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Abstract: This paper aims to study the effect of heat transfer by convection on thermoelastic rectangular solid 

medium in the context of hyperbolic heat conduction. The studied geometry is a two dimensional finite thin 

rectangular plate without internal heat generation, which is initially at a uniform temperature and subjected to 

convection heat transfer from the extreme edge(y=a) while the opposite side is kept insulated and remaining two sides 

are at a constant temperature. The material properties are assumed to be constant. The differential transform method is 

applied to solve the hyperbolic heat conduction equation to obtain temperature distribution in the spatial and temporal 

domain. Then by applying the obtained temperature in the thermoelastic equation, the displacement component, and 

the stress field are calculated. Also, the effect of convection boundary conditions on temperature distribution and 

thermoelastic field are illustrated numerically and graphically for a copper plate. It is observed that the compressive 

and tensile stress occurs along y-direction due to heat transfer through convection at one end. 

Keywords: hyperbolic heat conduction; thermal stress; convection boundary condition; differential transform 

method; displacement function. 
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1. INTRODUCTION 

As a result of increased usage of nanomaterials, laser heat sources, microwaves in industries and 

the medical field, the interest in the hyperbolic heat conduction model have grown considerably. 

Most of the practical applications are explained in the context of Classical theory of heat 

conduction which supports the infinite speed of heat propagation but in case of high temperature 

gradients, high heat fluxes or very short time duration where the speed of heat propagation is finite, 

the theory of Fourier heat conduction fails. To overcome these difficulties Cattaneo[1] and 

Vernotte[2] proposed the hyperbolic heat conduction model by introducing a new term called 

relaxation time or phase lag in heat flux in solids, which is given by the relation 

q

q
q T

t
 


+ = − 


                                                                                           (1) 

Where 𝜏𝑞 is called relaxation time, 𝑞 is the heat flux and 𝜆 is the thermal conductivity of the 

material. 

Equation (1) along with energy conservation law gives the hyperbolic heat conduction equation 

in two dimensions as: 

2 2 2

2 2 2q

T T
k T

t t x y


    
+ = + 

    
                                                  (2) 

Where  𝑘 =
𝜆

𝜌𝑐
 , 𝜌, 𝑐  are the thermal diffusivity, mass density and  specific heat capacity 

respectively. 

Various researches have been done on thermoelastic behaviour of solids, associated with 

convection heat transfer in the Fourier heat conduction domain. Thermoelastic behaviour of 

isotropic rectangular plate with heat transfer by convection have studied, using the finite element 

method under the classical Fourier heat conduction model by Shubha and Kulkarni[3]. Chen[4] 

has studied the thermal stress in a rectangular plate subjected to non-uniform heat transfer in 

terms of power series using Lanczos-Chebyshev and discrete least square methods. Sugano[5] 

has investigated the thermal stresses in the orthotropic rectangular plate under different third kind 

boundary conditions at four edges. In their study, it is observed that the thermal stresses are 

dependent on the anisotropic properties of a material. 
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In the past, most of the research work has been reported on the study of the hyperbolic heat 

conduction equation for one or more variables under different boundary conditions. Paul J 

Antaki[6] have investigated the temperature distribution in the semi-infinite slab under 

hyperbolic heat conduction, considering heat transfer by convection for the case of cooling and 

heating and observed that the result obtained for temperature field have significantly different in 

case of HHC than parabolic. Glass et.al[7] applied the numerical method to solve hyperbolic heat 

conduction with convection type boundary condition for different types of an internal heat source 

and also observed that convection heat transfer does not affect the heat source if it considers at 

the right boundary. The effect of convection and radiation type boundary conditions on 

temperature distribution under hyperbolic heat conduction using heat flux balance and Newton’s 

iteration method have studied by  Shen and Han[8]. The temperature distribution in 

nanomaterials in the context of hyperbolic heat conduction theory have analyzed by Moran Wang 

et.al[9]. Yen and Wu[10] have investigated an analytical solution of non-Fourier heat conduction 

in a finite slab, which is subjected to surface radiation and periodic on-off heat flux. H.Rahideh 

et al. [11] applied DQM to obtain the solution of the hyperbolic heat conduction equation and 

also demonstrated the accuracy and convergence of the method for different parameters. A little 

work on the thermoelastic responses of solids in the context of the hyperbolic heat conduction 

model has been reported in the literature. Zhang et al.[12] have developed a coupled 

thermomechanical model for thermoelastic material, considering hyperbolic heat conduction 

model and obtained thermal stresses in the material which cannot be neglected in 

thermoelasticity. Deng and Liu [13] have shown the importance of non-Fourier heat conduction 

in the study of thermal stresses produced in skin tissues by cryopreservation. Recently, Yang and 

Chen[14] investigated the thermal stresses in FGM half-space using the hyperbolic heat 

conduction model in Fourier and Laplace domain. 

