SOME PROPERTIES OF GENERALIZED COMPLEMENTS OF A GRAPH

K.P. GIRIJA, SABITHA D'SOUZA*, C. DEVADAS NAYAK, PRADEEP G. BHAT

Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education,
Manipal-576104, INDIA

Copyright © 2020 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. Let $P=\left\{V_{1}, V_{2}, \cdots, V_{k}\right\}$ be a partition of vertex set V of G. The k-complement of G denoted by G_{k}^{P} is defined as follows: for all V_{i} and V_{j} in $P, i \neq j$, remove the edges between V_{i} and V_{j} and add edges between V_{i} and V_{j} which are not in G. The graph G is k-self complementary with respect to P if $G_{k}^{P} \cong G$. The k(i)-complement $G_{k(i)}^{P}$ of a graph G with respect to P is defined as follows: for all $V_{r} \in P$, remove edges inside V_{r} and add edges which are not in V_{r}. In this paper we provide sufficient conditions for G_{k}^{P} and $G_{k(i)}^{P}$ to be disconnected, regular, line preserving and Eulerian.

Keywords: in-degree; out-degree; Eulerian graph; k-complement; k(i)-complement.
2010 AMS Subject Classification: 05C07, 05C40, 05C45.

1. Introduction

All graphs considered in this paper will be assumed to be simple, finite and undirected. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. A graph is connected if every pair of vertices are joined by a path and a disconnected graph is a graph consists at least two components. The complement of a graph G, denoted by \bar{G} has the same vertex set as that of G, but two vertices are adjacent in \bar{G} if and only if they are not adjacent in G. The number of edges incident to a

[^0]vertex v in G is called degree of vertex v and is denoted by $d(v)$. The minimum degree among vertices of G is denoted by $\delta(G)$, while $\Delta(G)$ denotes maximum degree among vertices of G. If $\delta(G)=\Delta(G)=r$, then all the vertices have same degree and G is called regular of degree r. A graph is Eulerian if it has a closed trail containing all edges [3]. E. Sampathkumar et.al [6] introduced k-complement and $\mathrm{k}(\mathrm{i})$-complement of graphs as follows.

Let $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a partition of vertex set V of G. The k-complement of G denoted by G_{k}^{P} is defined as follows: for all V_{i} and V_{j} in $P, i \neq j$, remove the edges between V_{i} and V_{j} and add edges between V_{i} and V_{j} which are not in G. The graph G is k-self complementary with respect to P if $G_{k}^{P} \cong G$. The k(i)-complement $G_{k(i)}^{P}$ of a graph G with respect to P is defined as follows: for all $V_{r} \in P$, remove the edges inside V_{r} and add edges which are not in V_{r}. Any graph G is k(i)-self complementary if $G_{k(i)}^{P} \cong G$.

In a graph G, the in-degree [5] of a vertex v denoted by $d_{i}(v)$, defined with respect to the partition P of $V(G)$ is the number of edges incident at v each of whose other ends are also in V_{i} for all $i=1,2, \cdots, k$. The out-degree [5] of a vertex $v \in V_{i}$ denoted by $d_{o}(v)$, defined with respect to the partition P of $V(G)$ is the number of edges incident at v each of whose other ends are not in V_{i} for all $i=1,2, \cdots, k$.

Graph partitioning problem arises in various areas of computer science, engineering and related fields. Recently, the concept of graph partition has gained importance due to its application in route planning, clustering and detection of cliques in social, pathological/biological networks and high performance computing.

For more information on generalized complements of graphs, refer to [1],[2],[4],[5],[6] and [7]. In this paper we provide some sufficient conditions for G_{k}^{P} and $G_{k(i)}^{P}$ to be disconnected, regular, line preserving and Eulerian.

2. Main Results

Theorem 1. The k-complement of a disconnected graph G is disconnected if it satisfies the following conditions,
(1) $G=H \cup r K_{1}$ and there exists a partite V_{i} such that $\left\langle V_{i}\right\rangle=r K_{1} \cup v_{j}$ and $v_{j} \in V(H)$ covers all vertices of H.
(2) If G has at least one complete subgraph K_{r} and there exists a partite V_{i} such that $V_{i}=$ $\left\{\left(V-V\left(K_{r}\right)\right)+v_{j}: v_{j} \in V\left(K_{r}\right)\right\}$.

