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Abstract. In this article concept of rectangular partial b-metric space have been introduced. It is shown that

rectangular b-metric can be achieved from rectangular partial b-metric. Moreover equivalence of completeness

of both the spaces have been achieved. An analog to Cantor intersection theorem has been established in such

spaces. A variant of Banach fixed point theorem and Kannan fixed point theorem are also proved in the language

of rectangular partial b-metric spaces.
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1. INTRODUCTION

A partial metric is a generalization of metric space by replacing the condition d(x,x) = 0

by the condition d(x,y) ≥ d(x,x) for all x,y, introduced by S. G. Matthews [1]. Later many

generalization partial metric space appeared. In this sequel S. Shukla [3] defined partial-b metric

space, S. Souayah [6] defined partial Sb-metric space, A. Gupta and P. Gautam [7] introduced

the concept of quasi partial b-metric space and they presented some fixed point theorems in

these spaces.
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R. George et. al [4] introduced the concept of rectangular b-metric space by replacing trian-

gular inequality by three term expression and proved some fixed point theorems and Bakhtin [8]

generalize the concept of metric space and defined b-metric space. In this paper we define rect-

angular partial b-metric space generalizing the concept of partial metric spaces and rectangular

b-metric spaces.

2. PRELIMINARIES

Lets begin with some definitions.

Definition 2.1. [4] A mapping d : X ×X −→ [0,∞), where X is a non empty set, is said to be

rectangular b-metric if whenever x, y, z ∈ X the following conditions hold:

(1) x = y⇔ d(x,y) = 0;

(2) d(x,y) = d(y,x);

(3) there exists a real number s≥ 1 such that

d(x,y)≤ s[d(x,u)+d(u,v)+d(v,y)] ∀x,y ∈ X and u,v ∈ X \{x,y}

Then d is called a rectangular b-metric and (X ,d) is called a rectangular b-metric space with

coefficient s≥ 1.

Definition 2.2. [4] In a rectangular b-metric space (X ,d)

• A sequence {xn} in (X ,d) is said to be convergent to x ∈ X such that for any ε > 0, ∃ a

positive integer N so that d(xn,x)< ε ∀ n≥ N.

• A sequence {xn} in a rectangular b-metric space (X ,d) is said to be Cauchy sequence

if for any ε > 0, ∃ a positive integer N such that d(xn,xm)< ε ∀ m,n≥ N.

• A rectangular b-metric space is called complete if every Cauchy sequence is convergent

therein.

3. MAIN RESULTS

Now we define

Definition 3.1. A mapping pr
b : X ×X −→ [0,∞), where X is a non empty set, is said to be

rectangular partial b-metric if whenever x, y, z,w ∈ X the following conditions hold:
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(1) x = y⇔ pr
b(x,x) = pr

b(x,y) = pr
b(y,y);

(2) pr
b(x,y) = pr

b(y,x);

(3) pr
b(x,y)≥ pr

b(x,x);

(4) there exists a real number s≥ 1 such that

pr
b(x,y) ≤ s[pr

b(x,z)+ pr
b(z,w)+ pr

b(w,y)− pr
b(z,z)− pr

b(w,w)]+

1− s
2

[pr
b(x,x)+ pr

b(y,y)], z,w ∈ X \ x,y

and the ordered pair (X , pr
b) is called partial rectangular b-metric space. The number s is called

coefficient of (X , pr
b).

Example 3.1. Let (X ,d) be a rectangular metric space. Let pr
b(x,y) = d(x,y)q+k where q > 1.

Then pr
b is a rectangular partial b-metric space with coefficient 3q−1. Conditions (1), (2), (3)

satisfied automatically. We now check (4).

pr
b(x,y) = d(x,y)q + k

≤ (d(x,w)+d(w,z)+d(z,y))q + k

≤ 3q−1(d(x,w)q +d(w,z)q +d(z,y)q)+ k

= 3q−1(d(x,w)q + k+d(w,z)q + k+d(z,y)q + k− k)−2(3q−1k)+ k

≤ 3q−1(pr
b(x,w)+ pr

b(w,z)+ pr
b(z,y))+

1−3q−1

2
(pr

b(x,x)+ pr
b(y,y))

Definition 3.2. (i) A sequence {xn} in a rectangular partial b-metric space (X , pr
b) con-

vergent to x ∈ X if lim
n→∞

pr
b(xn,x) = pr

b(x,x) = lim
n→∞

pr
b(xn,xn).

