
Available online at http://scik.org

J. Math. Comput. Sci. 10 (2020), No. 6, 2971-2983

https://doi.org/10.28919/jmcs/5028

ISSN: 1927-5307

CHROMATIC COMPLETION NUMBER

J. KOK1,∗, E.G. MPHAKO-BANDA2

1Department of Mathematics, CHRIST University , Bangalore, India

2Department of Mathematics, University of Witwatersrand, Johannesburg, South Africa

Copyright © 2020 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. The well known concept of proper vertex colouring of a graph is used to introduce the construction

of a chromatic completion graph and determining its related parameter, the chromatic completion number of a

graph. The chromatic completion numbers of certain classes of cycle derivative graphs and helm graphs are then

presented. Finally, we discuss further problems for research related to this concept.
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1. INTRODUCTION AND PRELIMINARIES

For general notation and concepts in graphs see [1, 2, 4]. Recall that the set of vertices and

the set of edges of a graph G are denoted by, V (G) and E(G) respectively. The number of

vertices is called the order of G say, n and the number of edges of G is denoted by, ε(G). If

G has order n ≥ 1 and has no edges (ε(G) = 0) then G is called a null graph. The degree of a

vertex v ∈ V (G) is denoted dG(v) or when the context is clear, simply as d(v). The minimum

and maximum degree δ (G) and ∆(G) respectively, have the conventional meaning. When the
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context is clear we shall abbreviate to δ and ∆, respectively. Unless stated otherwise, all graphs

will be finite and simple, connected graphs.

For a set of (distinct) colours C = {c1,c2,c3, . . . ,c`} a vertex colouring of a graph G is an

assignment ϕ : V (G) 7→C . A vertex colouring is said to be a proper vertex colouring of a graph

G if no two distinct adjacent vertices have the same colour. The cardinality of a minimum set

of distinct colours in a proper vertex colouring of G is called the chromatic number of G and

is denoted χ(G). We call such a colouring a χ-colouring or a chromatic colouring of G. A

chromatic colouring of G is denoted by ϕχ(G). Generally a graph G of order n is k-colourable

for χ(G)≤ k ≤ n.

Generally the set, c(V (G))⊆ C . A non-empty set {ci ∈ C : c(v) = ci} is called a colour class

of the colouring of G. If C is the chromatic set it can be agreed that c(G) means set c(V (G))

hence, c(G)⇒ C and |c(G)|= |C |. For the set of vertices X ⊆V (G), the subgraph induced by

X is denoted by, 〈X〉. The colouring of 〈X〉 permitted by ϕ : V (G) 7→ C is denoted by, c(〈X〉).

The number of times a colour ci is allocated to vertices of a graph G is denoted by θG(ci) or if

the context is clear simply, θ(ci).

Index labeling the elements of a graph such as the vertices say, v1,v2,v3, . . . ,vn or written

as, vi, where i = 1,2,3, . . . ,n, is called minimum parameter indexing. Similarly, a minimum

parameter colouring of a graph G is a proper colouring of G which consists of the colours

ci; 1≤ i≤ `.

In this paper, Section 2 introduces a new parameter called, the chromatic completion number

of a graph G. Subsection 2.1 presents results on chromatic completion number for a few known

classes of cycle derivative graphs. Subsection 2.2 presents results on chromatic completion

number on helm graphs. Finally, in Section 3, a few suggestions on future research on this

problem are discussed.

2. CYCLE DERIVATIVE GRAPHS

In an improper colouring an edge uv for which, c(u) = c(v) is called a bad edge. See [3]

for an introduction to k-defect colouring and corresponding polynomials. For a colour set C ,

|C |= λ ≥ χ(G) a graph G can always be coloured properly hence, such that no bad edge results.

The number of ways in which graph G can be properly coloured from a set of λ ≥ χ(G) colours
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is given by the chromatic polynomial, PG(λ ,n). Also, for a set of colours C , |C |= χ(G)≥ 2 a

graph G of order n with corresponding chromatic polynomial PG(λ ,n), can always be coloured

properly in PG(χ,n) distinct ways. Hence, chromatic colouring of a graph is generally not a

unique colouring.