Proof. Let $P=\left\{V_{1}, V_{2}, \cdots, V_{k}\right\}$ be a partition of a disconnected graph G of order n.
(1) Let $G=H \cup r K_{1}$ be a disconnected graph of order n. Consider any partite V_{i} so that $\left\langle V_{i}\right\rangle=r K_{1} \cup v_{j}$, where v_{j} covers all the vertices of H. Then by the definition of kcomplement of graph, vertex v_{j} becomes isolated vertex in G_{k}^{P}. Therefore G_{k}^{P} is disconnected.
(2) Let G be a disconnected graph with at least one complete subgraph K_{r} as a component. Suppose V_{i} is a partite consists of vertices of all components of G along with v_{j} of K_{r}. Since in-degree of v_{j} is zero and out-degree of v_{j} is $r-1$, by definition of k -complement of a graph the vertex v_{j} becomes isolated in G_{k}^{P}. Thus G_{k}^{P} is disconnected.

Theorem 2. The k-complement of a connected graph G is disconnected if it satisfies the following conditions,
(1) There exists a partite V_{i} consists of independent set of vertices v_{j} such that every $v_{j} \in V_{i}$ covers all vertices of other partites.
(2) Graph G has a single cut vertex v_{c}, which belongs to the partite V_{i} such that $\left|V_{i}\right|=1$.
(3) A partite V_{i} has independent set of vertices and every vertex in V_{i} is adjacent to each vertex of other partites.

Proof. Let $P=\left\{V_{1}, V_{2}, \cdots, V_{k}\right\}$ be a partition of vertex set of a connected graph G of order n.
(1) Suppose partite V_{i} consists only the independent set of vertices, which covers all vertices of other $k-1$ partites. Since all vertices of V_{i} are independent, in-degree of each vertex of V_{i} is zero. By definition of k-complement of a graph every vertex of V_{i} becomes isolated. Hence G_{k}^{P} is disconnected.
(2) Suppose G has a single cut vertex, which belongs to singleton partite V_{i}. By definition of $G_{k}^{P}, n-1$ edges will be removed from v_{c} and hence v_{c} will be isolated vertex. Thus G_{k}^{P} is a disconnected graph.
(3) In-degree of all $v_{j} \in V_{i}$ is zero since each vertex inside the partite is independent. Also if every vertex from each partite is adjacent to all vertices of other partites, then by definition of G_{k}^{P} there will be no edges from vertices of one partite to other in G_{k}^{P}. Hence G_{k}^{P} is disconnected graph.

Theorem 3. The $G_{k(i)}^{P}$ of non regular graph G is r-regular if $r=\overline{d_{i}\left(v_{j}\right)}+d_{o}\left(v_{j}\right)$, where $\overline{d_{i}\left(v_{j}\right)}=$ $\left|V_{i}\right|-d_{i}\left(v_{j}\right)$.

Proof. Let G be any non regular graph with $|V(G)|=n$ and $P=\left\{V_{1}, V_{2}, \cdots, V_{k}\right\}$ be a partition of vertices of G. By the definition of $G_{k(i)}^{P}, \overline{d_{i}\left(v_{j}\right)}$ edges are added to all vertices in V_{i} for all $i=1,2, \cdots, k$, where $\overline{d_{i}\left(v_{j}\right)}=\left|V_{i}\right|-d_{i}\left(v_{j}\right)$ and out-degree $d_{o}\left(v_{j}\right)$ of each $v_{j} \in V_{i}$ remains same. As $\overline{d_{i}\left(v_{j}\right)}+d_{o}\left(v_{j}\right)$ gives the degree of each vertex $v_{j} \in V\left(G_{k(i)}^{P}\right)$ and if $\overline{d_{i}\left(v_{j}\right)}+d_{o}\left(v_{j}\right)$ is constant then $G_{k(i)}^{P}$ is a regular graph.

