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Abstract. Many mathematical models describing the evolution of infectious diseases underestimate the effect of

the Spatio-temporal spread of epidemics. Currently, the COVID-19 epidemic shows the importance of taking into

account the spatial dynamic of epidemics and pandemics. In this contribution, we consider a multi-region discrete-

time epidemic model that describes the spatial spread of an epidemic within different geographical zones assumed

to be connected with the movements of their populations. Based on the fact that there are several limitations

in medical resources, the authorities and health decision-makers must define a threshold of infections in order

to determine if a zone is epidemic or not yet. We propose a new approach of optimal control by defining new

importance functions to identify affected zones and then the need for the control intervention there. Numerical

results are provided to illustrate our findings by applying this new approach in two adjacent regions of Morocco,

∗Corresponding author

E-mail address: sarabidah@gmail.com

Received October 18, 2020
1256



AN AUTOMATED OPTIMAL VACCINATION CONTROL 1257

the Casablanca-Settat and Rabat-Salé-Kénitra regions. We investigate different scenarios to show the most effective

scenario, based on thresholds’ values.

Keywords: vaccination; automated; SIR; epidemic; optimal control.
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1. INTRODUCTION

The field of epidemiology with the science of mathematics have been developed to study the

transmission laws of epidemics [1]. Mathematical models provide the opportunity to understand

how pandemics are spread and transmitted, taking into consideration the fact that these models

present a mathematical translation of different hypotheses concerning the process of an epi-

demic transmission [2, 3]. However, in order to define outbreaks of various types of epidemics

and to provide insights into disease control and policy formulations, mathematical formulations

have been developed [4, 5]. Based on this data, effective control and preventive measures are

suggested [6]. However, with the effect of spatio-temporal spread of epidemics, mathematical

modeling should take into account the geographical criterion to show the spatial spread of an

infectious disease within different geographical zones [7].

One of the basic models that was successfully investigated was the Kermack-Mckendrick

model. To model an epidemic, the population being studied is divided into three classes labeled

S, I, and R [8]:

(S) refers to susceptible people who are not infected, but the possibility of transmitting the

infection is still existed.

(I) Infected individuals who receive the infection, and able to spread it by contact with other

people.

(R) Recovered or removals are individuals who become immune after getting sick, or indi-

viduals who are isolated from other members of the group, or ones who die due to the disease

[9, 10].

The transmission process of an epidemic is described when a population of susceptibles is

being introduced into infectious individuals, then the infection is spread in the group through

different modes of transmission [11, 12].
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Various types of phenomena were analyzed and controlled by mathematical models, citing as

example epidemics, Information dissemination, public opinion, and others.. [13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24] .

Recently, the COVID-19 Virus has shown the necessity of taking into consideration the spa-

tial dynamic of epidemics, and described how spatial heterogeneity affects the transmission

dynamics of susceptible and infected populations [25, 7]. The Corona virus was reported firstly

in Wuhan, China, the outbreak was greatly increased and moved to other Chinese cities and

multiple countries, moving to other continents [26, 27, 28, 29]. In the history there were also

many pandemics that show the spatio-temporal spread of pandemics such as the black plague

[30], cholera [31], and others ... [32].

The discrete time multi-regional SIR model is a mathematical modeling of spatial and tem-

poral spread of epidemics, an example of this model is made by [7], the multi-regional model

is presented in multiple geographical areas to control the movements of the pandemic, and

the infection can be spread from one region to another through travel. However, three main ap-

proaches are cited in [18], raise awareness by organizing vaccination campaigns, travel blocking

movements coming from infected areas, and treatment. Other models are analyzed in this topic

from many researchers in [33, 34].

In the history of all these diseases, we can notice their spread from one region to another, and

recently the COVID-19 pandemic from its epicenter of Wuhan in China has spread to all parts

of the world, which makes taking into account the spatial spread of diseases more important

during modeling processes.