The non-Fourier hyperbolic heat conduction generally appears in microscale applications, where 

convection heat transfer does not play any significant role. But in some experiment [15][16] it 

was observed that hyperbolic heat conduction is also associated with macroscale applications, 
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involving relatively large time and length scale and in such applications the heat transfer by 

convection is important. For example, in the field of medical science burning of tissues by 

applying hot liquid [17]. Thus due to the advancement in the field of technology and medical 

science, it is essential to study the hyperbolic heat conduction with convective heat transfer in the 

field of thermoelasticity. 

In the literature different analytical and numerical methods like Fourier transform, Laplace 

transform, Finite element method, Differential Quadrature method, and Differential transform 

method have been used to solve the hyperbolic heat conduction equation as well as an equation 

involving in the calculation of thermal stresses and displacement. In which, the differential 

transform method based on Taylor series is a semi-analytical method, which was first proposed 

by Zhou [18] in 1986 for the solution of linear and nonlinear initial value problems that appear in 

electrical circuits. Due to its effectiveness and simplicity in the past few years, many authors 

have applied this method to solve different types of partial and ordinary differential equations. 

Sobhan Mosayebidorcheha et al.[19] applied DTM to find the convergent solution of nonlinear 

heat conduction on a fin. Lo & Chen[20] presented the solution of HHCE by applying a hybrid 

differential transform and volume control method by choosing appropriate shape function and 

concluded that this method is easy and reliable for engineering problems. Yih et.al[21] have 

investigated Pennes bio-heat transfer equation using DTM along with finite difference method 

for temperature distribution in human eyes. Mahesh Kumar et.al [22] studied the temperature 

distribution under convective heat transfer over a stretching sheet by applying DTM. The 

n-dimensional differential transform of function T of n variables[23] as follows: 
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Where 𝑇(𝑘1, 𝑘2, … … 𝑘𝑛) is the transformed function T. 

The inverse differential transform of 𝑇(𝑘1, 𝑘2, … … 𝑘𝑛)is defined by 
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Further, from eq.(3) and (4) one can obtain 
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                                         (5) 

In this article, the temperature distribution and thermal stresses under the hyperbolic heat 

conduction model subjected to convection type heat transfer through the boundary surface are 

semi-analytically investigated. The displacement component is also calculated in a spatial 

direction. The governing, partial differential equations are solved by applying a semi-analytical 

differential transform method. The copper material is used to illustrate the results numerically 

and graphically.  

 

2. MATHEMATICAL MODELING FOR TEMPERATURE FIELD 

The present investigation concerns a finite thin rectangular plate, initially kept at constant 

temperature 𝑇0 and subjected to convection type heat transfer at the edge y=b, the other side 

opposite to it is kept insulated and the other two parallel sides are at a constant temperature 𝑇∞.  

Here two-dimensional heat conduction and constant thermal properties have considered. A plate 

of rectangular shape occupying the space D: {(𝑥, 𝑦): 𝑥 ∈ [0, 𝑎], 𝑦 ∈ [0, 𝑏]}  has taken into 

consideration. Where the unsteady state temperature distribution under the hyperbolic heat 

conduction in the plate with no internal heat generation given in Eq.(2) is subjected to initial and 

boundary conditions, which are given as:                                                                                                                                                                                                       

( ) 0, , 0T x y T=                                                                (6) 

( )  , ,0
0

T x y

t


=


                                                              (7) 

( )0, ,T y t T=                                                                 (8) 
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( ), ,T x a t T=                                                                 (9) 

( ),0,
0

T x t

y


=


                                                              (10) 

( )
( )1

, ,
0s b

T x b t
k h T T

y


+ − =


                                                   (11) 

For convenience we shall employing the following dimensionless variables: 

                  

0
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                                 (12) 

Using the above dimensionless variables, the governing heat conduction equation becomes: 

2 2 2

2 2 2

 
2

x y

 
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 
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                                                   (13) 

 And the initial and boundary conditions are transformed as: 
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                     (14) 

 

3. SOLUTION FOR TEMPERATURE FIELD 

Applying differential transform method defined in Eq.(3) on non-dimensional heat transfer Eq. 