The notion of the chromatic completion number of a graph G denoted by, ζ (G) is the max-

imum number of edges over all chromatic colourings that can be added to G without adding

a bad edge. The resultant graph Gζ is called a chromatic completion graph of G. The addi-

tional edges are called chromatic completion edges. It is trivially true that G⊆ Gζ . Clearly for

a complete graph Kn, ζ (Kn) = 0. In fact, for any complete `-partite graph H = Kn1,n2,n3,...,n`,

ζ (H) = 0. Hereafter, all graphs will not be `-partite complete. For graphs G and H of order

n with ε(G) ≥ ε(H) no relation between ζ (G) and ζ (H) could be found. The first result is

straight forward.

Theorem 2.1. A graph G of order n is not complete, if and only if Gζ is not complete.

Proof. Let G be of order n, then Gζ is of order n. If Gζ � Kn then G� Kn, since G⊆ Gζ .

Conversely, if G is not complete then χ(G) < n hence, for any chromatic colouring of G,

at least one pair of distinct vertices say u and v exists such that c(u) = c(v). Therefore, edge

uv /∈ E(Gζ ) implying Gζ is not complete. �

Theorem 2.1 can be stated differently i.e. G is complete if and only if Gζ is complete. The

next lemma does not necessarily correspond to a chromatic completion graph. It represents a

pseudo completion graph corresponding to a chromatic colouring, ϕ : V (G) 7→ C .

Lemma 2.1. For a chromatic colouring ϕ : V (G) 7→ C a pseudo completion graph, H(ϕ) =

Kn1,n2,n3,...,nχ
exists such that, ε(H(ϕ))− ε(G) =

χ−1
∑

i=1
θG(ci)θG(c j)( j=i+1,i+2,i+3,...,χ)− ε(G)

≤ ζ (G).

Proof. For any chromatic colouring ϕ : V (G) 7→ C , the graph, H(ϕ) = KθG(c1),θG(c2),...,θG(cχ ) is

a corresponding pseudo completion graph. Therefore, the result as stated. �

Now we are ready for a main result which is a direct consequence of Lemma 2.1

Theorem 2.2. Let G be a graph. Then ζ (G) =max{ε(H(ϕ))−ε(G) : over all ϕ : V (G) 7→C }.
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Theorem 2.3. Let G be a graph. Then ζ (G) ≤ ε(G), and equality holds if and only if G is

complete.

Proof. Since a chromatic completion edge e /∈ E(G) it follows e ∈ E(G) hence, ζ (G)≤ ε(G).

�

An immediate consequence of Theorem 2.3 read with the definition of chromatic completion

is that equality holds for a graph G if and only if, for all pairs of distinct vertices, u, v for which

the edge, uv /∈ E(G) we have, c(u) 6= c(v).

For a positive integer n≥ 2 and 2≤ `≤ n, let integers, 1≤ a1,a2,a3, . . . ,a`−r,a′1,a
′
2,a
′
3, . . . ,a

′
r≤

n− 1 be such that, n =
`−r
∑

i=1
ai +

r
∑
j=1

a′j. Then (a1,a2,a3, . . . ,a`−r,a′1,a
′
2,a
′
3, . . . ,a

′
r) is called a `-

partition of n and
`−r−1

∑
i=1

`−r
∏

k=i+1
aiak +

`−r
∑

i=1

r
∏
j=1

aia′j +
r−1
∑
j=1

r
∏

k= j+1
a′ja
′
k is called the sum of permutated

term products of the `-partition of n.

To illustrate the concepts consider n = 2. Since, (1,1) is the only 2-partition of 2, it follows

that 1× 1 = 1 is the only sum of permutated term product, (a single product for n = 2). For

n = 5 and by the commutative law there are two distinct possible 3-partitions namely, (1,1,3)

or (1,2,2). Hence, the two distinct sum of permutated term products are equal to 7 and 8. For

n = 8 and by the commutative law there are four distinct possible 3-partitions namely, (1,2,5),

(1,3,4), (2,3,3) or (2,2,4), with corresponding sum of permutated term products equal to 17,

19, 21 and 20, respectively.

Definition 2.1. For two positive integers 2≤ `≤ n the division, n
` = b

n
`c+ r, with r some posi-

tive integer and ` > r ≥ 0.

Hence, n = bn
`
c+ bn

`
c+ · · ·+ bn

`
c︸ ︷︷ ︸

(`−r)−terms

+dn
`
e+ dn

`
e+ · · ·+ dn

`
e︸ ︷︷ ︸

(r≥0)−terms

.

