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Abstract. We give the concept of an (m,n)-interior ideal of a semiring, and we characterize an intra-regular
semiring by (m,n)-interior ideals. In addition, we show that every (m,n)-interior ideal and both m-left ideal and

n-right ideal coincide in an intra-regular semiring.
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1. INTRODUCTION

The concept of quasi-ideals was introduced for semigroups, cf. [13]. Iseki [5] described
some characterizations of quasi-ideals for semirings without a zero element. Later, Donges
[3] considered quasi-ideals of semirings with an absorbing zero element and studied some of
their properties. Then, Chinram [2] defined a generalization of quasi-ideals of semirings named

(m,n)-quasi-ideals and investigated its properties and using their (m, n)-quasi-ideals.
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The concept of regular semirings was introduced by Zeleznekow [15]. Afterward, Shabir,
Ali, and Batool [12] presented some properties of quasi-ideals and used them to characterize
regular semirings. A generalization of bi-ideals of semirings named m-bi-ideals was introduced
by Munir and Shafiq [8]. Moreover, they presented the form of the m-bi-ideal generated by a
nonempty subset of semirings.

The purpose of this study is to define (m,n)-interior ideals in semirings. Then, we give some
characterizations of intra-regular semirings by m-left ideals, n-right ideals, max{m, n}-bi-ideals,
(m,n)-quasi-ideals and (m,n)-interior ideals. Moreover, we show that every (m,n)-interior ideal

and both m-left ideal and n-right ideal coincide in an intra-regular semiring.

2. PRELIMINARIES

A semiring (S,+,-) is a triple consisting of a nonempty set S and two binary operations +
and - on S such that (S,+) and (S,-) are semigroups which are connected by the distributive
law. From now on, we shall simply write ab instead of a - b for all a,b € S. A nonempty subset
T of a semiring S is called a subsemiring of S if T is a semiring with respect to the same binary
operations of S. A nonempty subset A of a semiring S is called a left ideal (resp., right ideal)
of Sif A+A C A and SA C A (resp., AS C A). If A is both a left and a right ideal of S, then
A is called an ideal of S. A semiring S is called additively commutative if a+ b = b+ a, for
all a,b € S. An element O of a semiring S is called absorbing zero if 0 +x = x = x40 and
0x =0=x0, forall x € S.

Throughout this paper, we assume that every semiring is an additively commutative semiring
with absorbing zero and also write S instead of a semiring (S,+,-).

Let A and B be nonempty subsets of S and a € S. Then we denote the following notations:

A" =AA---A (ntimes),where n € N;
YA = {Zai | a; € A and I is a finite subset of N};
il

YAB = {Za,-b,- | a; € A,b; € B and [ is a finite subset of N};
iel
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La =X{a}, forevery a € S;

Za,— =0, forevery q; € S.
i€l

Next, we present about some necessary basic properties of a semiring S which occurred in

[14] as follows.

Remark 2.1. Let A and B be nonempty subsets of a semiring S. Then the following statements

hold:

Lemma 2.2. Let A be a subset of a semiring S. If A C LA? + LSA? + YA%S + LSA>S, then
A C XSA’S.

Proof. Assume that A C A% +XA2S +XSA? + £SA>S. Then

YA? C LA(ZA? 4+ LA%S + XSA% 4 £SA%S)
C TAA® + TAA®S + LASA® + LASA%S
C £SA® 4+ LSA%S + LSA% + £SA%S
(1) = ¥SA? + XSA%S,
TA? C L(ZA% +3A%S 4+ LSA + 1SA%S)A
C TA%A +ZA’SA +LSA’A + £SASA
C LA%S 4+ TA%S + XSA%S + XSA%S

) = YA%S 4+ XSA%S.
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By (2), we have

YSA? C S(ZA%S + LSAZS)
C TSA%S + £SSA%S

3) C LSAZS.
By (1), we have

YA%S C (1SA% +1SA%S)S
C XSA%S 4+ LSA®SS

“4) C XSA%S.
By (1) and (3), we have

YA% C ¥SA% +¥.SA%S
C Y.SA%S + YSA%S

®) — ¥SA%S.
By (3), (4), (5) and assumption, we have

A CYA? +TA%S +YSA% + ¥.SA%S
C YSA%S + YSA%S + YSA%S + TSA%S

— ¥SA’S.
Therefore, A C LSA2S. 0

A nonempty subset A of a semiring S is called a left ideal (resp., right ideal) of Sif A+A CA
and SA C A (resp., AS C A). If A is both a left and a right ideal of S, then A is called an ideal of
S.