(ii) A sequence {xn} in (X , pr
b) is a Cauchy sequence if lim

n,m→∞
pr

b(xn,xm) exists.

(iii) A rectangular partial b-metric space is said to be complete if every Cauchy sequence

{xn} in (X , pr
b) is convergent.

We define open ball in (X , pr
b) by Bpr

b
(x,ε) = {y ∈X: pr

b(x,y)< pr
b(x,x)+ε} and closed ball

by Bpr
b
[x,ε] = {y ∈X: pr

b(x,y)≤ pr
b(x,x)+ ε}.
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3.1. Relation with Rectangular b-metric Spaces.

Lemma 3.1. Let (X , pr
b) be a rectengular partial b-metric space with coefficient s ≥ 1. Then

dpr
b
(x,y)= 2pr

b(x,y)− pr
b(x,x)− pr

b(y,y) is a rectengular b-metric on X with the same coefficient

and a sequence {xn} is convergent to x in (X , pr
b) iff {xn} is convergent to x in (X ,dpr

b
).

Proof.

dpr
b
(x,y) = 2pr

b(x,y)− pr
b(x,x)− pr

b(y,y)

≤ 2s[pr
b(x,z)+ pr

b(z,w)+ pr
b(w,y)− pr

b(z,z)− pr
b(w,w)]

+(1− s)(pr
b(x,x)+ pr

b(y,y))− pr
b(x,x)− pr

b(y,y)

= s[2pr
b(x,z)− pr

b(x,x)− pr
b(z,z)]

+s[2pr
b(z,w)− pr

b(z,z)− pr
b(w,w)]

+s[2pr
b(w,y)− pr

b(w,w)− pr
b(y,y)]

= s[dpr
b
(x,z)+dpr

b
(z,w)+dpr

b
(w,y)]

Other parts can be easily proved. �

Theorem 3.1. (a) A sequence {xn} is a Cauchy sequence in (X , pr
b) iff {xn} is a Cauchy se-

quence in (X ,dpr
b
).

(b) (X , pr
b) is complete if and only if (X ,dpr

b
) is complete.

Proof. Let {xn} be Cauchy sequence in (X , pr
b). So lim

n,m→∞
pr

b(xn,xm) = l. Let ε > 0, then there

exists a natural number M such that

| pr
b(xn,xm)− l |< ε

4 f or all n,m≥M.

Now | dpr
b
(xn,xm) | = | 2pr

b(xn,xm)− pr
b(xn,xn)− pr

b(xm,xm) |

= | 2pr
b(xn,xm)−2l− pr

b(xn,xn)+ l− pr
b(xm,xm)+ l |

≤ | pr
b(xn,xm)− l |+ | pr

b(xn,xm)− l |

+ | pr
b(xn,xn)− l |+ | pr

b(xm,xm)− l |

< ε for all n,m≥M.
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So {xn} is a Cauchy sequence in (X ,dpr
b
).

Conversely let {xn} be a Cauchy sequence in (X ,dpr
b
). Let ε = 1

2 , then there exists n0 ∈ N

such that

dpr
b
(xn,xm)<

1
2 for all n,m≥ n0.

⇒ 2pr
b(xn,xn0)− pr

b(xn0,xn0)− pr
b(xn,xn)<

1
2

⇒ pr
b(xn,xn0)− pr

b(xn0,xn0)<
1
2 .

Now pr
b(xn,xn)< pr

b(xn,xn0)< pr
b(xn0,xn0)+

1
2 .

So {pr
b(xn,xn)} is a bounded sequence in R. Hence lim

k→∞
pr

b(xnk ,xnk) = l1.