The authors in [7] present the first work in the modeling and control of spatio-temporal spread

of an epidemic using a multi-region SIR discrete-time model, as a generalization of the concept

of classical models and aiming at a description of the evolution of pandemics, Zakary et al

proposed a new approach of modeling of the spread of epidemics from one area to another using

finite-dimensional models for the Spatio-temporal propagation of epidemics as an alternative

of the partial derivatives models which are of infinite dimension. The authors also suggested

some control strategies such as awareness-raising, vaccination, and travel-restriction approaches

that could prevent specific infectious diseases such as HIV / AIDS, Ebola, or other epidemics
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in general [7, 35, 19, 18, 36], other researchers have shown the power and effectiveness of

educational workshops and awareness programs in reducing the number of infected individuals

[37, 38, 39].

In this paper, we propose a new optimal control approach mainly based on a multi-regions

discrete-time system and a new form of multi-objective optimization criteria with importance

indices and which is subject to multi-points boundary value optimal control problems. With

more clarifications and essential details, we devise here a multi-regions discrete model for the

study of the spread of an epidemic in M different regions, and analyze the effectiveness of vacci-

nation (or awareness) optimal control strategies when vaccination (or awareness) campaigns are

organized in infected zones. Here, we study the case when controls are applied to people who

belong to all those regions and which are supposed to be reachable for every agent (nurse, doc-

tor or media) who is responsible for the accomplishment of control strategies followed against

the disease.

We consider an area as an infected zone if its number of infected individuals exceeds a thresh-

old defined by the health decision-makers. Therefore, by varying the values of this threshold

and then simulating the infection situation for different values of these thresholds shows that it

is necessary to think about reducing the time between the first infection and the implementa-

tion of the control strategy. Unexpected results that in some situations the neighboring regions

infected and its number of infections exceeds the threshold before the number of infections of

the region source. This makes the implementation of the control strategies in the neighboring

zones more important.

In our modeling approach we divided the studied area Ω into different zones that we call

cells. A cell C j ∈Ω can represent a city, a country or a larger domain. These cells are supposed

to be connected by movements of their populations within the domain Ω. We define also a

neighboring cells Ck of the cell C j all zones connected with C j via every transport mean, thus

a cell C j ∈ Ω can have more than one neighboring cell. Here, we suppose that a cell can be

infected due to movements of infected people which enter only from its neighboring zones.

We carry out the map of the studied area and then we use different threshold values in the

controlled multi-region SIR model to simulate the epidemic spread within the Casablanca-Settat
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FIGURE 1. The geographical studied zone Ω: (a) Discretization on two regions

Casablanca-Settat and Rabat-Salé-Kénitra. (b) Discretization of the two regions

on provinces with numbers. (c) Discretization of the whole studied zone on

provinces with names. (d) Zoom in to Casablanca and its neighbors.
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region and Rabat-Salé-Kénitra region illustrated in the Fig.1, by combining the ArcGIS and

Matlab programs.

The paper is organized as follows: Section 2. presents the discrete-time multi-region SIR

epidemic system. In Section 3., we announce theorems of the existence and characterization

of the sought optimal controls functions related to the optimal control approach we propose.

Finally, in section 4., we provide simulations of the numerical results applied to the Casablanca-

Settat region and Rabat-Salé-Kénitra region as domain of interest.

2. MODEL DESCRIPTION AND DEFINITIONS

Based on same modeling assumptions of the reference [7], we assume that there are M geo-

graphical regions denoted C j (sub-domains) of studied Ω

Ω =

M⋃
j = 1

C j
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Nb Zone Population Nb Zone Population Nb Zone Population Nb Zone Population

1 BEN SLIMANE 213398 5 CASABLANCA-ANFA 523279 9 BEN MSICK-SIDI OTHMANE 704365 13 KHENIFRA 220543

2 MOHAMMEDIA 170063 6 AL FIDA-DERB SULTAN 386700 10 SETTAT 847422 14 KHOURIBGA 480839

3 SIDI BERNOUSSI-ZENATA 268586 7 AIN CHOCK-HAY HASSANI 516261 11 EL JADIDA 970894 15 BENI MELLAL 869748

4 AIN SEBAA-HAY MOHAMMADI 520993 8 MACHOUAR CASABLANCA 3956 12 AIN CHOCK-HAY HASSANI 516261 16 AZILAL 454914

TABLE 1. Populations of the two regions: Casablanca-Settat and Rabat-Salé-Kénitra.