This specific `-partition, (bn
`
c,bn

`
c, . . . ,bn

`
c︸ ︷︷ ︸

(`−r)−terms

,dn
`
e,dn

`
e, . . . ,dn

`
e︸ ︷︷ ︸

(r≥0)−terms

) is called a completion `-partition

of n.

The next theorem is a number theoretical result which finds application in the study of

chromatic completion of graphs. To ease the formulation of the next result let, ti = bn
`c,
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i = 1,2,3, . . . ,(`− r) and t ′j = dn
`e, j = 1,2,3, . . . ,r. Call, L =

`−r−1
∑

i=1

`−r
∏

k=i+1
titk +

`−r
∑

i=1

r
∏
j=1

tit ′j +

r−1
∑
j=1

r
∏

k= j+1
t ′jt
′
k, the `-completion sum-product of n.

Theorem 2.4. (Lucky′s T heorem) For a positive integer n ≥ 2 and 2 ≤ p ≤ n let integers,

1 ≤ a1,a2,a3, . . . ,ap−r,a′1,a
′
2,a
′
3, . . . ,a

′
r ≤ n− 1 be such that n =

p−r
∑

i=1
ai +

r
∑
j=1

a′j then, the `-

completion sum-product L =max{
p−r−1

∑
i=1

p−r
∏

k=i+1
aiak+

p−r
∑

i=1

r
∏
j=1

aia′j+
r−1
∑
j=1

r
∏

k= j+1
a′ja
′
k} over all pos-

sible, n =
p−r
∑

i=1
ai +

r
∑
j=1

a′j.

Proof. Let n, p ∈ N, 2 ≤ p ≤ n. The commutative law is valid for addition and multiplication

hence, we assume that, 1 ≤ a1 ≤ a2 ≤ a3 ≤ ·· · ≤ ap−r ≤ a′1 ≤ a′2 ≤ a′3 ≤ ·· · ≤ a′r ≤ n−1 and

that n =
p−r
∑

i=1
ai +

r
∑
j=1

a′j.

For p = 2, consider a1 = x, a′1 = n−x. So a1×a′1 = x(n−x) for which a maximum of n
2×

n
2

is obtain at x = n
2 . We restrict values to integer products thus an integer maximum is attained for

the ordered pairs, (bn
2c,b

n
2c) or (bn

2c,d
n
2e) or (dn

2e,d
n
2e). Hence, the result, maximum sum of per-

mutated term products holds for the completion 2-partition of n if p= 2. Assume it holds for p=

q ∈N. Hence, the assumption states that for, 1≤ a1,a2,a3, . . . ,aq−r,a′1,a
′
2,a
′
3, . . . ,a

′
r ≤ n−1 be

such that, n =
q−r
∑

i=1
ai +

r
∑
j=1

a′j then, the q-completion sum-product L = max{
q−r−1

∑
i=1

q−r
∏

k=i+1
aiak +

q−r
∑

i=1

r
∏
j=1

aia′j +
r−1
∑
j=1

r
∏

k= j+1
a′ja
′
k} over all possible, n =

q−r
∑

i=1
ai +

r
∑
j=1

a′j. Put differently, the aforesaid

means that the sum of permutated term products is a maximum over that particular q-partition.

Hence, (ai(1≤i≤(q−r)),a
′
j(1≤ j≤r)

) corresponds to the completion q-partition of n such that,

n = bn
q
c+ bn

q
c+ · · ·+ bn

q
c︸ ︷︷ ︸

(q−r)−terms

+dn
q
e+ dn

q
e+ · · ·+ dn

q
e︸ ︷︷ ︸

(r≥0)−terms

.

Now consider p = q+1.

Case 1: If r > 0 for n
q , determine a (q+ 1)th sum-term by reducing a sufficient number of

the dn
qe sum-terms by 1 each to obtain terms of the form b n

q+1c or d n
q+1e. The aforesaid is

Dedicated to late Lucky Mahlalela who was a disabled, freelance traffic pointsman in the City of Tshwane.