(13), we get                                                                                                                               

( )
( )( )

( )( ) ( )

( )( ) ( ) ( ) ( )

1
, ,Θ 2 1 2 2, ,Θ

Θ 1 Θ 2

1 2 , 2,Θ 2 1 , ,Θ 1

q
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

         

+ = + + ++ +

+ + + + − + + 

                      (15) 

To find the differential transform of initial and boundary condition, here first initial condition and 
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boundary condition at x=0 can be represented by using Fourier sine series as: 

1
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Where 𝐶𝑛𝑚, 𝐵𝑛𝑚 can be determined by 
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Now using the above results, we can write the differential transform of initial and boundary 

conditions given in Eq. (14) as: 
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Now assuming 𝜃(𝜁, 0, Θ) = 𝐵   and applying above transformed initial and boundary 

conditions from Eqs.(16)-(19)  in Eq. (15) , one can obtain the transformed parameter for 

temperature using a recursive method and then applying inverse differential transform defined in 

Eq.(4)  and neglecting the higher-order terms,we get the expression for temperature distribution 
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as: 
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Now applying the transformed boundary condition prescribed at y=b from Eq.(14), one can 

obtain the unknown constant B and substituting that value in Eq.(20), the expression for 

temperature field is given as:                                                                                                                                                                      
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           (21) 

 

4. MATHEMATICAL MODELING FOR THERMOELASTIC FIELD 

Considering the thermal stress function 𝜒 defined as [24], in the rectangular coordinate system for 

the plane thermoelastic problem. The fundamental equation is given as: 

2
2 2 2 2

 2 2 2 2
0E

x y x y
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+ + + =   
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                                          (22) 
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The general solution of Eq.(22) may be expressed as a sum of complementary function𝜒𝑐 and the 

particular solution𝜒𝑝 : 

 c p  = +                                                                                                 (23) 

Where 𝜒𝑐  𝑎𝑛𝑑 𝜒𝑝 are satisfied by the equations 

2
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0   c
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                                                      (25) 

And component of stress are related to stress function as follows: 
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With the following mechanical boundary conditions:  

0,   0xx xy = =  on 𝑥 = 0, 𝑎                                                   (27) 

Also, the fundamental equation for displacement function defined as [24] for plane problem in a 

rectangular coordinate is given as: 

1 1
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 
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                                                    (29) 

Where G and 𝜈 are shear modulus of elasticity and poison’s ratio, and 𝜓 satisfy the following 

equation as:  

2
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401 

EFFECT OF CONVECTION BOUNDARY CONDITION 

Now we introduce dimensionless quantities for stress function and displacement function as: 
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Then, the fundamental equation of stress function and the component of stress and displacement 

given in Eqs.(22), (24),(25),(26), (28), (29) and (30) can be written in dimensionless form as: 
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Furthermore, the mechanical boundary condition given in Eq.(27) are in dimensionless 

parameter as:    

0,   0xx xy = =  on 𝑋 = 0, 𝑎̅                                                  (39) 
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5. SOLUTION FOR THERMOELASTIC FIELD 

The complementary function 𝜒𝑐, the general solution of Eq.(33) may be taken in the following 

form:                                                                                                                                               

cosh sinh sin

cosh sinh sin

c i i

i i

m Y m m

n
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a a a

Y n X
Y

b b b
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                          (40) 

Now the solution of particular integral 𝜒̅𝑝 is obtained by applying differential transform and its 

inverse on Eq.(34).The transformed form of Eq.(34) is given by 

( )( ) ( ) ( )( ) ( )

( ) ( )( )
   1 2 2, ,Θ 2 1 , 2,Θ

, ,Θ , ,Θ 

p p         

     

+ + + + + + + =

− −
                       (41) 

Where 𝛿 is a Dirac delta function. 

Now using recursive method and applying inverse differential transform, one can obtain𝜒̅𝑝 as :                                                                                                       

( )

22 2 4

  2
1 1

33 5

sin
16

sin
2! 2! 4!

..
3! 5!

i

k k

p

n m

n n
A

m Y X m Y X m X

nm b b b

f m Y m Y n X n X m Y
sin sin

nm b b a a b

 

    




     

 

= =

    
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(42) 

Further using Eq.(35) and (39) one can obtain constant 𝛼𝑖 , 𝛽𝑖, 𝛿𝑖, 𝛾𝑖 as: 

0i i i  = = =  
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3 2
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 + − +        



              (43) 
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Now substituting these values, the expression for thermal stress components are as follows:                                         
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                        (44)                                                                                                                     
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          (45)                                                                                                       
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 (46) 

Similarly, using Eqs.(36)~(38),we will get the solution for displacement components as: 
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    (48) 

 

6. NUMERICAL RESULT AND DISCUSSION 

The thermoelastic natures of finite thin rectangular plate are illustrated here. For numerical 

purpose, values for 𝑇0 = 20℃,   𝑇𝑏 = 60℃ , 𝑇∞ = 10℃ , 𝑎̅ = 1, 𝑏̅ = 2 , and 𝐴 =
16𝛼𝐸

𝜋2  are 

considered. Also,𝜏𝑞 = 0.02, using values of material parameter of copper plate [25] : 
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𝛼 = 17 × 10−6℃−1, 𝑘 = 1.1283 × 10−4𝑚2/𝑠 , 𝜈 = 0.33. The temperature field, thermal stresses and 

displacement along spatial direction are determined and plotted.  

