r-fuzzy semi-`-open

⇓ ⇓

r-fuzzy `-open⇒ r-fuzzy pre-`-open⇒ r-fuzzy β -`-open

In general the converses are not true.

Remark 2.2. (1) r-fuzzy `-open and r-fuzzy open [λ ≤ Iτ(λ ,r)] are independent notions as

shown by Example 2.3.

(2) r-fuzzy semi-`-open and r-fuzzy pre-`-open are independent notions as shown by Exam-

ple 2.4 and Example 2.5.

Example 2.3. Define τ1,τ2, `
1, `2 : IX −→ I as follows:

τ1(λ ) =



1, if λ ∈ {0,1},
1
2 , if λ = 0.2,
3
4 , if λ = 0.3,

0, otherwise,

τ2(λ ) =


1, if λ ∈ {0,1},
1
2 , if λ = 0.3,

0, otherwise,

`1(ν) =


1, if ν = 0,
2
3 , if 0 < ν < 0.3,

0, otherwise,

`2(ν) =


1, if ν = 0,
1
2 , if 0 < ν < 0.2,

0, otherwise.

Then, (1) In (X ,τ1, `
1), 0.2 is 1

2 -fuzzy open set but it is not 1
2 -fuzzy `-open.

(2) In (X ,τ2, `
2), 0.2 is 1

2 -fuzzy `-open set but it is not 1
2 -fuzzy open.
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Example 2.4. Define τ, ` : IX −→ I as follows:

τ(λ ) =



1, if λ ∈ {0,1},
1
2 , if λ = 0.2,
3
4 , if λ = 0.8,

0, otherwise,

`(ν) =


1, if ν = 0,
3
4 , if 0 < ν < 0.4,

0, otherwise.

Then, (1) 0.5 is 1
2 -fuzzy pre-`-open set but it is not 1

2 -fuzzy semi-`-open.

(2) 0.5 is 1
2 -fuzzy β -`-open set but it is not 1

2 -fuzzy semi-`-open.

(3) 0.5 is 1
2 -fuzzy pre-`-open set but it is not 1

2 -fuzzy α-`-open.

Example 2.5. Let X = {x,y,z} be a set and µ1,µ2 ∈ IX defined as follows: µ1 = { x
0.3 ,

y
0.4 ,

z
0.8}

and µ2 = { x
0.2 ,

y
0.3 ,

z
0.2}. Define τ, ` : IX → I as follows:

τ(λ ) =


1, if λ ∈ {0,1},
1
2 , if λ = µ2,

0, otherwise,

`(ν) =


1, if ν = 0,
2
3 , if 0 < ν < 0.2,

0, otherwise.

Then, (1) µ1 is 1
2 -fuzzy semi-`-open set but it is neither 1

2 -fuzzy pre-`-open nor 1
2 -fuzzy α-`-

open.

(2) µ1 is 1
2 -fuzzy β -`-open set but it is not 1

2 -fuzzy pre-`-open.

Example 2.6. Let X = {x,y,z,w} be a set and µ1,µ2 ∈ IX defined as follows:

µ1 = { x
0.9 ,

y
0.9 ,

z
0.5 ,

w
0.5} and µ2 = { x

0.9 ,
y

0.9 ,
z

0.9 ,
w

0.5}.

Define τ, ` : IX → I as follows:

τ(λ ) =


1, if λ ∈ {0,1},
1
2 , if λ = µ1,

0, otherwise,

`(ν) =


1, if ν = 0,
1
2 , if 0 < ν < 0.3,

0, otherwise.

Then, µ2 is 1
2 -fuzzy α-`-open set but it is not 1

2 -fuzzy open.
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Corollary 2.7. Let (X ,τ, `) be a fuzzy ideal topological space and r ∈ I◦,

(1) Every r-fuzzy pre-`-open set is r-fuzzy preopen.

(2) Every r-fuzzy semi-`-open set is r-fuzzy semi-open.

(3) Every r-fuzzy α-`-open set is r-fuzzy α-open.

(4) Every r-fuzzy β -`-open set is r-fuzzy β -open.

In general the converses are not true.

Example 2.8. Define τ, ` : IX −→ I as follows:

τ(λ ) =



1, if λ ∈ {0,1},
1
2 , if λ = 0.3,
3
4 , if λ = 0.7,

0, otherwise,

`(ν) =


1, if ν = 0,
3
4 , if 0 < ν < 0.6,

0, otherwise.

Then, 0.6 is 1
2 -fuzzy preopen set but it is not 1

2 -fuzzy pre-`-open.

Example 2.9. Define τ, ` : IX −→ I as follows:

τ(λ ) =


1, if λ ∈ {0,1},
3
4 , if λ = 0.3,

0, otherwise,

`(ν) =


1, if ν = 0,
2
3 , if 0 < ν < 0.5,

0, otherwise.