Since {xn} is a Cauchy sequence in (X ,dpr
b
), for a ε > 0, there exists nε such that

dpr
b
(xn,xm)< ε ∀n,m≥ nε

Then for all n,m≥ nε

pr
b(xn,xn)− pr

b(xm,xm) ≤ pr
b(xn,xm)− pr

b(xm,xm)

≤ dpr
b
(xn,xm)

< ε.

So {pr
b(xn,xn)} is a Cauchy sequence in R.

⇒ lim
n→∞

pr
b(xn,xn) = l1.

Now | pr
b(xn,xm)− l1 | = | pr

b(xn,xm)− pr
b(xn,xn)+ pr

b(xn,xn)− l1 |

≤ dpr
b
(xn,xm)+ | pr

b(xn,xn)− l1 |

⇒ lim
n,m→∞

pr
b(xn,xm) = l1.

So {xn} is a Cauchy sequence in (X , pr
b).

Now we prove that completeness of (X ,dpr
b
) implies completeness of (X , pr

b). Let {xn} be

a Cauchy sequence in (X , pr
b). Then {xn} is Cauchy sequence in (X ,dpr

b
). Since (X ,dpr

b
) is

complete there exists a point x ∈ X such that lim
n→∞

dpr
b
(xn,x) = 0 and by Lemma 3.1 (X , pr

b) is

complete.

Now we prove the converse. Let (X , pr
b) be complete. We will show that (X ,dpr

b
) is complete.

Let {xn} be a Cauchy sequence in (X ,dpr
b
). Then {xn} is Cauchy sequence in (X , pr

b). Since
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(X , pr
b) is complete there exists y ∈ X such that

lim
n→∞

pr
b(xn,y) = pr

b(y,y) = lim
n→∞

pr
b(xn,xn).

Now Lemma 3.1 implies lim
n→∞

dpr
b
(xn,y) = 0. Hence (X ,dpr

b
) is complete. �

Lemma 3.2. Let (X , pr
b) be a rectangular partial b-metric space with the coefficient s≥ 1 and

suppose that {xn} and {yn} are convergent to x and y respectively. Then we have 1
s pr

b(x,y) ≤

lim
n→∞

inf pr
b(xn,yn)≤ lim

n→∞
sup pr

b(xn,yn)≤ spr
b(x,x).

3.2. Cantor Intersection Theorem.

Lemma 3.3. Let (X , pr
b) be a rectangular partial b-metric space and A be any subset of X.

Then pr
b(A)≤ spr

b(A)

where pr
b(A) = sup{pr

b(x,y)− pr
b(x,x) : ∀x,y ∈ A}.

Proof. Let x,y ∈ A, then there exists {xn}, {yn} in A such that {xn} converges to x and {yn}

converges to y. i.e.,

lim
n→∞

pr
b(xn,x) = pr

b(x,x) = lim
n→∞

pr
b(xn,xn)

and lim
n→∞

pr
b(yn,y) = pr

b(y,y) = lim
n→∞

pr
b(yn,yn).

Let pr
b(x,x)≥ pr

b(y,y)

Now

pr
b(x,y)− pr

b(x,x) ≤ s[pr
b(x,xn)+ pr

b(xn,yn)+ pr
b(yn,y)− pr

b(xn,xn)− pr
b(yn,yn)]

+
1− s

2
[pr

b(x,x)+ pr
b(y,y)]− pr

b(x,x)

≤ s[pr
b(x,xn)+ pr

b(xn,yn)+ pr
b(yn,y)− pr

b(xn,xn)− pr
b(yn,yn)]

+
1− s

2
[2pr

b(y,y)]− pr
b(x,x)

Taking limit n→ ∞ in the above equation we get

pr
b(x,y)− pr

b(x,x) ≤ s[pr
b(x,x)+ pr

b(A)+ pr
b(y,y)− pr

b(x,x)]

+pr
b(y,y)− spr

b(y,y)− pr
b(x,x)

⇒ sup{pr
b(x,y)− pr

b(x,x) : ∀x,y ∈ A} ≤ spr
b(A).
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⇒ pr
b(A)≤ spr

b(A).