Theorem 4. The G_{k}^{P} of non regular graph G is r-regular if $r=d_{i}\left(v_{j}\right)+\overline{d_{o}\left(v_{j}\right)}$, where $\overline{d_{o}\left(v_{j}\right)}=$ $\left|V_{i}\right|-d_{o}\left(v_{j}\right)$.

Proof. It is similar to the proof of Theorem 3, noting $G_{k}^{P} \cong \overline{G_{k(i)}^{P}}$ the result follows.
Theorem 5. For any two non isomorphic graphs $G\left(V, E_{1}\right)$ and $H\left(U, E_{2}\right)$ of same order, if $\sum_{r=1}^{n}\left(\overline{d_{i}\left(v_{r}\right)}+d_{o}\left(v_{r}\right)\right)=\sum_{s=1}^{n}\left(\overline{d_{i}\left(u_{s}\right)}+d_{o}\left(u_{s}\right)\right)$ then $G_{k(i)}^{P}$ and $H_{k(i)}^{P}$ are line preserving.

Proof. Let $G\left(V, E_{1}\right)$ and $H\left(U, E_{2}\right)$ be any two graphs of same order. $\overline{d_{i}\left(v_{r}\right)}+d_{o}\left(v_{r}\right)=d\left(v_{r}\right)$ in $G_{k(i)}^{P}$ for all $r=1,2, \cdots, n$ and $\overline{d_{i}\left(u_{s}\right)}+d_{o}\left(u_{s}\right)=d\left(u_{s}\right)$ in $H_{k(i)}^{P}$ for all $s=1,2, \cdots, n$. Now $\sum_{r=1}^{n}\left(\overline{d_{i}\left(v_{r}\right)}+d_{o}\left(v_{r}\right)\right)$ and $\sum_{s=1}^{n}\left(\overline{d_{i}\left(u_{s}\right)}+d_{o}\left(u_{s}\right)\right)$ will be the degree sum of all vertices in $G_{k(i)}^{P}$ and $H_{k(i)}^{P}$ respectively. If $\sum_{r=1}^{n}\left(\overline{d_{i}\left(v_{r}\right)}+d_{o}\left(v_{r}\right)\right)=\sum_{s=1}^{n}\left(\overline{d_{i}\left(u_{s}\right)}+d_{o}\left(u_{s}\right)\right)$, we say that $G_{k(i)}^{P}$ and $H_{k(i)}^{P}$ are line preserving.

Corollary 6. For any two non isomorphic graphs $G\left(V, E_{1}\right)$ and $H\left(U, E_{2}\right)$ of same order, if $\sum_{r=1}^{n}\left(d_{i}\left(v_{r}\right)+\overline{d_{o}\left(v_{r}\right)}\right)=\sum_{s=1}^{n}\left(d_{i}\left(u_{s}\right)+\overline{d_{o}\left(u_{s}\right)}\right)$ then G_{k}^{P} and H_{k}^{P} are line preserving.

Proof. It can be proved in the similar lines of Theorem 5.

Theorem 7. For any two non-isomorphic graphs $G\left(V, E_{1}\right)$ and $H\left(U, E_{2}\right)$ of same order, if $\sum_{r=1}^{n}\left(\overline{d_{i}\left(v_{r}\right)}+d_{o}\left(v_{r}\right)\right)=\sum_{s=1}^{n}\left(d_{i}\left(u_{s}\right)+\overline{d_{o}\left(u_{s}\right)}\right)$ then $G_{k(i)}^{P}$ and H_{k}^{P} are line preserving.