A nonempty subset Q of a semiring S is called a quasi-ideal [13] of S if Q+ Q C Q and
(£SQ)N(ZQS) € Q. A subsemiring B of a semiring S is called a bi-ideal [6] of S if BSB C B.
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We note that every left ideal and right ideal of a semiring S is a quasi-ideal, while every quasi-
ideal is a bi-ideal of a semiring S. A subsemiring / of a semiring S is called an interior ideal [7]
of SIf SISC L.

Let m,n € N. The following definition is a special case of Definition 3.2 in [10]. A sub-
semiring A of a semiring S is called an m-left ideal (resp., n-right ideal) [10] of S if S"TA C A
(resp., AS" C A). A subsemiring Q of a semiring S is called an (m,n)-quasi-ideal [2] of S if
(ZS™Q)N(ZQS") C Q. A subsemiring B of a semiring S is said to be an m-bi-ideal [8] of S if
BS"B C B.

Lemma 2.3. Every m-left ideal or n-right ideal of a semiring S is an (m,n)-quasi-ideal of S.

Proof. Assume that Q is an m-left ideal of a semiring S. It is clear that Q + Q C Q. Next, we
consider (£5"Q) N (ZQOS") CES"Q CXQ C Q. Hence, Q is an (m,n)-quasi-ideal of S. For the

case Q is an n-right ideal, we can prove similar. 0

The converse of Lemma 2.3 is not true as show by the following example.

a b
Example 2.4. Let S = | a,b,c,d € NU{0} 3. Then S together with the usual addi-
c d

tion and multiplication of matrices is a semiring. Let

0 0
0= |x € NU{0}
0

X

It is clear that Q is a subsemiring of S. We consider

3 0 X1
X870 = ’)q,xZGNU{O} SZQ,

0 X2

) 0 0
X0S” = | y1,52 € NU{0} » £ Q.

Y1 )2

It follows that

(ZS°Q) N (20S?) = 20 |xeNU{0} » =0.
X

Therefore, Q is a (3,2)-quasi-ideal of S, but Q is not a 3-left ideal and 2-right ideal of S.
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Lemma 2.5. Every (m,n)-quasi-ideal of a semiring S is a max{m,n}-bi-ideal of S.

Proof. Assume that B is an (m,n)-quasi-ideal of a semiring S. Then, B is a subsemiring of S.

We consider
BSmax{m,n}B C BS"B C YBS"B C ysmtlp - ZSmB,
Bs™{mn}p C BS"B C LBS"B C LBS"*! C £BS".

This implies that BS™*{""}B C (£5™B) N (ZBS") C B. Hence, B is a max{m,n}-bi-ideal of
S. 0

The converse of Lemma 2.5 is not true as show by the following example.

¢ T )
O u v w
0 0 x vy ) ..
Example 2.6. Let S = | u,v,w,x,y,z€ NU{0} ». Then (S,+,") is a semiring
0 0 0 z
L [0 0 0 0] )
under usual the matrix addition and the matrix multiplication. Let
([ ] A
0 a 00
00 0O
B = | a,b € NU{0}
0005
([0 0 0 O] )

It is not difficult to check that B is a subsemiring of S. Then B is a 2-bi-hyperideal of S, that is,

BS?B C B, see in [8], but B is not a (2, 1)-quasi-ideal, because

( T )

c

|ce Nu{0} » ¢ B.

o o o O

0 0

0 0
(ZS?B) N (ZBS) =

0 0

0 0

0

0
0 0] J
For any nonempty subset A of a semiring S, we denote Ly, (A), Ry(A), Q) (A) and By, (A) as
the m-left ideal, the n-right ideal, the (m,n)-quasi-ideal and the m-bi-ideal of S generated by A,
respectively. If A = {a}, we define L,,(a) = L,,({a}),Ru(a) =R, ({a}), OQ(mny(a) = Q(mm({a})

and B, (a) = B, ({a}). Then we have the following lemma.
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Lemma 2.7. [14] Let A be a nonempty subset of a semiring S. Then the following statements
hold:
(i) Lm(A) =ZA+ZA 4. 4 FA™ 4+ S"A;
Ry(A) =ZA+XA? 4. +XA" 4+ FAS";
Q) (A) = ZA+EA? 4 L ZATSAY 1 ((£57A) 1 (EAS"));
By(A) = FA4+XA> 4. 4 TA™H L TAS™A,

Corollary 2.8. Let S be a semiring and a € S. Then the following statements hold:
) Ln(a) =Xa+Xa*+ - +Xa" +XS"a;

(i) Ry(a) =Xa+2Xa*+---+Xd"+XaS";
iii) Q) (a) =Za+ Ya? + -4 Za™ X mnd 4 (£8™a) N (ZaSh));
V) Bm( )=Xa+Xa®+ - +Xa"! 4+ XaS"a.