Sadly he was brutally murdered.
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always possible. Each pair of terms in the (q+1)-partition corresponds to a 2-completion sum-

product of b n
q+1c, b

n
q+1c or b n

q+1c, d
n

q+1e, or d n
q+1e, d

n
q+1e, so it follows that the maximum

sum of permutated term products has been obtained between all pairs (follows from the case

p = 2). It follows that the sum of the maximums yields a maximum over the sum of pairwise

products hence, a maximum sum of permutated term products has been obtained. Furthermore,

the (q+1)-partition obtained corresponds to the terms required for a (q+1)-completion sum-

product of n. Therefore, the result holds for p = q+1 thus it holds for any 2≤ p≤ n for which
n
q has r > 0.

Case 2: Through similar reasoning the results holds for r = 0.

Through immediate induction it follows that the result holds for all n ∈ N, n ≥ 2. That con-

cludes the proof. �

Theorem 2.4 leads to a lemma in which each term in a sum-term partition corresponds to a

distinct colour class. Hence, if the colours are ci, 1≤ i≤ ` then, θ(ci) = bn
`c or dn

`e.

Lemma 2.2. If a subset of m vertices say, X ⊆V (G) can be chromatically coloured by t distinct

colours and if the graph structure permits such, then allocate colours as follows:

(i) For t vertex subsets each of cardinality s = bm
t c allocate a distinct colour followed by:

(ii) Colour one additional vertex (from the r≥ 0 which are uncoloured), each in a distinct colour

if the graph structure permits such colour allocation.

This chromatic colouring permits the maximum number of chromatic completion edges between

the vertices in X amongst all possible chromatic colourings of X.

Lemma 2.2 can be applied to a set of vertices which induce a connected graph by assigning

a proper colouring. Lemma 2.2 also has an interesting implication. This is stated as a theorem.

Theorem 2.5. Let G be a graph. Then,

(i) a chromatic completion graph Gζ is not unique.

(ii) a set of chromatic completion edges of maximum cardinality is not unique.
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Another interesting implication of Lemma 2.2 is that for any n ∈ N the complete `-partite

graph of order n given by

K
(bn
`
c,bn

`
c, · · · ,bn

`
c︸ ︷︷ ︸

(`−r)−terms

,dn
`
e,dn

`
e, · · ·+ dn

`
e︸ ︷︷ ︸

(r≥0)−terms

)
,

n
`
= bn

`
c+ r

with r some positive integer and r ≥ 0, has maximum number of edges amongst all complete

`-partite graph of order n. Furthermore, it is a direct consequence from the proof of Theorem 2.4

that for those graphs which permit the colour allocation prescribed by Lemma 2.2, the maximum

number of chromatic completion edges between the vertices in X amongst all possible chromatic

colourings of X are unique hence, well-defined.

It is important to note that not all graphs permit the colour allocation prescribed by Lemma 2.2.

For such graphs an optimal near-completion `-partition is always possible. The optimal near-

completion `-partition follows from the fact that for n+1, even, we have that 1×n < 2× (n−

1) < 3× (n−2) < · · · < (n+1
2 )2. Similarly for n+1, odd, we have that, 1×n < 2× (n−1) <

3× (n−2) < · · · < bn+1
2 c×d

n+1
2 e. This then yields the unique chromatic completion number.

See note following Theorem 2.6.

2.1. Chromatic completion number of certain graphs. The result for acyclic graphs and

even cyclic graphs (graphs containing only even cycles) G of order n is straight forward, i.e.

ζ (G) = θ(c1)θ(c2)− ε(G). Example, for an even cycle graph Cn it follows that, ζ (Cn) =
n
2 ×

n
2 − n = n(n−4)

4 . This section will henceforth, unless stated otherwise, consider graphs which

contains at least one odd cycle. Thus graphs for which χ(G)≥ 3.

Let the vertices of a cycle graph Cn be labeled vi, 1 ≤ i ≤ n. A sunlet graph Sln, n ≥ 3

is obtained from a cycle graph Cn by attaching a pendant vertex ui to each cycle vertex vi,

1 ≤ i ≤ n. A graph W1+n = Cn +K1, n ≥ 3 is called a wheel graph. The edges and vertices of

Cn are respectively, called rim edges and rim vertices. The vertex corresponding to K1 is called

the central vertex say, v0 and the edges incident with the central vertex are called spokes.

Since a complete graph Kn is obtain from a cycle graph Cn by adding all possible chords, a

complete graph is a cycle derivative graph as well. Recall that a sun graph Sn, n≥ 2 is obtained

from the complete graph Kn by adding vertices ui and the edges uivi, uivi+1, 1≤ i≤ n and where
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modular arithmetic at edge vnv1 has known meaning. Note that S2 ∼= K3 ∼= C3 and is therefore

treated as C3.