Proof. Let $G\left(V, E_{1}\right)$ and $H\left(U, E_{2}\right)$ be any two graphs of same order. $\overline{d_{i}\left(v_{r}\right)}+d_{o}\left(v_{r}\right)=d\left(v_{r}\right)$ in $G_{k(i)}^{P}$, where $r=1,2, \cdots, n$ and $d_{i}\left(u_{s}\right)+\overline{d_{o}\left(u_{s}\right)}=d\left(u_{s}\right)$ in H_{k}^{P}, where $s=1,2, \cdots, n$. Now $\sum_{j=1}^{n}\left(\overline{d_{i}\left(v_{j}\right)}+d_{o}\left(v_{j}\right)\right)$ and $\sum_{k=1}^{n}\left(d_{i}\left(u_{k}\right)+\overline{d_{o}\left(u_{k}\right)}\right)$ will be the degree sum of all vertices in $G_{k(i)}^{P}$ and H_{k}^{P} respectively. If $\sum_{r=1}^{n}\left(\overline{d_{i}\left(v_{r}\right)}+d_{o}\left(v_{r}\right)\right)=\sum_{s=1}^{n}\left(d_{i}\left(u_{s}\right)+\overline{d_{o}\left(u_{s}\right)}\right)$, we say that $G_{k(i)}^{P}$ and H_{k}^{P} are line preserving.

Theorem 8. The $k(i)$-complement of a connected graph is Eulerian if any one of the following conditions hold,
(1) Each partite is of odd(even) order consists of independent set of vertices with out-degree even(odd).
(2) Each vertex in a partite of even(odd) order has in-degree odd(even) and out-degree even (odd).

Proof. Let G be a connected graph with partition $P=\left\{V_{1}, V_{2}, \cdots, V_{k}\right\}$ of $V(G)$.
(1) Suppose each odd order partite has independent set of vertices with out-degree even. Then $\left\langle V_{i}\right\rangle$ will be totally disconnected. Then by definition of $\mathrm{k}(\mathrm{i})$-complement of graph, one can observe that every vertex of $G_{k(i)}^{P}$ will be of even degree. Therefore $G_{k(i)}^{P}$ is Eulerian.
(2) Suppose each vertex in a partite of even order has in-degree odd(even) and out-degree even (odd). Then in $G_{k(i)}^{P}$, we find that in-degree and out-degree of each vertex v in every partite V_{i} will be even. Hence $G_{k(i)}^{P}$ is Eulerian.

Theorem 9. The k-complement of a disconnected graph G is Eulerian if any one of the following conditions hold,
(1) The order of a totally disconnected graph G and cardinality of each partite are of either even or odd.
(2) $|V(G)|$ is odd and G has complete subgraphs as its components such that $\left\langle V_{i}\right\rangle$ is a complete graph.

Proof. Let G be a disconnected graph of order n with partition $P=\left\{V_{1}, V_{2}, \cdots, V_{k}\right\}$ of $V(G)$.
(1) Suppose order of a totally disconnected graph G and partites V_{i} are of either even or odd, then from definition of k-complement of a graph, every vertex v in V_{i} will be connected to every vertex v in V_{j} where $i, j=1,2, \cdots, k$ and $i \neq j$. Since both n and $\left|V_{i}\right|$ are either odd or even, degree of v in G_{k}^{P} is even. Thus G_{k}^{P} is Eulerian.
(2) Let G be a disconnected graph of complete subgraph as its components such that $|V(G)|$ be odd. Then from definition of k-complement of graphs, G_{k}^{P} is isomorphic to complete graph of odd order. Thus G_{k}^{P} is an Eulerian graph.

Example 2.1.

Figure 1. G and G_{3}^{p}

Figure 2. G and G_{2}^{p}

Theorem 10. Let G be a disconnected graph such that every component of G be of even degree. Then G_{k}^{P} is Eulerian if every vertex in $\left\langle V_{i}\right\rangle$ is of even degree and any one of the following conditions hold good.
(1) $|P|$ and $\left|V_{i}\right|$ are odd.
(2) $|P|$ and $\left|V_{i}\right|$ are even.
(3) $|P|$ is odd and $\left|V_{i}\right|$ is even.