Then, 0.5 is 1
2 -fuzzy semi-open set but it is not 1

2 -fuzzy semi-`-open.

Example 2.10. Let X = {x,y,z,w} be a set and µ1,µ2 ∈ IX defined as follows:

µ1 = { x
0.9 ,

y
0.9 ,

z
0.5 ,

w
0.5} and µ2 = { x

0.9 ,
y

0.9 ,
z

0.9 ,
w

0.5}.

Define τ, ` : IX → I as follows:

τ(λ ) =


1, if λ ∈ {0,1},
1
3 , if λ = µ1,

0, otherwise,

`(ν) =


1, if ν = 0,
2
3 , if 0 < ν < 0.9,

0, otherwise.
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Then, µ2 is 1
3 -fuzzy α-open set but it is not 1

3 -fuzzy α-`-open.

Example 2.11. Define τ, ` : IX −→ I as follows:

τ(λ ) =



1, if λ ∈ {0,1},
1
2 , if λ = 0.2,
3
4 , if λ = 0.8,

0, otherwise,

`(ν) =


1, if ν = 0,
1
2 , if 0 < ν < 0.8,

0, otherwise.

Then, 0.5 is 1
2 -fuzzy β -open set but it is not 1

2 -fuzzy β -`-open.

Remark 2.12. The complement of r-fuzzy `-open (resp. r-fuzzy semi-`-open, r-fuzzy pre-`-

open, r-fuzzy α-`-open and r-fuzzy β -`-open) set is said to be r-fuzzy `-closed (resp. r-fuzzy

semi-`-closed, r-fuzzy pre-`-closed, r-fuzzy α-`-closed and r-fuzzy β -`-closed).

Corollary 2.13. Let (X ,τ, `) be a fuzzy ideal topological space, λ ∈ IX and r ∈ I◦. If we take

`= `0, we have

(1) r-fuzzy `-open, r-fuzzy pre-`-open and r-fuzzy preopen are equivalent.

(2) r-fuzzy semi-`-open and r-fuzzy semi-open are equivalent.

(3) r-fuzzy α-`-open and r-fuzzy α-open are equivalent.

(4) r-fuzzy β -`-open and r-fuzzy β -open are equivalent.

Lemma 2.14. Let (X ,τ, `) be a fuzzy ideal topological space. Then any union of r-fuzzy `-

open (resp. any intersection of r-fuzzy `-closed) sets is r-fuzzy `-open (resp. r-fuzzy `-closed).

Proof. Let {λ j ∈ IX : λ j is r-fuzzy `-open} j∈J . Then, λ j ≤ Iτ((λ j)
∗
r ,r) for each j ∈ J and

hence,
∨

j∈J λ j ≤
∨

j∈J Iτ((λ j)
∗
r ,r) ≤ Iτ(

∨
j∈J(λ j)

∗
r ,r) ≤ Iτ((

∨
j∈J λ j)

∗
r ,r). Other case is simi-

larly proved.

Proposition 2.15. Let (X ,τ, `) be a fuzzy ideal topological space, λ ∈ IX and r ∈ I◦. The

following statements are equivalent,
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(1) λ is r-fuzzy α-`-open.

(2) λ is r-fuzzy semi-`-open and r-fuzzy pre-`-open.

Proof. (1)⇒ (2) Let λ be r-fuzzy α-`-open, then λ ≤ Iτ(C∗τ (Iτ(λ ,r),r),r) ≤C∗τ (Iτ(λ ,r),r).

This shows that λ is r-fuzzy semi-`-open. Moreover,

λ ≤ Iτ(C∗τ (Iτ(λ ,r),r),r) = Iτ(Iτ(λ ,r)∨ (Iτ(λ ,r))∗r ,r)≤ Iτ(λ ∨λ
∗
r ,r).

Therefore, λ is r-fuzzy pre-`-open.

(2)⇒ (1) Let λ be r-fuzzy pre-`-open and r-fuzzy semi-`-open. Then,

λ ≤ Iτ(C∗τ (λ ,r),r)≤ Iτ(C∗τ (C
∗
τ (Iτ(λ ,r),r),r),r) = Iτ(C∗τ (Iτ(λ ,r),r),r).

This shows that λ is r-fuzzy α-`-open.

Definition 2.16. Let (X ,τ, `) be a fuzzy ideal topological space, λ ∈ IX and r ∈ I◦. Then λ is

said to be r-fuzzy ∗-dense-in-itself (resp. r-fuzzy ∗-perfect) if λ ≤ λ ∗r (resp. λ = λ ∗r ).

Proposition 2.17. Let (X ,τ, `) be a fuzzy ideal topological space, λ ∈ IX and r ∈ I◦. The

following statements are equivalent,

(1) λ is r-fuzzy `-open.

(2) λ is r-fuzzy pre-`-open and r-fuzzy ∗-dense-in-itself.