Where C j can represent a city, a country or a larger domain. We note by V (C j), the vicinity set,

composed by all neighboring cells of C j given by

V (C j) =
{

Ck ∈Ω /C j∩Ck 6= /0
}

Where C j ∩Ck 6= /0 means that there exists at least one mean of transport between C j and Ck.

Note that this definition of V (C j) is more general where it defines a more general form of

vicinity regardless the geographical location of zones.

For example, in the Table 1 we can see that the studied area consists of 16 zones.

The multi-regional discrete-time SIR model associated to C j with ε
C j
i = 0 (no control is

introduced yet in C j) is then

SC j
i+1 = SC j

i − ∑
Ck∈V (C j)

β
Ck

j
ICk
i

NC j
i

SC j
i +
Ä

NC j
i −SC j

i

ä
d j(1)

IC j
i+1 = IC j

i + ∑
Ck∈V (C j)

β
Ck

j
ICk
i

NC j
i

SC j
i − γ jI

C j
i −d jI

C j
i −α

C j IC j
i(2)

RC j
i+1 = RC j

i + γ jI
C j
i −d jR

C j
i(3)

where the disease transmission coefficient β
Ck

j > 0 is the proportion of adequate contacts

in domain C j between a susceptible from C j ( j = 1, ...,M) and an infective from another do-

main Ck, d j is the birth and death rate and γ j is the recovery rate ans αC j is the proportion of

mortality due to the disease. The biological background requires that all parameters be non-

negative. SC j
i , IC j

i and RC j
i are the numbers of individuals in the susceptible, infective, and

removed compartments of C j at time i, respectively, and NC j
i = SC j

i + IC j
i +RC j

i is the population

size corresponding to domain C j at time i. It is clear that the population size is not constant for

all i≥ 0.
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3. THE MODEL WITH VACCINATION

3.1. Presentation of the model with the control. In this section, we introduce a control

variable uC j
i that characterizes the effectiveness of the vaccination in the above mentioned model

(1-3). This control in some situations can represent the effect of the awareness and media

programs [18, 19].

In almost all infectious diseases, the authorities determine the threshold of risk based on

many factors, such as availability of medical equipment, budgets, and medical personnel ...

Thus, they can wait some time to see the course of events before the intervention. If the number

of casualties exceeds this limit, decision-makers have no choice but to start trying to control

the situation. This motivate us to define a Boolean function ε
C j
i = fC j(I) (εC j

i = 1 or ε
C j
i = 0)

associated to domain C j, that will be called the importance function of C j. Where ε
C j
i is either

equaling to 1, in the case when the number of infected of the cell C j at instant i is greater than

or equal to the threshold I C j defined by the authorities and health decision-makers, or ε
C j
i = 0

otherwise. Therefore, we define the importance function ε
C j
i by the Heaviside step function H

as follows

ε
C j
i = H

Ä
IC j
i −I C j

ä
=

0 IC j
i < I C j

1 IC j
i ≥I C j

Then for a given domain C j ∈Ω, the model is given by the following equations

SC j
i+1 = SC j

i − ∑
Ck∈V (C j)

β
Ck

j
ICk
i

NC j
i

SC j
i +
Ä

NC j
i −SC j

i

ä
d j

−ε
C j
i uC j

i SC j
i(4)

IC j
i+1 = IC j

i + ∑
Ck∈V (C j)

β
Ck

j
ICk
i

NC j
i

SC j
i − γ jI

C j
i − jIC j

i −α
C j IC j

i(5)