Similarly if pr
b(x,x)< pr

b(y,y) we can show that pr
b(A)≤ spr

b(A). �

Theorem 3.2. A ractangular partial b-metric space (X , pr
b) is complete if and only if for every

sequence {Fn} of closed sets in (X , pr
b) satisfying:

(a) Fn+1 ⊂ Fn ∀n ∈ N and

(b) pr
b(Fn)−→ 0 as n→ ∞.

Then
∞⋂

n=1
Fn is singleton.

Proof. Let {xn} be a Cauchy sequence in (X , pr
b). Then lim

n→∞
pr

b(xn+p,xn) = α . i.e. for any

ε > 0, ∃ a natural number v such that

| pr
b(xn+p,xn)−α |< ε

2 ∀n≥ v.

Let Fn = {xn+p−1 : p ∈ N}. Then Fn+1 ⊂ Fn ⇒ Fn+1 ⊂ Fn. Now

| pr
b(xn+p,xn)− pr

b(xn,xn) | ≤ | pr
b(xn+p,xn)−α |+ | pr

b(xn,xn)−α |

<
ε

2
+

ε

2

= ε ∀n≥ v.

Also

| pr
b(xn+p,xn)− pr

b(xn+p,xn+p) | ≤ | pr
b(xn+p,xn)−α |+ | pr

b(xn+p,xn+p)−α |

<
ε

2
+

ε

2

= ε ∀n≥ v.

So lim
n→∞

[pr
b(xn+p,xn)−max{pr

b(xn,xn), pr
b(xn+p,xn+p)} : ∀xn+p,xn ∈ Fn] = 0.

⇒ pr
b(Fn)−→ 0 as n→ ∞,

⇒ pr
b(Fn)−→ 0 as n→ ∞ [using Lemma 3.3.]

So
∞⋂

n=1
Fn 6= φ . Let x ∈

∞⋂
n=1

Fn⇒ x ∈ Fn ∀n ∈ N. Also xn ∈ Fn ⊂ Fn.

Then 0≤ pr
b(xn,x)− pr

b(x,x)≤ pr
b(Fn).

Taking limit and using Sandwitch theorem we get

(1) lim
n→∞

pr
b(xn,x) = pr

b(x,x).
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Similarly we can show that 0≤ pr
b(x,xn)− pr

b(xn,xn)≤ pr
b(Fn).

Using Sandwitch theorem we get

(2) lim
n→∞

pr
b(xn,xn) = pr

b(x,x).

From (1) and (2) we have

lim
n→∞

pr
b(xn,x) = pr

b(x,x) = lim
n→∞

pr
b(xn,xn).

Hence (X , pr
b) is complete.

Conversely let (X , pr
b) be a complete rectangular partial b-metric space satisfying condition

(a) and (b).

Let us consider xn ∈ Fn ∀n ∈ N. Since Fn+1 ⊂ Fn⇒ xm ∈ Fn ∀m≥ n. Now

0≤ pr
b(xn,xm)− pr

b(xn,xn)≤ pr
b(Fn)

and 0≤ pr
b(xm,xn)− pr

b(xm,xm)≤ pr
b(Fn).

⇒ 0≤ 2pr
b(xn,xm)− pr

b(xn,xn)− pr
b(xm,xm)≤ 2pr

b(Fn)

⇒ 0≤ dpr
b
(xn,xm)≤ 2pr

b(Fn)

Using condition (b) and by Sandwitch theorem we have {xn} is a Cauchy sequence in (X ,dpr
b
).

Since (X , pr
b) is complete by Theorem 3.1 we can say that (X ,dpr

b
) is complete. Hence ∃ x ∈ X

such that dpr
b
(xn,x) −→ 0 as n −→ ∞. This implies {xn} converges to x in (X , pr

b). Therefore

x ∈ Fn as Fn is closed in (X , pr
b). Thus x ∈ Fn ∀n ∈ N. Let y ∈

∞⋂
n=1

Fn⇒ y ∈ Fn ∀n ∈ N.