Proof. (1)⇒ (2) Let λ be r-fuzzy `-open, then λ ≤ Iτ(λ
∗
r ,r)≤ λ ∗r . This shows that λ is r-fuzzy

∗-dense-in-itself. Moreover,

λ ≤ Iτ(λ
∗
r ,r)≤ Iτ(λ ∨λ

∗
r ,r) = Iτ(C∗τ (λ ,r),r).

Therefore, λ is r-fuzzy pre-`-open.

(2)⇒ (1) Let λ be r-fuzzy pre-`-open and r-fuzzy ∗-dense-in-itself. Then,

λ ≤ Iτ(C∗τ (λ ,r),r) = Iτ(λ ∨λ
∗
r ,r) = Iτ(λ

∗
r ,r).
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This shows that λ is r-fuzzy `-open.

Remark 2.18. r-fuzzy pre-`-open and r-fuzzy ∗-dense-in-itself are independent notions as

shown by Example 2.19.

Example 2.19. Let X = {x,y,z} be a set and µ1,µ2 ∈ IX defined as follows: µ1 = { x
0.5 ,

y
0.4 ,

z
0.6}

and µ2 = { x
0.5 ,

y
0.3 ,

z
0.4}. Define τ, `1, `2 : IX → I as follows:

τ(λ ) =


1, if λ ∈ {0,1},
1
2 , if λ = µ1,

0, otherwise,

`1(ν) =


1, if ν = 0,
1
2 , if 0 < ν < 0.3,

0, otherwise.

`2(ν) =


1, if ν = 0,
1
2 , if 0 < ν < 0.6,

0, otherwise.

Then, (1) In (X ,τ, `1), µ2 is 1
2 -fuzzy ∗-dense-in-itself set but it is not 1

2 -fuzzy pre-`-open.

(2) In (X ,τ, `2), µ1 is 1
2 -fuzzy pre-`-open set but it is neither 1

2 -fuzzy ∗-dense-in-itself nor
1
2 -fuzzy `-open.

Theorem 2.20. Let (X ,τ, `) be a fuzzy ideal topological space and r ∈ I◦.

(1) If λ is r-fuzzy `-open and r-fuzzy ∗-perfect (resp. r-fuzzy semi-closed), then λ =

Iτ(λ
∗
r ,r).

(2) r-fuzzy `-open and r-fuzzy open are equivalent if λ is r-fuzzy ∗-perfect.

Proof. (1) Let λ be r-fuzzy `-open and r-fuzzy ∗-perfect, λ ≤ Iτ(λ
∗
r ,r) and λ = λ ∗r . Thus λ =

Iτ(λ
∗
r ,r). Other case, let λ be r-fuzzy `-open and r-fuzzy semi-closed, Iτ(λ

∗
r ,r)≤ Iτ(Cτ(λ ,r),r)≤

λ . Thus λ = Iτ(λ
∗
r ,r).

(2) Obvious.
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Theorem 2.21. Let (X ,τ, `) be a fuzzy ideal topological space, λ ,µ ∈ IX and r ∈ I◦. Then,

(1) λ is r-fuzzy semi-`-open iff C∗τ (λ ,r) =C∗τ (Iτ(λ ,r),r).

(2) λ is r-fuzzy semi-`-open iff there exists µ ∈ IX with τ(µ)≥ r such that µ ≤ λ ≤C∗τ (µ,r).

(3) If λ is r-fuzzy semi-`-open such that λ ≤ µ ≤ C∗τ (λ ,r), then µ is also r-fuzzy semi-`-

open.

Proof. (1) Let λ be r-fuzzy semi-`-open, λ ≤C∗τ (Iτ(λ ,r),r) and

C∗τ (λ ,r)≤C∗τ (C
∗
τ (Iτ(λ ,r),r),r) =C∗τ (Iτ(λ ,r),r).

Thus C∗τ (λ ,r) =C∗τ (Iτ(λ ,r),r). The converse is obvious.

(2) Let λ be r-fuzzy semi-`-open, λ ≤C∗τ (Iτ(λ ,r),r). Take Iτ(λ ,r) = µ , µ ≤ λ ≤C∗τ (µ,r).

Conversely, let µ ∈ IX with τ(µ)≥ r such that µ ≤ λ ≤C∗τ (µ,r). Then µ ≤ Iτ(λ ,r) and hence

λ ≤C∗τ (µ,r)≤C∗τ (Iτ(λ ,r),r). This shows that µ is r-fuzzy semi-`-open.

(3) Let λ be r-fuzzy semi-`-open and λ ≤ µ ≤C∗τ (λ ,r). Then,

λ ≤C∗τ (Iτ(λ ,r),r)≤C∗τ (Iτ(µ,r),r).

Since µ ≤C∗τ (λ ,r), µ ≤C∗τ (λ ,r) ≤C∗τ (C
∗
τ (Iτ(µ,r),r),r) = C∗τ (Iτ(µ,r),r). This shows that µ

is r-fuzzy semi-`-open.