Temperature distribution in a finite plate for specific values of dimensionless time along spatial 

direction X and Y has shown in Fig.1 and Fig2. From Fig.1 the small variation in temperature is 

observed for a small part of the plate, but as move along y-direction and as reaches near to the 

boundary, large variation in temperature has observed due to heat transfer by convection at that 

end. 

In Fig.2 variation of temperature along X-direction shows as the time reaches to double of 

relaxation time plate experienced a sudden increment in the value of temperature. The nature of 

temperature is sinusoidal. It is also clear from the figure that the behaviour of temperature 

distribution is opposite, as it was initially for an increment in time, due to the effect of relaxation 

time.

 

Figure 1. Temperature distribution along Y direction at X=0.5 for different values of 𝜏 
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Figure 2. Temperature distribution along X direction at Y=1 for different values of 𝜏 

 

Figure3. Distribution of 𝜎𝑥𝑥 along X direction at Y=1 for different values of 𝜏 
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Figure 4. Distribution of 𝜎𝑥𝑥 along Y direction at X=0.5 for different values of 𝜏 

 

Figure 5. Distribution of 𝜎𝑦𝑦 along X direction at Y=1 for different values of 𝜏 
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Figure 6. Distribution of 𝜎𝑦𝑦 along Y direction at X=0.5 for different values of 𝜏 

 

Figure 7. Distribution of 𝜎𝑥𝑦 along X direction at Y=1 for different values of 𝜏 
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Figure 8. Distribution of 𝜎𝑥𝑦 along Y direction at X=0.5 for different values of 𝜏 

In Fig 3 to Fig 8 variation of stress components along spatial direction for different values of 

dimensionless time is shown. It is observed from Fig. 3 that the plate experienced a small amount 

of stress initially but as the value of dimensionless time increase, the amount of stress in 

X-direction also increases, and the left part of the plate experienced maximum stress. In Fig.4 

variation of dimensionless stress component 𝜎𝑥𝑥  along Y-direction is plotted. The stress 

fluctuates between compressive and tensile stress throughout the plate. It is clear from the graph 

that, the plate experienced peak stress at the mid of the plate initially and the compressive stress 

occurs in mid of the plate as the time increases, due to the phase lag in heat flux. 

Fig.5 illustrating the variation of dimensionless thermal stress component 𝜎𝑦𝑦 in X-direction. It 

is observed that the tensile stress occurs in a plate, suddenly after mid of the plate at 𝜏 = 0. For 

the increasing values of time, the behaviour of stress changes due to the hyperbolic nature of 

temperature distribution. In Fig.6 variation of 𝜎𝑦𝑦in Y-direction has been depicted. It can be 

easily seen that the amount of stress increase as increasing the value of time. Also, it is observed 

that the boundaries exert compressive stress in this case.  

As shown in Fig.7, the thermal stress component 𝜎𝑥𝑦 along x-direction does not occur up to mid 

part of the plate and then suddenly plate experienced the compressive stress at the boundary. In 
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Fig.8 variation of 𝜎𝑥𝑦  along y-direction has been shown. It is clear from the figure that 

maximum stress occurs at the boundary of the plate. 

 

Figure 9. Distribution of displacement 𝑈̅𝑥along X direction at Y=1 for different values of 𝜏 

 

Figure10. Distribution of displacement 𝑈̅𝑦along Y direction at X=0.5 for different values of 𝜏 
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In Fig. (9) and (10) variation of dimensionless displacement component 𝑈̅𝑥 and 𝑈̅𝑦 along x 

and y direction has been plotted. From both graphs, it is observed that the maximum 

displacement occurs at the boundary x=a and y=b. It is clear that the displacement along 

y-direction varies linearly. 

 

7. CONCLUSION 

In the present work, the effects of convection type boundary condition on thermoelastic 

behaviour of rectangular plate under the framework of the hyperbolic heat conduction model 

have been investigated. The distribution of temperature, thermal stresses, and the displacements 

in a plate is obtained in the differential transform domain. The solution is obtained in the form of 

an infinite series. From the study, it is observed that the peak temperature is experienced at the 

boundary where heat is transfer by convection. The study also shows that tensile and 

compressive stresses occur in the plate along Y-direction. Also, it is observed that the behaviour 

of stress changes as time increases.  This study may be useful for designing and engineering 

applications where the heat transfer by convection along with temperature gradient is high or the 

time duration is very short.  
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