⇒ 0≤ pr
b(x,y)− pr

b(x,x)≤ pr
b(Fn). Taking limit and using Sandwitch theorem we get pr

b(x,y)=

pr
b(x,x). Similarly we can get pr

b(x,y) = pr
b(y,y). Hence pr

b(x,y) = pr
b(x,x) = pr

b(y,y)⇒ x = y.

Thus we have proved
∞⋂

n=1
Fn is singleton. �

3.3. Fixed Point Theorems.

Theorem 3.3. Let (X , pr
b) be a complete rectangular partial b-metric space with coefficient

s≥ 1 and T : X −→ X be a mapping satisfying the following condition

(3) pr
b(T x,Ty)≤ λ pr

b(x,y) ∀x,y ∈ X , λ ∈ [0,1).

Then T has a unique fixed point u ∈ X with pr
b(u,u) = 0.
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Proof. First we show that the fixed point of T is unique and if u be a fixed point of T then

pr
b(u,u) = 0. Let u,v be two distinct fixed point of T . i.e., Tu = u and T v = v.

pr
b(u,v) = pr

b(Tu,T v)≤ λ pr
b(u,v)< pr

b(u,v).

Hence pr
b(u,v) = 0⇒ u = v. Therefore T has a unique fixed point.

Since λ ∈ [0,1), we can choose n0 ∈ N such that for a given 0 < ε < 1, we have λ n0 < ε

8s .

Let T n0 ≡ F and Fkx0 = xk ∀k ∈ N, where x0 ∈ X . Then for all x,y ∈ X ,

(4) pr
b(Fx,Fy) = pr

b(T
n0x,T n0y)≤ λ

n0 pr
b(x,y)

For any k ∈ N, we have

pr
b(xk+1,xk) = pr

b(Fxk,Fxk−1)

≤ λ
n0 pr

b(xk,xk−1)

≤ λ
kn0 pr

b(x1,x0)−→ 0 as k −→ ∞.

Similarly, pr
b(xk+2,xk)−→ 0 as k −→ ∞. So we can choose l ∈ N such that

pr
b(xl,xl+1)<

ε

8s and pr
b(xl,xl+2)<

ε

8s

We show that if z ∈ Bpr
b
[xl,

ε

2 ] then Fz ∈ Bpr
b
[xl,

ε

2 ].

Let A = {y ∈ X : yρxl}. Since xl ∈ Bpr
b
[xl,

ε

2 ], Bpr
b
[xl,

ε

2 ] 6= φ .

Let z ∈ Bpr
b
[xl,

ε

2 ]. Then

pr
b(Fxl,Fxz) ≤ λ

n0 pr
b(xl,xz)

<
ε

8s
pr

b(xz,xl)

≤ ε

8s
[
ε

2
+ pr

b(xl,xl)]

<
ε

8s
[1+ pr

b(xl,xl)].
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Therefore

pr
b(xl,Fz) ≤ s[pr

b(xl,Fxl+1)+ pr
b(Fxl+1,Fxl)+ pr

b(Fxl,Fz)−

pr
b(Fxl+1,Fxl+1)− pr

b(Fxl,Fxl)]

+
1− s

2
[pr

b(xl,xl)+ pr
b(Fz,Fz)]

< s[2
ε

8s
+

ε

8s
(1+ pr

b(xl,xl))]

<
ε

2
+ pr

b(xl,xl).

Hence Fz ∈ Bpr
b
[xl,

ε

2 ] and consequently Fz ∈ A. Since xl ∈ A therefore Fxl ∈ A. Repeating this

above process Fnxl ∈ A ∀n ∈ N. i.e., xm ∈ A ∀m≥ l. Let m > n≥ l and n = l + i. Then

pr
b(xn,xm) = pr

b(Fxn−1,Fxm−1)

≤ λ
n0 pr

b(xn−1,xm−1)

≤ λ
2n0 pr

b(xn−2,xm−2)

.

.

.