Theorem 2.22. Let (X ,τ, `) be a fuzzy ideal topological space. Then for each λ ∈ IX and

r ∈ I◦, we define an operator C`
τ : IX × I◦→ IX as follows:

C`
τ(λ ,r) =

∧
{µ ∈ IX : λ ≤ µ, µ is r-fuzzy `-closed}.

For each λ , ν ∈ IX , the operator C`
τ satisfies the following properties:

(1) C`
τ(1,r) = 1.

(2) λ ≤C`
τ(λ ,r).

(3) If λ ≤ ν , then C`
τ(λ ,r)≤C`

τ(ν ,r).

(4) If `(λ )≥ r, then C`
τ(λ ,r) = 1.
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(5) C`
τ(C

`
τ(λ ,r),r) =C`

τ(λ ,r).

(6) C`
τ(λ ,r)∨C`

τ(ν ,r)≤C`
τ(λ ∨ν ,r).

(7) λ =C`
τ(λ ,r) iff λ is r-fuzzy `-closed.

Proof. (1) Since 0 ≤ Iτ(0∗r ,r) this implies 1 is r-fuzzy `-closed. From the definition of C`
τ ,

C`
τ(1,r) = 1.

(2), (3), (4) and (7) are easily proved from the definition of C`
τ , Remark 2.12 and Lemma

2.14.

(5) From (2) and (3), we have C`
τ(λ ,r) ≤ C`

τ(C
`
τ(λ ,r),r). Now we show that C`

τ(λ ,r) ≥

C`
τ(C

`
τ(λ ,r),r). Suppose that C`

τ(λ ,r) � C`
τ(C

`
τ(λ ,r),r). There exist x ∈ X and t ∈ (0,1) such

that C`
τ(λ ,r)(x)< t <C`

τ(C
`
τ(λ ,r),r)(x). (A)

Since C`
τ(λ ,r)(x) < t, by the definition of C`

τ , there exists r-fuzzy `-closed µ1 with λ ≤ µ1

such that C`
τ(λ ,r)(x)≤ µ1(x)< t. Since λ ≤ µ1, we have C`

τ(λ ,r)≤ µ1. Again, by the definition

of C`
τ , we have C`

τ(C
`
τ(λ ,r),r)≤ µ1. Hence C`

τ(C
`
τ(λ ,r),r)(x)≤ µ1(x)< t, it is a contradiction

for (A). Thus, C`
τ(λ ,r)≥C`

τ(C
`
τ(λ ,r),r). Then C`

τ(C
`
τ(λ ,r),r) =C`

τ(λ ,r)

(6) Since λ and ν ≤ λ ∨ν implies C`
τ(λ ,r)≤C`

τ(λ ∨ν ,r) and C`
τ(ν ,r)≤C`

τ(λ ∨ν ,r). Thus,

C`
τ(λ ,r)∨C`

τ(ν ,r)≤C`
τ(λ ∨ν ,r).

Theorem 2.23. Let (X ,τ, `) be a fuzzy ideal topological space. Then for each λ ∈ IX and

r ∈ I◦, we define an operator I`τ : IX × I◦→ IX as follows:

I`τ(λ ,r) =
∨
{µ ∈ IX : µ ≤ λ , µ is r-fuzzy `-open}.

For each λ , ν ∈ IX , the operator I`τ satisfies the following properties:

(1) I`τ(0,r) = 0.

(2) I`τ(λ ,r)≤ λ .

(3) I`τ(λ
c,r) = (C`

τ(λ ,r))
c.

(4) If `= `1, then I`τ(λ ,r) = 0.
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(5) I`τ(I
`
τ(λ ,r),r) = I`τ(λ ,r).

(6) I`τ(λ ,r)∧ I`τ(ν ,r)≥ I`τ(λ ∧ν ,r).

(7) λ = I`τ(λ ,r) iff λ is r-fuzzy `-open.

Proof. It is similarly proved as in Theorem 2.22.

3. CONTINUITY OF FUZZY MULTIFUNCTIONS VIA FUZZY IDEALS

Definition 3.1. A fuzzy multifunction F : (X ,τ, `)( (Y,η) is called:

(1) Fuzzy upper `-continuous (resp. almost `-continuous and weakly `-continuous) iff Fu(µ) is

r-fuzzy `-open (resp. Fu(µ)≤ Iτ([Fu(Iη(Cη(µ,r),r))]∗r ,r) and Fu(µ)≤ Iτ([Fu(Cη(µ,r))]∗r ,r))

for each µ ∈ IY with η(µ)≥ r and r ∈ Io.