RC j
i+1 = RC j

i + γ jI
C j
i −d jR

C j
i + ε

C j
i uC j

i SC j
i(6)

Our goal is obviously to try to minimize the population of the susceptible group and the cost

of vaccination in all affected regions. Our control functions taking values between uC j
min and

uC j
max, where uC j

min,u
C j
max ∈ ]0,1[ , ∀C j ∈Ω.
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3.2. An optimal control approach. We devise in this paper an optimal control approach for

each region with different importance functions ε
C j
i , j = 1, ...,M. We characterize an optimal

control that minimize the number of the infected people and maximize the ones in the removed

category for all affected regions. Then, we are interested by minimizing the functional

(7) J(u) =
M

∑
k=1

ε
Ck
i JCk(uCk)

where JCk(uCk) is given by

JC j(uC j) =
Ä

α
C j
I IC j

N −α
C j
R RC j

N

ä
+

N−1

∑

i = 0

Ç
α

C j
I IC j

i −α
C j
R RC j

i +
AC j

2
(uC j

i )2

å
(8)

where AC j > 0, α
C j
I > 0, α

C j
R > 0 are the weight constants of control, the infected and the

removed in region C j respectively, and u =
(
uC1, ....,uCM

)
where uC j =

Ä
uC j

0 , ...,uC j
N−1

ä
.

Here, our goal is to minimize the number of infected people, minimize the systemic costs at-

tempting to increase the number of removed people in each C j (with ε
C j
i = 1). In other words,

we are seeking an optimal control u∗ such that

J(u∗) = min{J(u)/u ∈U}

where U is the control set defined by

U = {u =
Ä

uC1, ....,uCM
ä
/uC j ∈UC j , ∀C j ∈Ω}

with

UC j = {uC j measurable/uC j
min ≤ uC j

i ≤ uC j
max, i = 0, ...,N−1}

where uC j
min ∈ ]0,1[ and uC j

max ∈ ]0,1[ , ∀C j ∈Ω. The sufficient condition for existence of an op-

timal control for the problem follows from theorem 1. At the same time, by using Pontryagin’s

Maximum Principle [40] we derive necessary conditions for our optimal control in theorem 2.

For this purpose, we define the Hamiltonian as
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H =

M

∑

j = 1

ε
C j
i

Ç
α

C j
I IC j

i −α
C j
R RC j

i +
AC j

2
(uC j

i )2

å
+

M

∑

j = 1

ε
C j
i

ζ
C j
1,i+1

SC j
i − ∑

Ck∈V (C j)

β
Ck

j
ICk
i

NC j
i

SC j
i

+
Ä

NC j
i −SC j

i

ä
d j− ε

C j
i uC j

i SC j
i

ó
+ ζ

C j
2,i+1

IC j
i + ∑

Ck∈V (C j)

β
Ck

j
ICk
i

NC j
i

SC j
i

−γ jI
C j
i −d jI

C j
i −α

C jIC j
i

ó
+ ζ

C j
3,i+1

î
RC j

i + γ jI
C j
i −d jR

C j
i + ε

C j
i uC j

i SC j
i

óó
(9)

Theorem 1. (Sufficient conditions) For the optimal control problem given by (7) along with the

state equations (4-6), there exists a control u∗ ∈U such that

J(u∗) = min{J(u)/u ∈U}

Proof. See Dabbs, K [[41], Theorem 1]. �

Theorem 2. (Necessary Conditions)

Given the optimal control u∗ and solutions SC j∗, IC j∗ and RC j∗, there exists ζ
C j
k,i , i = 1...N, k =

1,2,3, the adjoint variables satisfying the following equations

∆ζ
C j
1,i = −ε

C j
i

[(
1− ∑

Ck∈V (C j)

β
Ck

j
ICk
i

NC j
i

−d j− ε
C j
i uC j

i

)
ζ

C j
1,i+1

+ ∑
Ck∈V (C j)