≤ λ
in0 pr

b(xn−i,xm−i)

< pr
b(xl,xm−i)

<
ε

2
+ pr

b(xl,xl)< ε.

Thus {xn} is a Cauchy sequence in (X , pr
b). By completeness of (X , pr

b) there exists u ∈ X such

that

(5) lim
n→∞

pr
b(xn,u) = lim

n,m→∞
pr

b(xn,xm) = pr
b(u,u) = 0
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For all n ∈ N,

pr
b(u,Fu) ≤ s[pr

b(u,xn)+ pr
b(xn,xn+1)+ pr

b(xn+1,Fu)

−pr
b(xn,xn)− pr

b(xn+1,xn+1)]

≤ s[pr
b(u,xn)+ pr

b(xn,xn+1)+λ
n0 pr

b(xn,u)]

Using equation(4) and (5) we have pr
b(u,Fu) = 0. Hence Fu= u. i.e., T n0u= u. Since {T nu}

is a Cauchy sequence with lim
n,m→∞

pr
b(un,um) = 0, we have Tu = u. �

Example 3.2. Let X = {0,1,2,3} and define pr
b : X×X −→ [0,∞)by

pr
b(x,y) =



x2 if x = y 6= 0

2(x2 + y2) if x,y /∈ {2,3},x 6= y

x2 + y2 if x,y ∈ {2,3},x 6= y
1
2 if x = y = 0

Then (X , pr
b) is a rectangular partial b-metric space with coefficient s = 2. Define T : X −→ X

by T 0 = 0, T 1 = 0, T 2 = 1, T 3 = 1. Then T satisfies the condition of Theorem 3.3 and 0 is the

unique fixed point of T .

Theorem 3.4. Let (X , pr
b) be a complete rectangular partial-b metric space with coefficient

s≥ 1 and T : X −→ X be a mapping satisfying the following condition

(6) pr
b(T x,Ty)≤ λ [pr

b(x,T x)+ pr
b(y,Ty)]

for all x,y ∈ X, where λ ∈ [0, 1
s+1). Then T has a unique fixed point u ∈ X with pr

b(u,u) = 0.

Proof. Let x0 ∈ X and define a sequence xn+1 = T xn ∀n ∈ N∪{0}.

Let pn = pr
b(xn,xn+1). From condition (6) it follows that

pr
b(xn,xn+1) = pr

b(T xn−1,T xn)≤ λ [pr
b(xn−1,xn)+ pr

b(xn,xn+1)]

⇒ pn ≤ λ [pn−1 + pn]

⇒ pn ≤ λ

1−λ
pn−1 = kpn−1 where k = λ

1−λ
.

Proceeding in this way we have

pn ≤ kn p0
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Now,

pr
b(xn,xn+2) = pr

b(T xn−1,T xn+1)

≤ λ [pr
b(xn−1,T xn−1)+ pr

b(xn+1,T xn+1)]

= λ [pr
b(xn−1,xn)+ pr

b(xn+1,xn+2)]

= λ [pn−1 + pn+1]

≤ λ [kn−1 p0 + kn+1 p0]

= kn−1
λ [1+ k2]p0

= tkn−1 p0.

Where t = λ [1+ k2]. Now we show that lim
n→∞

pr
b(xn,xn+p) = 0. Here we consider two cases.

First when p is odd, say p = 2m+1. Then

pr
b(xn,xn+2m+1) ≤ s[pr

b(xn,xn+1)+ pr
b(xn+1,xn+2)+ pr

b(xn+2,xn+2m+1)

−pr
b(xn+1,xn+1)− pr

b(xn+2,xn+2)]

+
1− s

2
[pr

b(xn,xn)+ pr
b(xn+2m+1,xn+2m+1)]

≤ s[pr
b(xn,xn+1)+ pr

b(xn+1,xn+2)+ pr
b(xn+2,xn+2m+1)]

≤ s[pr
b(xn,xn+1)+ pr

b(xn+1,xn+2)]+

s2[pr
b(xn+2,xn+3)+ pr

b(xn+3,xn+4)+ pr
b(xn+4,xn+2m+1)]

≤ s[pn + pn+1]+ s2[pn+2 + pn+3]+ s3[pn+4 + pn+5]+ ...