(2) Fuzzy lower `-continuous (resp. almost `-continuous and weakly `-continuous) iff F l(µ) is

r-fuzzy `-open (resp. F l(µ) ≤ Iτ([F l(Iη(Cη(µ,r),r))]∗r ,r) and F l(µ) ≤ Iτ([F l(Cη(µ,r))]∗r ,r))

for each µ ∈ IY with η(µ)≥ r and r ∈ Io.

The following implications hold:

`-continuity ⇒ almost `-continuity ⇒ weakly `-continuity.

In general the converses are not true.

Remark 3.2. (1) Fuzzy upper (resp. lower) `-continuity and fuzzy upper (resp. lower) semi-

continuity [11] are independent notions as shown by Example 3.5.

(2) Fuzzy upper (resp. lower) almost `-continuity and fuzzy upper (resp. lower) almost

continuity [11] are independent notions as shown by Example 3.3.
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(3) Fuzzy upper (resp. lower) weakly `-continuity and fuzzy upper (resp. lower) weakly

continuity [11] are independent notions as shown by Example 3.4.

Example 3.3. Let X = {x1,x2}, Y = {y1,y2,y3} and F : X (Y be a fuzzy multifunction defined

by GF(x1,y1) = 0.1, GF(x1,y2) = 1.0, GF(x1,y3) = 0.3, GF(x2,y1) = 0.5, GF(x2,y2) = 0.1

and GF(x2,y3) = 1.0. Define τ1,τ2, `
1, `2 : IX −→ I and η1,η2 : IY → I as follows:

τ1(λ ) =


1, if λ ∈ {0,1},
1
2 , if λ = 0.5,

0, otherwise,

τ2(λ ) =


1, if λ ∈ {0,1},
1
2 , if λ = 0.4,

0, otherwise,

`1(ν) =


1, if ν = 0,
1
2 , if 0 < ν < 0.4,

0, otherwise,

`2(ν) =


1, if ν = 0,
1
2 , if 0 < ν < 0.3,

0, otherwise,

η1(µ) =



1, if µ ∈ {0,1},
1
3 , if µ = 0.4,
1
2 , if µ = 0.5,

0, otherwise,

η2(µ) =


1, if µ ∈ {0,1},
1
3 , if µ = 0.4,

0, otherwise.

Then, (1) F : (X ,τ1, `
1)( (Y,η1) is fuzzy upper (resp. lower) almost `-continuous but it is not

fuzzy upper (resp. lower) `-continuous.

(2) F : (X ,τ1, `
2)( (Y,η2) is fuzzy upper (resp. lower) almost `-continuo-us but it is

not fuzzy upper (resp. lower) almost continuous.

(3) F : (X ,τ2, `
1)( (Y,η2) is fuzzy upper (resp. lower) almost continuous but it is not

fuzzy upper (resp. lower) almost `-continuous.

Example 3.4. Let X = {x1,x2,x3}, Y = {y1,y2,y3} and F : X ( Y be a fuzzy multifunction

defined by GF(x1,y1) = 0.8, GF(x1,y2) = 0.3,GF(x1,y3) = 0.3, GF(x2,y1) = 0.1, GF(x2,y2) =

1.0, GF(x2,y3) = 0.1, GF(x3,y1) = 0.1, GF(x3,y2) = 0.2, GF(x3,y3) = 1.0. Define µ1 ∈ IX

and µ2 ∈ IY as follows: µ1 = { x1
0.4 ,

x2
0.1 ,

x3
0.2} and µ2 = { y1

0.4 ,
y2
0.1 ,

y3
0.2}. Define τ1,τ2, `

1, `2, `3 :
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IX −→ I and η : IY → I as follows:

τ1(λ ) =


1, if λ ∈ {0,1},
1
2 , if λ = 0.5,

0, otherwise,

`1(ν) =


1, if ν = 0,
1
2 , if 0 < ν < 0.4,

0, otherwise,

τ2(λ ) =


1, if λ ∈ {0,1},
1
2 , if λ = 0.3,

0, otherwise,

`2(ν) =


1, if ν = 0,
1
2 , if 0 < ν < 0.2,

0, otherwise,

η(µ) =


1, if µ ∈ {0,1},
3
4 , if µ = µ2,

0, otherwise,

`3(ν) =


1, if ν = 0,
2
3 , if 0 < ν < 0.9,

0, otherwise.

Then, (1) F : (X ,τ1, `
1)( (Y,η) is fuzzy upper (resp. lower) weakly `-continuous but

it is not fuzzy upper (resp. lower) almost `-continuous.

(2) F : (X ,τ2, `
2)( (Y,η) is fuzzy upper (resp. lower) weakly `-continuous but it

is not fuzzy upper (resp. lower) weakly continuous.

(3) F : (X ,τ1, `
3)( (Y,η) is fuzzy upper (resp. lower) weakly continuous but it is

not fuzzy upper (resp. lower) weakly `-continuous.

