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Abstract: We consider the problem of finding bounds on the size of ternary equidistant codes. Optimal codes have 

been constructed by combinatorial and computer methods. The exact values on B3(n,d) for ternary equidistant codes 

of length 11≤n≤15 are presented.  
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1. INTRODUCTION 

An (n,M,d)q equidistant code (EC) is a set of M codewords of length n over the alphabet {0, 1 

,… q - 1} such that any two codewords differ in d positions. 

An (n,M,d,w)q code is called equidistant constant weight code (ECWC) if all its codewords 

have the same weight w. Let Bq(n,d) (or Bq (n,d,w)) denote the largest possible value of M when 

the other parameters are fixed. Codes with such parameters are called optimal. 
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Equidistant codes have been investigated in [1], [2], [3], [4], [9] etc. In this work we continue 

investigations from [1]. General bounds for q-ary equidistant codes are discussed in Section 2. 

The obtained codes for ternary equidistant codes of length 11≤n≤15 are presented in Section 3. 

The new results on B3(n,d) for 11≤n≤15  are given in Table 1.  

Presented codes are used for data security in the project “Study of the Application of New 

Mathematical Methods for Cardiac Data Analysis” [11]. 

The project contains research about semantic web presentation of digital data in the field of 

medical systems and building ontology for holter monitoring system. Effective organization of 

unstructured data are also explored, which is a suitable method of organizing data in the field of 

medical systems. 

 

2. GENERAL BOUNDS FOR EQUIDISTANT CODES 

Some general upper and lower bounds for equidistant codes and ECWC are given by the 

following theorems: 

Theorem 1 Bq(n, n) = q. 

Theorem 2 Bq (n,d) = 1 + Bq (n,d, d). 

Theorem 3 (the Johnson bounds for ECWC) The maximum number of codewords in a q-ary 

ECWC satisfy the inequalities: 

𝐵𝑞(𝑛, 𝑑, 𝑤) ≤
𝑛

𝑛 − 𝑤
𝐵𝑞(𝑛 − 1, 𝑑, 𝑤) 

𝐵𝑞(𝑛, 𝑑, 𝑤) ≤
𝑛(𝑞 − 1)

𝑤
𝐵𝑞(𝑛 − 1, 𝑑, 𝑤 − 1) 

The simplified version of q-ary Plotkin bound [5], [8] is: 

Theorem 4   

𝐵𝑞(𝑛, 𝑑) ≤
𝑑𝑞

𝑑𝑞 − 𝑛(𝑞 − 1)
 

Exact equality above is equivalent to existence of optimal equidistant code (n, Bq(n,d),d)q [10].  

When d = 3, the bounds for n≥3 and q > 2 are determined [1]. 

Theorem 5 If  3 ≤ q < 9 and n > 3 then Bq(n, 3) = 9 and if q ≥ 9 and n  > 3 then Bq(n, 3) = q. 
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Theorem 6 𝐵𝑞(𝑞 +  1, 𝑞, 𝑞 −  1)  ≤ (𝑞
2 + 𝑞)/2. 

Theorem 7 [10] The optimal equidistant (n,qt,d)q codes and RBIB designs (v=qk,b,k,r,λ) are 

equivalent to one another and their parameters are connected by the conditions v = M, b = nq, k = 

t, r = n,  λ = n - d. 

 

3. COMPUTER SEARCH AND NEW RESULTS 

The new codes are obtained by combinatorial considerations or by computer search.  

There are two main problems: code construction and determining code equivalence. For 

finding existence and equivalence of codes we use methods similar to those described in [6], [7], 

[11]. 

Let C be an (n,M,d,w)3 ECWC for w = d and 𝐶0 = 𝐶 ∪ {0}  be an (n, M0, d)3 EC. Our 

approach is based on Theorem 2 and on the observation that an (n,M,d,d)3  code C can be 

shortened to an (n -1,M, d, d)3 code C′. Any (n,M,d)3  equidistant code C contains (n -1,M′,d)3 

codes with M′ = ⌈𝑀
𝑛−𝑑

𝑛
⌉ + 1 codewords (Theorem 2, Theorem 3). The first problem is to 

construct all the (n,M,d,w=d)3 codes with M codewords which contain C′ as a subcode. 