Theorem 2.6. (i) Let Cn be an odd cycle graph and n≥ 3. Then,

ζ (Cn) =


n(n

3 −1), if n = 0 (mod 3),

(n−2)n−5
3 + dn−2

2 e+1, if n = 2 (mod 3),

(n−1)n−4
3 + d2

3(n−5)e+1, if n = 1 (mod 3).

(ii) Let Sln be a sunlet graph and n≥ 3. Then ζ (Sln) = 3ζ (Cn)+n.

(iii) Let W1,n be a wheel graph and n≥ 3. Then,

ζ (W1,n) =


n2

4 , if n is even,

ζ (Cn), if n is odd.

(iv) Let Sn be a sun graph and n≥ 3. Then ζ (Sn) =
n(3n−4)

2 .

Proof. (i) Let Nodd = {n : set o f odd positive integers,n ≥ 3}. Let N1 = {ni ∈ Nodd : ni =

0 (mod 3)}, N2 = {n j ∈ Nodd : n j = 1 (mod 3)}, N3 = {nk ∈ Nodd : nk = 2 (mod 3)}. Clearly,

Nodd = N1∪N2∪N3.

Part 1: Let n = 3t, t = 1,3,5,7, . . . . Hence, n = 0 (mod 3) and χ(Cn) = 3. For the colour

set C = {c1,c2,c3} and without loss of generality and by symmetry consideration, the extremal

number of vertices coloured c3 are either θCn(c3) = 1 or θCn(c3) =
n
3 .

Case 1; (θCn(c3) = 1): without loss of generality, let c(vn) = c3. Note that, Cn− vn ∼= Pn−1

and n−1 is even. From Theorem 2.2 it follows that, ε(H(ϕ))−ε(Cn) = (n−1)+ (n−1)2

4 −(n−

2)−2 = n2−2n−3
4 .

Case 2; (θCn(c1) = θCn(c2) = θCn(c3) =
n
3 ): now ε(H(ϕ))− ε(Cn) = n(n

3 −1).

Since, for n ≥ 3 it follows that, n2− 6n+ 9 ≥ 0⇒ 4n2− 12n ≥ 3n2− 6n− 9⇒ n2−3n
3 ≥

n2−2n−3
4 we have, ζ (Cn) ≥ n(n

3 − 1). Through similar reasoning and immediate induction for

1≤ θCn(c3)<
n
3 it is concluded that, ζ (Cn) = n(n

3 −1) = n(t−1).

Part 2: Consider Cn, n = 3t, t = 1,3,5,7, . . . as in (i)Part 1 with the extremal repetitive

colouring, c(v1) = c1, c(v2) = c2, c(v3) = c3, · · · , c(vn) = c3. Now add vertex vn+1, vn+2 to

obtain Cn+2 and note that the edge vnv1 is now a chord which represents a count of +1. The
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additional vertices can only be coloured by the ordered pairs, (c(vn+1),c(vn+2)) = (c1,c2) or

(c1,c3) or (c2,c3). The number of chromatic completion edges that can be added with an end

vertex vn+1 or vn+2 is exactly dn
2e. Hence, from (i)Part 1, ζ (Cn+2) = n(n

3−1)+dn
2e+1. Finally,

standardising to the conventional notation gives the result for n = 2 (mod 3) i.e. ζ (Cn) =

(n−2)(n−2
3 −1)+ dn−2

2 e+1.

Part 3: Let n = 3s+ 1, s = 2,4,6,8, . . . . Hence, n = 1 (mod 3) and χ(Cn) = 3. Similar to

(i)Part 1 colour vertices vi, 1 ≤ i ≤ n− 1 with the extremal repetitive colouring, c(v1) = c1,

c(v2) = c2, c(v3) = c3, · · · , c(vn−1) = c3. For the cycle graph Cn−1 it follows from (i)Part 1

that the chromatic completion number is ζ (Cn−1) = (n− 1)(n−1
3 − 1) = (n− 1)n−4

3 . In Cn the

edge vn−1v1 is a chord and corresponds to a count of +1. The vertex vn can only be coloured

c2. The number of chromatic completion edges from vertex vn is exactly d2
3(n−5)e. Therefore,

ζ (Cn) = (n−1)n−4
3 + d2

3(n−5)e+1.