Example 3.5. Let X = {x1,x2}, Y = {y1,y2,y3} and F : X (Y be a fuzzy multifunction defined

by GF(x1,y1) = 0.1, GF(x1,y2) = 1.0, GF(x1,y3) = 0.3, GF(x2,y1) = 0.5, GF(x2,y2) = 0.1

and GF(x2,y3) = 1.0. Define τ1,τ2, `
1, `2 : IX −→ I and η : IY → I as follows:

τ1(λ ) =



1, if λ ∈ {0,1},
1
2 , if λ = 0.2,
3
4 , if λ = 0.3,

0, otherwise,

τ2(λ ) =


1, if λ ∈ {0,1},
1
2 , if λ = 0.3,

0, otherwise,

`1(ν) =


1, if ν = 0,
2
3 , if 0 < ν < 0.3,

0, otherwise,

`2(ν) =


1, if ν = 0,
1
2 , if 0 < ν < 0.2,

0, otherwise,
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η(µ) =


1, if µ ∈ {0,1},
1
2 , if µ = 0.2,

0, otherwise.

Then, (1) F : (X ,τ1, `
1)( (Y,η) is fuzzy upper (resp. lower) semi-continuous but it is not

fuzzy upper (resp. lower) `-continuous.

(2) F : (X ,τ2, `
2)( (Y,η) is fuzzy upper (resp. lower) `-continuous but it is not fuzzy upper

(resp. lower) semi-continuous.

Corollary 3.6 Let F : (X ,τ, `) ( (Y,η) be a fuzzy multifunction (resp. normalized fuzzy

multifunction). Then every fuzzy lower (resp. upper) `-continuous multifunction is fuzzy lower

(resp. upper) precontinuous.

Corollary 3.7. Let F : (X ,τ, `) ( (Y,η) be a fuzzy multifunction (resp. normalized fuzzy

multifunction). If we take ` = `0, we have F is fuzzy lower (resp. upper) `-continuous iff it is

fuzzy lower (resp. upper) precontinuous.

Theorem 3.8. For a fuzzy multifunction F : (X ,τ, `)( (Y,η), µ ∈ IY and r ∈ Io the following

statements are equivalent:

(1) F is fuzzy lower `-continuous.

(2) Fu(µ) is r-fuzzy `-closed, if η(µc)≥ r.

(3) C`
τ(F

u(µ),r)≤ Fu(Cη(µ,r)).

(4) F l(Iη(µ,r))≤ I`τ(F
l(µ),r).

Proof. (1)⇒ (2) Let µ ∈ IY with η(µc)≥ r. Then by Definition 3.1(2), F l(µc) = (Fu(µ))c is

r-fuzzy `-open. Thus, Fu(µ) is r-fuzzy `-closed.

(2) ⇒ (3) Let µ ∈ IY . Then by (2), Fu(Cη(µ,r)) is r-fuzzy `-closed. Hence, we obtain

C`
τ(F

u(µ),r)≤ Fu(Cη(µ,r)).



2628 I. M. TAHA

(3)⇒ (4) Since (Fu(Cη(µ,r)))c =F l(Iη(µ
c,r)) and (C`

τ(F
u(µ),r))c = I`τ(F

l(µc),r). Hence,

we obtain I`τ(F
l(µ),r)≥ F l(Iη(µ,r)) for each µ ∈ IY .

(4) ⇒ (1) Let µ ∈ IY with η(µ) ≥ r. Then by (4) and µ = Iη(µ,r), F l(µ) ≤ I`τ(F
l(µ),r).

Thus, F l(µ) is r-fuzzy `-open.

The following theorem is similarly proved as in Theorem 3.8.

Theorem 3.9. For a fuzzy multifunction F : (X ,τ, `)( (Y,η), µ ∈ IY and r ∈ Io the following

statements are equivalent:

(1) F is fuzzy upper `-continuous.

(2) F l(µ) is r-fuzzy `-closed, if η(µc)≥ r.

(3) C`
τ(F

l(µ),r)≤ F l(Cη(µ,r)).

(4) Fu(Iη(µ,r))≤ I`τ(F
u(µ),r).

Theorem 3.10. For a fuzzy multifunction F : (X ,τ, `)( (Y,η), µ ∈ IY and r ∈ Io the following

statements are equivalent:

(1) F is fuzzy lower almost `-continuous.

(2) F l(µ) is r-fuzzy `-open, if µ is r-fuzzy regular open.

(3) F l(Iη(Cη(µ,r),r)) is r-fuzzy `-open, ∀ µ ∈ IY .

(4) Fu(µ) is r-fuzzy `-closed, if µ is r-fuzzy regular closed.

(5) Fu(Cη(Iη(µ,r),r)) is r-fuzzy `-closed, ∀ µ ∈ IY .

(6) C`
τ(F

u(µ),r)≤ Fu(Cη(Iη(µ,r),r)), if µ is r-fuzzy semi-open.