To obtain the results for ternary equidistant codes we use some theoretical and software tools 

and a computer program for the ternary case based on backtrack search. We increased the speed 

of the algorithm from [1] by adding new specific conditions and fixing some parts of the code.  

The upper bounds for EC which we used for our research are obtained from theorems 

presented in Section 2 or by computer search. 

Also this problem can be represented as the maximal clique problem in the graph induced by 

the set of all q-ary vectors of length n. To solve it, we use the socalled backtrack search. The 

search space is only the set of all vectors that are at distance d from every codeword of C′. Then 

only the distance between codewords is under control. 

For the case of q-ary codes, the corresponding graph where the search is realized is defined as 

follows. Vertices are vectors of length n over the alphabet of size q, and two vertices are 
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connected by an edge if and only if the Hamming distance between the corresponding vectors is 

exactly d. 

What we have to find in the graph thus obtained is the quantity Bq(n, d), the size of the largest 

clique in this graph. 

The exact values for B3(n,d) for ternary equidistant codes of are given in Table 1. The obtained 

new values in the table are denoted by bold typeface. 

More details of classification results for ternary equidistant codes for n ≤ 10 are given in [1]. 

The exact values for n = d follow from Theorem 1. The exact values for d = 3 in Table 1 are 

obtained in [1]. The codewords of the (4,9,3)3 code are (up to equivalence):  (0000, 0111, 0222, 

1012, 1120, 1201, 2021, 2102, 2210). There exists a family of unique optimal equidistant codes 

with parameters (n,9,3)3 for n ≥ 3 [1]. 

Some values in Table 1 for 6 ≤ d ≤ 15 are derived by the next theorems and propositions: 

Theorem 8 If n > 6 then B3(n,n-1) = 3 and if n > 12 then B3(n,n-2)  = 3. 

Proof: It is easy to prove that in these cases we could have only codes consisting of 3 

codewords. It follows from Theorem 4 that for d = n - 1 and n > 6 we have that B3(n,n-1) ≤ 3 + x 

where 0 < x < 1 so B3(n,n-1)  = 3. Also, for d = n -2 and n > 12 we have that B3(n,n-2) ≤ 3 + x 

where 0 < x < 1 so B3(n,n-2) = 3. 

There exist families of optimal equidistant codes with parameters (n,3,n-1)3 for n > 6 and 

(n,3,n-2)3 for n > 12. 

Proposition 9 There exist 2 inequivalent optimal ECs with parameters (n,3,n-1)3 for 10 < n ≤ 

15 and 3 inequivalent optimal ECs with parameters (n,3,n-2)3 for 12 < n ≤ 15 (up to equivalence). 

The inequivalent (11,3,10)3 ECs are 

(00000000000, 01111111111, 02222222222) 

and 

(00000000000, 01111111111, 10122222222).  

The inequivalent (13,3,11)3 ECs are  
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(0000000000000, 0011111111111, 0022222222222), (0000000000000, 0011111111111, 

0101222222222)  

and  

(0000000000000, 0011111111111, 1100112222222). 

Proposition 10 There are optimal ECs with parameters 

•  (11,15,6)3;   

•  (n,18,6)3 for 12 ≤ n ≤ 15. 

Proposition 11 There are optimal ECs with parameters 

• (11,11,7)3; 

• (n,12,7)3 for 12  ≤ n ≤ 14; 

• (15,14,7)3. 

Proposition 12 There are optimal ECs with parameters 

• (11,12,8)3; 

• (n,13,8)3 for 12 ≤ n ≤ 14; 

• (15,16, 8)3. 

Proposition 13 There are optimal ECs with parameters 

• (11,4,9)3;  

• (12,9,9)3;  

• (n,27,9)3  for 13 ≤ n ≤ 15. 