(ii) Colour the cycle subgraph as in (i). Colour the pendant vertices through say, a clock-

wise rotation of the cycle colouring of one vertex index that is, c(vi) 7→ c(vi+1) and modular

arithmetic for vn, v1 has known meaning. Clearly the number of chromatic completion edges

permitted amongst the pendant vertices per se will be the chromatic completion edges of a cycle

graphCn as well as, ζ (Cn) chromatic completion edges found for Cn. Therefore, the partial count

of chromatic completion edges permitted amongst the pendant vertices is, ζ (Cn)+n. The cycle

graph itself permits ζ (Cn) chromatic completion edges. Finally, the number of chromatic com-

pletion edges permitted between the pendant vertices and the cycle vertices amounts to ζ (Cn)

as well. Hence, ζ (Sln) = 3ζ (Cn)+n.

(iii) Part 1: Because the central vertex is adjacent to all other vertices the chromatic comple-

tion edges can only come from the even rim cycle Cn. The result follows from Theorem 2.1.

Part 2: As in (i)Part 1, it follows that only the odd rim cycle can contribute to chromatic

completion edges. Hence, the result follows from (i).

(iv) For a complete graph Kn, n ≥ 3 each vi can uniquely be coloured ci, 1 ≤ i ≤ n. From

Lemma 2.2 it follows that each vertex ui can be uniquely coloured some c j, c j 6= c(vi), c j 6=

c(vi+1), 1 ≤ i ≤ n and where modular arithmetic at edge vnv1 has known meaning. Because

the set {ui : 1≤ i≤ n} is an independent set and each vertex is uniquely coloured amongst the
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u′is he chromatic completion permits a complete graphs. This gives the number of chromatic

completion edges to be 1
2n(n−1). Furthermore, each ui may be linked to a further n−3 vertices

of Kn. Hence, the total number of chromatic completion edges is, ζ (Sn) =
1
2n(n− 1)+ n(n−

3) = n(3n−4)
2 , n≥ 3. �

Note in respect of optimal near-completion `-partition. Consider the graph K1 +C21

and V (K1) = {v}. From Theorem 2.6(Part 1) and the fact that N(v) = V (C21) prohibits the

allocation prescribed by Lemma 2.2 The optimal near-completion `-partition allows for say

θ(c1) = θ(c2) = θ(c3) = 7 and θ(c4) = 1 say, c(v) = c4. Clearly for a graph G of order n≥ 2

and χ(G)≥ 2 all nested graphs of structure

K1 +(K1 +(K1 + · · ·+(K1 +G)))︸ ︷︷ ︸
k−times

only an optimal near-completion `-partition can be found.

2.2. Chromatic completion number of helm graphs. A helm graph H1,n, n≥ 3. is obtained

from the wheel graph W1,n by adding a pendant vertex ui to each rim vertex vi, 1 ≤ i ≤ n.

Helm graphs derived from wheel graphs, W1,n for even n, will be discussed first. Clearly

n ≥ 4. Let Neven = {n : positive even integers,n ≥ 4}. Let N1 = {ni ∈ Neven : ni = 4+ 6i, i =

0,1,2, . . .}, N2 = {n j ∈ Neven : n j = 6+ 6 j, j = 0,1,2, . . .} and N3 = {nk ∈ Neven : nk = 8+

6k,k = 0,1,2, . . .}. Clearly, Neven = N1∪N2∪N3.

Theorem 2.7. Let H1,ni be a helm graph, ni even and ni ≥ 4. Then

ζ (H1,ni) =



(4ni−1)(ni−1)
3 , if ni ∈ N1,

ni(12ni−19)
9 , if ni ∈ N2,

12n2
i−27ni−4

9 , if ni ∈ N3.

Proof. Part 1: For ni ∈ N1 the colouring θ(c1) = θ(c2) = θ(c3) =
2ni+1

3 is always possible.

Also, ε(H1,ni) = 3ni. Thus, from Lucky’s theorem (Theorem 2.4) read with Theorem 2.2 and

Lemma 2.2 it follows that, ζ (H1,ni) = 3(2ni+1
3 )2−3ni =

(4ni−1)(ni−1)
3 .
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Part 2: For ni ∈ N2 the colouring θ(c1) = θ(c2) = b2ni+1
3 c =

2ni
3 and θ(c3) = d2ni+1

3 e =
2(ni+1)

3 is always possible. Also, ε(H1,ni) = 3ni. By similar reasoning as in Part 1, the result of

Part 2 follows.