(7) F l(Iη(Cη(µ,r),r))≤ I`τ(F
l(µ),r), if µ is r-fuzzy semi-closed.

Proof. (1)⇒ (2) Let µ be r-fuzzy regular open set. Then by (1),

F l(µ)≤ Iτ([F l(Iη(Cη(µ,r),r))]∗r ,r) = Iτ([F l(µ)]∗r ,r).

Thus, F l(µ) is r-fuzzy `-open.
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(2) ⇒ (3) Since Iη(Cη(µ,r),r) is r-fuzzy regular open set for each µ ∈ IY . Then by (2),

F l(Iη(Cη(µ,r),r)) is r-fuzzy `-open.

(3)⇒ (1) Let µ ∈ IY with η(µ)≥ r. Then by (3),

F l(µ)≤ F l(Iη(Cη(µ,r),r))≤ Iτ([F l(Iη(Cη(µ,r),r))]∗r ,r).

Thus, F is fuzzy lower almost `-continuous.

(2) ⇔ (4) Let µ be r-fuzzy regular closed set. Then by (2), F l(µc) = (Fu(µ))c is r-fuzzy

`-open. Thus, Fu(µ) is r-fuzzy `-closed.

(4) ⇔ (5) Since Cη(Iη(µ,r),r) is r-fuzzy regular closed set for each µ ∈ IY . Then by (4),

Fu(Cη(Iη(µ,r),r)) is r-fuzzy `-closed.

(5) ⇒ (6) Let µ be r-fuzzy semi-open set. Then by (5), Fu(Cη(Iη(µ,r),r)) is r-fuzzy `-

closed. Hence, we obtain C`
τ(F

u(µ),r)≤ Fu(Cη(Iη(µ,r),r)).

(6)⇒ (7) Let µ be r-fuzzy semi-closed set. Then by (6), C`
τ(F

u(µc),r)≤Fu(Cη(Iη(µ
c,r),r)).

Thus, F l(Iη(Cη(µ,r),r))≤ I`τ(F
l(µ),r).

(7)⇒ (2) Let µ be r-fuzzy regular open set. Then by (7) and µ = Iη(Cη(µ,r),r), F l(µ) ≤

I`τ(F
l(µ),r). Thus, F l(µ) is r-fuzzy `-open.

The following theorem is similarly proved as in Theorem 3.10.

Theorem 3.11. For a fuzzy multifunction F : (X ,τ, `)( (Y,η), µ ∈ IY and r ∈ Io the following

statements are equivalent:

(1) F is fuzzy upper almost `-continuous.

(2) Fu(µ) is r-fuzzy `-open, if µ is r-fuzzy regular open.

(3) Fu(Iη(Cη(µ,r),r)) is r-fuzzy `-open, ∀ µ ∈ IY .
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(4) F l(µ) is r-fuzzy `-closed, if µ is r-fuzzy regular closed.

(5) F l(Cη(Iη(µ,r),r)) is r-fuzzy `-closed, ∀ µ ∈ IY .

(6) C`
τ(F

l(µ),r)≤ F l(Cη(Iη(µ,r),r)), if µ is r-fuzzy semi-open.

(7) Fu(Iη(Cη(µ,r),r))≤ I`τ(F
u(µ),r), if µ is r-fuzzy semi-closed.

Corollary 3.12. A fuzzy multifunction F : (X ,τ, `)( (Y,η , `) is fuzzy upper (resp. lower)

weakly `-continuous if Fu(µ) ≤ Iτ([Fu(Cη(µ,r))]∗r ,r) (resp. F l(µ) ≤ Iτ([F l(Cη(µ,r))]∗r ,r))

for each r-fuzzy regular open µ ∈ IY .

Definition 3.13. A fuzzy multifunction F : (X ,τ, `)( (Y,η , `) is called fuzzy upper (resp.

lower) `-irresolute iff Fu(µ) (resp. F l(µ)) is r-fuzzy `-open for each r-fuzzy `-open µ ∈ IY .

Remark 3.14. Fuzzy upper (resp. lower) `-irresolute and fuzzy upper (resp. lower) `-

continuous are independent notions because r-fuzzy `-open and r-fuzzy open are independent

notions.

The following theorems are similarly proved as in Theorem 3.8.

Theorem 3.15. For a fuzzy multifunction F : (X ,τ, `)( (Y,η , `), µ ∈ IY and r ∈ Io the fol-

lowing statements are equivalent:

(1) F is fuzzy lower `-irresolute.

(2) Fu(µ) is r-fuzzy `-closed, if µ is r-fuzzy `-closed.

(3) C`
τ(F

u(µ),r)≤ Fu(C`
η(µ,r)).

(4) F l(I`η(µ,r))≤ I`τ(F
l(µ),r).

Theorem 3.16. For a fuzzy multifunction F : (X ,τ, `)( (Y,η , `), µ ∈ IY and r ∈ Io the fol-

lowing statements are equivalent:

(1) F is fuzzy upper `-irresolute.