β
Ck

j
ICk
i

NC j
i

ζ
C j
2,i+1 + ε

C j
i uC j

i ζ
C j
3,i+1

]
(10)

∆ζ
C j
2,i = −ε

C j
i

ñ
α

C j
I −β

C j
j

SC j
i

NC j
i

ζ
C j
1,i+1

+

Ç
1+β

C j
j

SC j
i

NC j
i

− γ j−d j−α
C j

å
ζ

C j
2,i+1 + γ jζ

C j
3,i+1

ô
(11)

∆ζ
C j
3,i = −ε

C j
i

î
−α

C j
R +(1−d j)ζ

C j
3,i+1

ó
(12)
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where ζ
C j
1,N = 0,ζC j

2,N = ε
C j
i α

C j
I ,ζ

C j
3,N =−ε

C j
i α

C j
R are the transversality conditions. In addition,

u∗ =
Ä

uC1∗, ...,uCM∗
ä

where uC j =
Ä

uC j
0 , ...,uC j

N−1

ä
, is given by

uC j∗
i = min

max

uC j
min,

Ä
ζ

C j
1,i+1−ζ

C j
3,i+1

ä
SC j

i

ACpq

 ,uC j
max

 , if ε
C j
i = 1(13)

uC j∗
i = 0, otherwise(14)

Proof. Using Pontryagin’s Maximum Principle [40], we obtain the following adjoint equations

∆ζ
C j
1,i =− ∂H

∂S
Cj
i

= −ε
C j
i

[(
1− ∑

Ck∈V (C j)

β
Ck

j
ICk
i

NC j
i

−d j− ε
C j
i uC j

i

)
ζ

C j
1,i+1

+

(
∑

Ck∈V (C j)

β
Ck

j
ICk
i

NC j
i

ζ
C j
2,i+1 + ε

C j
i uC j

i ζ
C j
3,i+1

)]

∆ζ
C j
2,i =− ∂H

∂ I
Cj
i

= −ε
C j
i

ñ
α−β

C j
j

SC j
i

NC j
i

ζ
C j
1,i+1

+

Ç
1+β

C j
j

SC j
i

NC j
i

− γ j−d j−α
C j

å
ζ

C j
2,i+1 + γpqζ

C j
3,i+1

ô
∆ζ

C j
3,i =− ∂H

∂R
C j
i

= −ε
C j
i

î
−α

C j
R +(1−d j)ζ

C j
3,i+1

ó
with ζ

C j
1,N = 0,ζC j

2,N = ε
C j
i α

C j
I ,ζ

C j
3,N = −ε

C j
i α

C j
R . To obtain the optimality conditions we take

the variation with respect to control uCpq
i and set it equal to zero and ε

C j
i = 1:

∂H

∂uC j
i

= AC juC j
i −ζ

C j
1,i+1SC j

i +ζ
C j
3,i+1SC j

i = 0

Then, we obtain the optimal control

uC j
i =

Ä
ζ

C j
1,i+1−ζ

C j
3,i+1

ä
SC j

i

AC j

And

uC j
i = 0, if ε

C j
i = 0



1266 ABTA, BOUTAYEB, BIDAH, ZAKARY, LHOUS, RACHIK

Parameter Description Value

β Infection rate 0.001

d Birth and death rate 0.00001

γ Recovery rate 0.00001

α Death due to the infection 0.0001
TABLE 2. Parameters values of β ,d, α and γ utilized for the resolution of all

multi-regions discrete systems and then leading to simulations obtained from

Fig.3 to Fig.26, with the initial populations given in Table 1.