Proposition 14 There are optimal ECs with parameters 

• (12,4,10)3;  

• (13,6.10)3;  

• (n,12,10)3 for 14 ≤ n ≤ 15. 

Proposition 15 Then are optimal ECs with parameters 

• (14,6,11)3: 

• (15,10,11)3. 

Proposition 16 There is optimal EC with parameters (15,6,12)3. 
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Some of the codes in the previous propositions are explicitly listed below. 

(12,18,6)3:  

000000000000, 000000111111, 000000222222, 000011001122, 000011112200, 

000011220011, 000101010212, 000101121020, 000101202101, 001001012021, 001001120102, 

001001201210, 010001021201, 010001102012, 010001210120, 100001022110,              

100001100221,             100001211002 

(11,11,7)3:  

00000000000, 00001111111, 00110011222, 01011102022, 01110120101, 10102100122, 

10111201001, 11020001121, 11200111002,    12011010102,   21101010021 

(12,12,7)3:  

000000000000, 000001111111, 000110011222, 001011102022, 001110120101, 

010102100122, 010111201001, 011020001121, 011200111002, 012011010102,  

021101010021,  101101001102 

(11,12,8)3:  

00000000000, 00011111111, 00101222222, 01222001122, 10222112200, 12012020212, 

12121100021, 12200221101,    21020202211,    21102121010,  21211210002 

(11,4,9)3:  

00000000000, 00111111111, 

11001122222, 12222200112 

(12,9,9)3:  

000000000000, 000111111111, 000222222222, 111000111222, 111111222000, 

111222000111, 222000222111,              222111000222,             222222111000 

(13,27,9)3:  

0000000000000, 0000111111111, 0000222222222, 0111000111222, 0111111222000, 

0111222000111, 0222000222111, 0222111000222, 0222222111000, 1012012012012, 

1012120120120, 1012201201201, 1120012120201, 1120120201012, 1120201012120, 

1201012201120, 1201120012201, 1201201120012, 2021021021021, 2021102102102, 
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2021210210210, 2102021102210, 2102102210021, 2102210021102, 2210021210102,           

2210102021210,          2210210102021 

(12,4,10)3:  

000000000000, 001111111111,  

110011222222, 222222001122 

(13,6,10)3:  

0000000000000, 0001111111111, 0010122222222, 1112200011122,          

1121211202200,           1122022120011 

(14,12,10)3:  

00000000000000, 00001111111111, 00010122222222, 01112200011122, 01121212200201, 

01222020122011, 10212221101200, 12100201022211, 12111120210010, 21220101212100,  

22021202121020,  22202122000121 

(14,6,11)3:  

00000000000000, 00011111111111,  

01100112222222, 11122220001112, 

12211221220020, 12222002112201 

(15,10,11)3:  

000000000000000, 000011111111111, 000101222222222, 011222000111222, 

101222112022001, 111012220202110, 122020121120220, 212110201012021, 

222102022101101, 222211010220012 

(15,6,12)3:  

000000000000000, 000111111111111, 111000111222222, 111222222000111,     

222111222222000,    222222000111222 

Remark: All (n+k,M,d)3 codes in the previous propositions, which codewords are not 

explicitly listed are obtained from (n,M,d)3 codes by construction I. 

Construction I: From the (n,M,d)q code A we construct an (n+k,M,d)q code in the following 

way: 



2720 

TODOR TODOROV, GALINA BOGDANOVA 

{(0…0⏟  
𝑘

, 𝑎) |𝑎 ∈ 𝐴} 

 

TABLE 1:  B3(n,d)  FOR 11 ≤ n ≤ 15 

Key to Table 1: 

1 - Theorem 1; g - Theorem 5; z - Theorem 7; d - Theorem 8; c - concatenation; I - from 

Construction I; no index - from computer search. 

 

4. CONCLUSION 

We consider the problem of finding bounds on the size of ternary equdistant codes for 11 ≤ n ≤ 

15. We present some combinatorial constructions and computer methods that are used to find new 

optimal equidistant codes. Some of the new codes are explicitly listed. Presented codes are used 

for data security in the specialized medical system. 
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