(2) F l(µ) is r-fuzzy `-closed, if µ is r-fuzzy `-closed.

(3) C`
τ(F

l(µ),r)≤ F l(C`
η(µ,r)).
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(4) Fu(I`η(µ,r))≤ I`τ(F
u(µ),r).

Theorem 3.17. Let F : (X ,τ, `) ( (Y,η , `) and H : (Y,η , `) ( (Z,γ, `) be two fuzzy multi-

functions. Then we have the following:

(1) H ◦ F is fuzzy upper (resp. lower) `-continuous if F is fuzzy upper (resp. lower) `-

irresolute and H is fuzzy upper (resp. lower) `-continuous.

(2) H ◦F is fuzzy upper (resp. lower) almost `-continuous if F is fuzzy upper (resp. lower)

`-irresolute and H is fuzzy upper (resp. lower) almost `-continuous.

(3) H ◦F is fuzzy upper (resp. lower) weakly `-continuous if F is fuzzy upper (resp. lower)

`-irresolute and H is fuzzy upper (resp. lower) `-continuous.

(4) H ◦F is fuzzy upper (resp. lower) `-irresolute if F and H are fuzzy upper (resp. lower)

`-irresolute.

(5) H ◦F is fuzzy lower `-continuous if F is fuzzy lower `-continuous and H is fuzzy lower

semi-continuous

Proof. Obvious.

Definition 3.18. Let (X ,τ, `) be a fuzzy ideal topological space and r ∈ I◦. Then λ ∈ IX is

called r-fuzzy `-compact (resp., r-fuzzy almost `-compact and r-fuzzy nearly `-compact) iff

for every family {µi ∈ IX | µi is r-fuzzy `-open }i∈Γ such that λ ≤
∨

i∈Γ µi, there exists a finite

subset Γ◦ of Γ such that λ ≤
∨

i∈Γ◦ µi (resp., λ ≤
∨

i∈Γ◦C
`
τ(µi,r) and λ ≤

∨
i∈Γ◦ I`τ(C

`
τ(µi,r),r)).
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Remark 3.19. r-fuzzy `-compact (resp., r-fuzzy almost `-compact and r-fuzzy nearly `-

compact) and r-fuzzy compact (resp., r-fuzzy almost compact and r-fuzzy nearly compact)

are independent notions because r-fuzzy `-open and r-fuzzy open are independent notions.

The following implications hold:

r-fuzzy `-compact⇒ r-fuzzy nearly `-compact⇒ r-fuzzy almost `-compact.

Theorem 3.20. Let F : (X ,τ, `) ( (Y,η) be a crisp fuzzy upper `-continuous and compact-

valued. Then if λ ∈ IX is r-fuzzy `-compact, F(λ ) is r-fuzzy compact .

Proof. Let λ ∈ IX be r-fuzzy `-compact and {µi ∈ IY | η(µi) ≥ r}i∈Γ with F(λ ) ≤
∨

i∈Γ µi.

Since λ =
∨

xt∈λ xt , F(λ ) =F(
∨

xt∈λ xt) =
∨

xt∈λ F(xt)≤
∨

i∈Γ µi. It follows that for each xt ∈ λ ,

F(xt) ≤
∨

i∈Γ µi. Since F is compact-valued, then there exists finite subset Γxt of Γ such that

F(xt)≤
∨

n∈Γxt
µn = µxt . Since xt ≤Fu(F(xt))≤Fu(µxt ), we have λ =

∨
xt∈λ xt ≤

∨
xt∈λ Fu(µxt ).

Since η(µxt ) ≥ r, then from Definition 3.1(1) we have Fu(µxt ) is r-fuzzy `-open. Hence

{Fu(µxt ) : Fu(µxt ) is r-fuzzy `-open, xt ∈ λ} is a family covering the set λ . Since λ is r-

fuzzy `-compact, then there exists finite index set N of Γxt such that λ ≤
∨

n∈N Fu(µx(tn)). Then,

F(λ )≤F(
∨

n∈N Fu(µx(tn)))=
∨

n∈N F(Fu(µx(tn)))≤
∨

n∈N µx(tn). Thus, F(λ ) is r-fuzzy compact.

4. CONCLUSIONS

In the present work, a new forms of sets called r-fuzzy `-open, r-fuzzy semi-`-open, r-fuzzy

pre-`-open, r-fuzzy α-`-open and r-fuzzy β -`-open sets are introduced on a fuzzy ideal topo-

logical space (X ,τ, `) in Šostak sense. Also, the relations of these sets with each other are

investigated with the help of examples. Moreover, the concepts of fuzzy upper (resp. lower)

`-continuous, almost `-continuous and weakly `-continuous multifunctions are introduced and

some properties of these multifunctions along with their mutual relationships are specified.
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