3. MAIN RESULTS

In this section, we define the concept of (m,n)-interior ideals in semirings and give charac-

terizations of intra-regular semirings by their (m,n)-interior ideals.

Definition 3.1. [1] Let S be a semiring. An element a € S is said to be intra-regular if a € £Sa>S.

If every element a € S is intra-regular, then S is called an intra-regular semiring.
We note that S is an intra-regular semiring if and only if A C £.SA%S for any 0 # A C S.

Definition 3.2. A subsemiring / of a semiring S is said to be an (m,n)-interior ideal of S if

S™IS" C I, where m and n are positive integers.

It is clear that every interior ideal of a semiring S is an (m,n)-interior ideal. In addition, an
(m,n)-interior ideal of a semiring S is a (k,l)-interior ideal of S for all k,/,m,n € N such that

k>mandl > n.
Lemma 3.3. Every both m-left ideal and n-right ideal of a semiring S is an (m,n)-interior ideal.

Proof. Assume that / is both an m-left ideal and an n-right ideal of a semiring S. Then, I is a

subsemiring of S. Hence, S"18" C S"I C I. L]
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The converse of Lemma 3.3 is not true as show by the following example.

Example 3.4. Let S = {a,b,c,d,e}. Define two binary operations + and - on S as follows:

+la b ¢ d e a b c d e
ala b ¢ d e ala a a a a
blb b b b b bla b b b b

and
cle b b b b cla b b b b
dld b b b b dla b b b ¢
ele b b b b ela b b ¢ c

Then, S is a semiring [11]. Let I = {a,b,d}. Clearly, I is a subsemiring of S. Next, we

consider

S?IS = {a,b,c}{a,b,d}{a,b,c,d,e} = {a,b}{a,b,c,d,e} = {a,b} CI.

Thus, I is a (2,1)-interior ideal of S, but it is not a 1-right ideal of S, since IS = {a,b,d}S =

{a,b,c} L I

Let A be a nonempty subset of a semiring S and m,n € N. we denote the notation /(,,, , (A)
to be the (m,n)-interior ideal of S generated by A. Now, we describe the forms of the (m,n)-

interior ideal of a semiring S generated by a nonempty subset A.

Lemma 3.5. Let A be a nonempty of a semiring S and m,n € N. Then

L) (A) = A+ A% 4 4 TA" " 4 £S"AS",

Proof Let] =YA+YA%+.. -+ XA™ " 1 ¥5"AS". Since 0 € Sand A C YA, we have A C YA =
YA4+0+0+4---+0C I Itis clear that I is closed under addition, because § is additively
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commutative. By Remark 2.1, we obtain that
12 — (ZA+ZA2++ZAm+n+ZSmASn)2
C TAA +TAA® + -+ TAA™ 4 TASAS"
+-... +ZAm+nA+EAm+nA2 4. _|_2Am+nAm+n —|—ZAm+nSmASn
+YS"AS"A + LS"ASTA% 4 ... L LSTASTAM LY SMASTSMAS"
CTA?+TA . + ZA™ L 3§"AS  C 1.
Thus, I is a subsemiring of S. Again, by Remark 2.1, we obtain that
SMIS" = S™(ZA + LA+ ZA3 4. £ ZATT L ESTAS™)S"
C LS"AS" + LS"A%S" + .. + TEMATTRGN | 7 GG A SR Gh
CXYXS"AS" CI.
Hence, I is an (m,n)-interior ideal of S. Next, let K be an (m,n)-interior ideal of S containing
A. Tt follows that YA C XK C K,XA2 C XK?> C XK C K,...,XA"t" C k™" C ¥K C K and
YS"AS" C YS"KS" CYK C K. Also, I = XA+ YA2+ ...+ XA 4 ¥§MAS" C K. Therefore, [

is the (m,n)-interior ideal of S generated by A, that s, [, ,(A) =1 =XA + TAZ 4. ZAMR
YSMAS". U

In a particular of Lemma 3.5, if A = {a} then we have the following corollary.

Corollary 3.6. Let S be a semiring and a € S. Then I, ,)(a) = La + Ta? + -+ Xam 4
XS"aS".

Theorem 3.7. Let S be an intra-regular semiring. Then (m,n)-interior ideals and both m-left

ideals and n-right ideals coincide in S.