+sm pn+2m

≤ s[kn + kn+1]p0 + s2[kn+2 + kn+3]p0 + s3[kn+4 + kn+5]p0 + ...

+smkn+2m p0

≤ skn[1+ sk2 + s2k4 + ...]p0 + skn+1[1+ sk2 + s2k4 + ...]p0

= skn 1+ k
1− sk2 p0
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Thus

pr
b(xn,xn+2m+1)≤ skn 1+ k

1− sk2 p0

Now let p is even. i.e., p = 2m

pr
b(xn,xn+2m) ≤ s[pr

b(xn,xn+1)+ pr
b(xn+1,xn+2)+ pr

b(xn+2,xn+2m)

−pr
b(xn+1,xn+1)− pr

b(xn+2,xn+2)]

+
1− s

2
[pr

b(xn,xn)+ pr
b(xn+2m,xn+2m)]

≤ s[pr
b(xn,xn+1)+ pr

b(xn+1,xn+2)+ pr
b(xn+2,xn+2m)]

≤ s[pr
b(xn,xn+1)+ pr

b(xn+1,xn+2)]+

s2[pr
b(xn+2,xn+3)+ pr

b(xn+3,xn+4)+ pr
b(xn+4,xn+2m)]

≤ s[pn + pn+1]+ s2[pn+2 + pn+3]+ s3[pn+4 + pn+5]+ ...

+sm−1 pr
b(xn+2m−2,x2m)

≤ s[kn + kn+1]p0 + s2[kn+2 + kn+3]p0 + s3[kn+4 + kn+5]p0 + ...

+sm−1[k2m−4 + k2m−3]p0 + sm−1tk2m−3 p0

≤ skn[1+ sk2 + s2k4 + ...]p0 + skn+1[1+ sk2 + s2k4 + ...]p0

+sm−1tk2m−3 p0

= skn 1+ k
1− sk2 p0 + sm−1tk2m−3 p0

Thus

pr
b(xn,xn+2m) ≤ skn 1+ k

1− sk2 p0 + sm−1tkn+2m−3 p0

Hence lim
n,m→∞

pr
b(xn,xm) = 0. i.e., {xn} is a Cauchy sequence in (X , pr

b). By completeness of

(X , pr
b) there exists u ∈ X such that

(7) lim
n→∞

pr
b(xn,u) = lim

n,m→∞
pr

b(xn,xm) = pr
b(u,u) = 0



RECTANGULAR PARTIAL b-METRIC SPACES 2767

Finally we show that u is a fixed point of T .

pr
b(u,Tu) ≤ s[pr

b(u,xn)+ pr
b(xn,xn+1)+ pr

b(xn+1,Tu)− pr
b(xn,xn)

−pr
b(xn+1,xn+1)]+

1− s
2

[pr
b(u,u)+ pr

b(Tu,Tu)]

≤ s[pr
b(u,xn)+ pr

b(xn,xn+1)+ pr
b(T xn,Tu)]

≤ s[pr
b(u,xn)+ pr

b(xn,xn+1)+λ pr
b(u,Tu)+λ pr

b(xn,T xn)]

Taking Limit we have pr
b(u,Tu) = 0. Hence Tu= u. The uniqueness of the fixed point u follows

from the contraction principle. �

4. CONCLUSION

There are some mappings which fails to form a metric for assuming nonzero values in its

diagonal of domain or not satisfying triangular inequality. Motivated by the study of S. G.

Matthews, I. A. Bakhtin, S. Shukla for these types of mappings an attempt have been made

to generalize both the concept of partial metric spaces and rectangular b-metric spaces and

introduced the concept of rectangular partial b-metric spaces. A connection with rectangular b-

metric spaces have been pointed out. Moreover analog to Cantor intersection theorem, Banach

and Kannan fixed point theorem have been studied in the defined spaces.
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