Proof. Let $P=\left\{V_{1}, V_{2}, \cdots, V_{k}\right\}$ be a partition of vertex set of G, each component of G and $\left\langle V_{i}\right\rangle$ be Eulerian.
(1) Suppose $|P|=k$ and $\left|V_{i}\right|$ are both odd, as every component in each partite of G is Eulerian, in-degree of all vertices of V_{i} is even. By definition of k-complement, degree of each vertex in G_{k}^{P} is even. Hence G_{k}^{P} is Eulerian.
(2) Suppose $|P|=k$ and $\left|V_{i}\right|$ are both even, as every component in each partite of G is Eulerian, in-degree of all vertices of V_{i} is even. By definition of k-complement, degree of each vertex in G_{k}^{P} is even. Hence G_{k}^{P} is Eulerian.
(3) Suppose $|P|=k$ is odd and $\left|V_{i}\right|$ is even, as every component in each partite of G is Eulerian, in-degree of all vertices of V_{i} is even. By definition of k-complement, degree of each vertex in G_{k}^{P} is even. Hence G_{k}^{P} is Eulerian.

Proposition 1. [6] The k-complement and $k(i)$ complements are related as follows
(i) $\overline{G_{k}^{P}} \cong G_{k(i)}^{P}$ and (ii) $\overline{G_{k(i)}^{P}} \cong G_{k}^{P}$.

Theorem 11. For any graph G
i. $\bar{G}_{k(i)}^{P} \cong \bar{G}$ if and only if $\bar{G}_{k}^{P} \cong G$.
ii. $\bar{G}_{k}^{P} \cong \bar{G}$ if and only if $\bar{G}_{k(i)}^{P} \cong G$.

Proof. (i) Consider,

$$
\begin{gather*}
\bar{G}_{k(i)}^{P} \cong \bar{G} \tag{1}\\
\overline{\bar{G}}_{k(i)}^{P} \cong \overline{\bar{G}} \rightarrow \overline{\bar{G}_{k(i)}^{P}} \cong G
\end{gather*}
$$

Assume that $H=\bar{G}$. Then

$$
\overline{H_{k(i)}^{P}} \cong G
$$

From Proposition 1

$$
\begin{equation*}
H_{k}^{P} \cong G \rightarrow \bar{G}_{k}^{P} \cong G \tag{2}
\end{equation*}
$$

Conversly,

$$
\begin{gather*}
\bar{G}_{k}^{P} \cong G \tag{3}\\
\overline{\bar{G}_{k}^{P}} \cong \bar{G} \rightarrow \overline{H_{k}^{P}} \cong \bar{G}
\end{gather*}
$$

From Proposition 1

$$
\begin{equation*}
H_{k(i)}^{P} \cong \bar{G} \rightarrow \bar{G}_{k(i)}^{P} \cong \bar{G} \tag{4}
\end{equation*}
$$

Similarly we can prove (ii).

3. Conclusion

In this paper we have obtained some sufficient conditions for G_{k}^{P} and $G_{k(i)}^{P}$ to be disconnected, regular, line preserving and Eulerian. To investigate the conditions for G_{k}^{P} and $G_{k(i)}^{P}$ to be Hamiltonian, connected and isomorphic is an open area of research.

CONFLICT OF InTERESTS

The author(s) declare that there is no conflict of interests.

References

[1] T. Gangopadhyay, S. P. Rao Hebbare, Paths in r-partite self complementary graphs, Discrete Math. 32 (1980), 229-244.
[2] H. J. Gowtham, Sabitha D'Souza and Pradeep G. Bhat, Laplacian energy of generalized complements of a graph, Kragujevac J. Math. 42(2) (2018), 299-315.
[3] F. Harary, Graph theory, Narosa Publishing House, New Delhi, (1989).
[4] E. Sampathkumar, L. Pushpalatha, Reconstruction of a graph of order p from its $(p-1)$-complements, Indian J. Pure Appl. Math. 27(5) (1996), 435-441.
[5] E. Sampathkumar, L. Pushpalatha, Complement of a graph: A generalization, Graphs Comb. 14 (1998), 377-392.
[6] E. Sampathkumar, L. Pushpalatha, C.V. Venkatachalam and Pradeep Bhat, Generalized complements of a graph, Indian J. Pure Appl. Math. 29(6) (1998), 625-639.
[7] S. D'Souza, H.J. Gowtham , P.G. Bhat, Energy of generalized complements of a graph, Eng. Lett. 28(1) (2020), 131-136.

[^0]: *Corresponding author
 E-mail address: sabitha.dsouza@manipal.edu
 Received August 31, 2020