Proof. By Lemma 3.3, it is sufficient to show that every (m,n)-interior ideal is both an m-left
ideal and an n-right ideal of S. Assume that [ is an (m,n)-interior ideal of S. Then, I is a

subsemiring of S. Since § is an intra-regular and by Remark 2.1, we have

S™I C S™(£SI2S) C XS" TS C ... C ST C RSTIS" C .
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Hence, I is an m-left ideal of S. Similarly, we can show that / is also an n-right ideal of S.  [J

Theorem 3.8. A semiring S is intra-regular if and only if LN R C XLR, for every m-left ideal L
and n-right ideal R of S.

Proof. Assume that S is an intra-regular semiring. Let L be an m-left ideal and R be an n-right

ideal of S. If m > n. Let a € LN R. By assumption and Remark 2.1, we obtain that
a € £Sa*S C IS(XSa*S)aS C £§%a*S® C --- C x8"a?s>m !

Thus, a € £§"a?S?"~1 C £5"q*S" C £S"LRS" C XLR. Hence, LNR C XLR. For the case
n > m, we can prove similar to the previous case.
Conversely, let A be a nonempty subset of a semiring S. By assumption, A C L,,(A) NR,(A) C
XL, (A)R,(A). By Lemma 2.7 and Remark 2.1, we obtain that
YLn(A)Ry(A) = Z((ZA + XA + -+ TA™ + XS"A)
(ZA+ZA% 4+ ZA" + TAS"))
C YAA+TAA% + -+ TAA" + TAAS"
4+ TAMA+ TATA 4 L TATA" L TATAS"
4+ ZS"AA+TSTAA? 4+ LSTAA" + TSMAAS"
C YA? + LSA? + LA%S + £SA%S.

Thus, A C XA% + XSA? +XA%S + XSAS. By Lemma 2.2, A C £SA>S. Therefore, S is an intra-

regular semiring. 0

Now, we give characterizations of intra-regular semirings by their (m,n)-interior ideals.

Theorem 3.9. Let S be a semiring and k = max{m,n}, where m,n € N. Then the following
statements are equivalent:
(i) S is intra-regular;
(ii) Limpy(a) NBi(a) N Lin(a) C XLi(a)Bi(a) ) (a), for all a € S;
(iii) Imny(@) N Qpmpy(@) N Lin(a) C ELin(@) Q) (@) n) (@), for all a € S.
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Proof. (i) = (ii) Assume that S is intra-regular. Leta € S. For any x € 1, ,) (@) N Bi(a) N Ly (a),

we have
x € £Sx%S C £S(Z5x%S) (E5x%5)S C £8%x*S§%x%S?
C £8%(8x%5)(25x%5)S? (£5x%S) (£85x%5)S? C £853x258x2S7
C - C IS C ES"x7S"xS".
Thus, x € £8"x*S"xS" C L8 Ly (a)Bi(a)S™ L, ) (@)S" C ELy(a)Bi(a)l () (a). Hence, Iy, ) (a) N
Bi(a) N Lin(a) C XLy (a)By(a)l(y ) (a) forall a € S.
(if) = (iii) Since every (m,n)-quasi-ideal is a k-bi-ideal of S, statements hold.
(iif) = (i) Leta € S. By assumption, a € I, ) (@) NQ n,n) (@) NLin(@) C ZLyn(@) Q) (@) () (@)
By Corollary 2.8, Corollary 3.6 and Remark 2.1, we have
ELin(@) Qi (@) ) (@)
=X(Xa+Xa*+ - +Xa" +L5"a)
(Za+2a® + - -+ Za™¥ 4 ((£8™a) N (2aS")))
(Za+Za®+-- -+ Zd™ "+ 25" as")
CX(Za+Xa+--+Xd" +1S"a)
(Za+3Xa® + -+ Za™imnt 4 ygmg)
(Za+Xa*+- -+ X"+ £5"as")
C £Sa* +Xa’S +XSaS

C Ya® 4+ X£Sa® + Xa*S + £Sa°S.

It follows that a € Xa® + LSa*> + La*S + XSa>S. By Lemma 2.2, a € YSa2S. Therefore, S is

intra-regular. U

Theorem 3.10. Let S be a semiring and k = max{m,n}, where m,n € N. Then the following
statements are equivalent:
(i) S is intra-regular;

(ii) Limpy(a) NBi(a) N Ry(a) C Xy, ) (a)Bi(a)Ru(a), for all a € S;
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(iii) Lonpy(@) N Qunpy(@) NRy(a) C XLy, 1) (@) Q) (@)Rn(a), for all a € S.
Proof. The proof is similar to Theorem 3.9. U
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