Part 3: For ni ∈ N3 the colouring θ(c1) = b2ni+1
3 c =

2ni−1
3 and θ(c2) = θ(c3) = d2ni+1

3 e =
2(ni+1)

3 is always possible. Also, ε(H1,ni) = 3ni. By similar reasoning as in Part 1, the result of

Part 3 follows. �

The next results are for helm graphs H1,n, for odd n. Let N′1 = {ni ∈ Neven : ni = 3+ 6i, i =

0,1,2, . . .}, N′2 = {n j ∈ Neven : n j = 5+ 6 j, j = 0,1,2, . . .} and N′3 = {nk ∈ Neven : nk = 7+

6k,k = 0,1,2, . . .}. Clearly, Nodd = N′1∪N′2∪N′3.

Theorem 2.8. Let H1,ni be a helm graph, ni odd and ni ≥ 3. Then

ζ (H1,ni) =


9, if ni = 3,

3ni(ni−1)
2 , if ni ∈ N′1\{3} or ni ∈ N′2 or ni ∈ N′3.

Proof. Part 1: It is easy to verify that ζ (H1,3) = 9.

Part 2(a): For ni ∈ N′1\{3} the colouring θ(c1) = θ(c2) = θ(c3) = d2ni+1
4 e =

2(ni+1)
4 and

θ(c4) = b2ni+1
4 c=

2(ni−1)
4 is always possible. Also, ε(H1,ni) = 3ni. Thus, from Lucky’s theorem

read with Theorem 2.2 and Lemma 2.2 it follows that, ζ (H1,ni)= 3(2(ni+1)
4 )2+3(2(ni+1)×2(ni−1)

4 )−

3ni =
3ni(ni−1)

2 .

Part 2(b): For ni ∈N′2 the colouring θ(c1) = θ(c2) = θ(c3) = d2ni+1
4 e=

2(ni+1)
4 and θ(c4) =

b2ni+1
4 c =

2(ni−1)
4 is always possible. Also, ε(H1,ni) = 3ni. This result then follows from Part

2(a) noting, ni ∈ N′2.

Part 2(c): For ni ∈N′3 the colouring θ(c1) = θ(c2) = θ(c3) = d2ni+1
4 e=

2(ni+1)
4 and θ(c4) =

b2ni+1
4 c =

2(ni−1)
4 is always possible. Also, ε(H1,ni) = 3ni. This result then follows from Part

2(a) noting, ni ∈ N′3. �

The diagrams in Figure 1 serve as illustration of the reasoning used in the proof of Theorem

2.8.
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FIGURE 1

3. CONCLUSION

In several of the proofs the technique of graph decomposition permitted by Lemma 2.1 and

vertex partitioning permitted by Lemma 2.2 were incorporated. These salient techniques of

proof are worthy of further research.

Essentially chromatic completion of a given graph G yields a new graph G′ such that both G,

G′ are of the same order, χ(G) = χ(G′), G�G′ and ε(G′) is a maximum. For both a chromatic

polynomial exists. It is of interest to find a relation between these chromatic polynomials if

such relation exists.

Determining the chromatic completion number of a wide range of small graphs is worthy

research. Research in respect of all known graph operations remains open. The behavior of

chromatic completion for other derivative proper colourings such as Johan colouring (also called

J -colouring), co-colouring, Grundy colouring, harmonious colouring, complete colouring,

exact colouring, star colouring and others offers a wide scope for further research. Relations

between the corresponding derivative chromatic completion numbers, if such exist, are open

problems to be investigated. It is suggested that complexity analysis of these new parameters

are worthy of further research.

4. ACKNOWLEDGMENTS

The author would like to express sincere gratitude to the reviewers for his/her valuable sugges-

tions.

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.



CHROMATIC COMPLETION NUMBER 2983

REFERENCES

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan Press, London, 2017.

[2] F. Harary, Graph Theory, Addison-Wesley, Reading MA, 1969.

[3] E.G. Mphako-Banda, An introduction to the k-defect polynomials, Quaest. Math. 42 (2019), 207-216.

[4] B. West, Introduction to Graph Theory, Prentice-Hall, Upper Saddle River, 1996.