By the bounds in U (and UC j) of the control, it is easy to obtain uC j∗
i in the following form

uC j∗
i = min

max

uC j
min,

Ä
ζ

C j
1,i+1−ζ

C j
3,i+1

ä
SC j

i

ACpq

 ,uC j
max

 , if ε
C j
i = 1

uC j∗
i = 0, otherwise

�

4. NUMERICAL RESULTS

In this section, we present numerical simulations associated to the above mentioned optimal

control problem. We write a code in MAT LABT M and simulated our results for several sce-

narios. The optimality systems is solved based on an iterative discrete scheme that converges

following an appropriate test similar the one related to the Forward-Backward Sweep Method

(FBSM). The state system with an initial guess is solved forward in time and then the adjoint

system is solved backward in time because of the transversality conditions. Afterwards, we

update the optimal control values using the values of state and co-state variables obtained at the

previous steps. Finally, we execute the previous steps till a tolerance criterion is reached.

4.1. Area of interest. We chose the Casablanca-Settat region and the Rabat-Salé-Kénitra re-

gion as the studied area Ω in this paper because we are convinced that we can find some useful

data to support our work. They are the most populated and dynamic regions of Morocco, which

contain the Rabat city as the capital of Morocco and the seventh largest city in the country
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with an urban population of around 580,000 inhabitants (2014) and a metropolitan population

of more than 1.2 million inhabitants. It is also the capital of the administrative region of Rabat-

Salé-Kénitra. They contain also the Casablanca city as the economic and industrial capital of

Morocco because with its demographic growth and continuous development of the industrial

sector, and the 14 other provinces (see Fig.1), in order to illustrate the objective of our work.

Fig.1 illustrates an example of discrete geographical zones of Casablanca-Settat and Rabat-

Salé-Kénitra regions (Morocco) where M = 16, this image was originally made based on infor-

mation from [42, 43, 44].

4.2. Geographical vicinity. A shape-file is a simple, non topological format for storing the

geometric location and attribute information of geographic features. Geographic features in a

shape-file can be represented by points, lines, or polygons (areas). The workspace containing

shape-files may also contain database tables, which can store additional attributes that can be

joined to a shape-file’s features [45]. ArcMap is a central application used in ArcGIS software,

where we can view and explore GIS database for our study area, and where we assign symbols

and create map layouts for printing or publication. In this application we can represent geo-

graphic information as a set of layers and other elements in a map. Common map elements of

a map include the data frame containing the map layers for a given extent [46]. Neighborhood

tools create output values for each cell location based on the location value and the values iden-

tified in a specified neighborhood [47]. We use this tool to create the neighborhood V (C j) of

each separated zone C j within the area of interest Ω. For instance

V (C15) = {C12,C13,C16}

4.3. Initialization. Without loss of generality, we set the same infection threshold for all

zones, therefore, hereafter we note I C j as Imin. We suppose as initial states in the area of

interest Ω the following values:

Susceptible: The real populations given in Table 1.

Infected: 100 infections only in the city of Casablanca, and 0 for the others.

Recovered: We assume that i = 0 represents the first appearance of the epidemic, therefore,
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FIGURE 2. Initial states. (a) Susceptible population. (b) Infected population.

(c) Recovered population.
(a) (c)(b)172680 - 458624

458625 - 744567

744568 - 1030511

1030512 - 1316454

1316455 - 1602398

1602399 - 1888342

1888343 - 2174285

2174286 - 2460229

2460230 - 2746172

2746173 - 3032116

0

100

Legend

0

there are no recovered individuals.

Parameters: We use the parameters’ values given in Table 2 for all zones.

Fig.2 represents the initial states of the multi-region SIR model of the 16 regions (zones)

defined in the Fig.1. Fig.2 (a) defines in color the number of the initial states of susceptible in

the 16 regions. The region of Casablanca named C15 is overcrowded with a population of about

3.5 million of citizens, then the region of Kenitra C1 with a total population of approximately

1.5 million citizens, then the region of El Jadida C9 with 1.2 million habitats, then the regions

surrounding the metropolis C15 with populations which does not exceed 450,000 and the other

regions of these two provinces which have an average population of around 700.000 citizens.

Fig.2 (b) represents the initial state of the infected individuals in the different regions of the

provinces of Casablanca-Settat and Rabat-Salé-Kénitra. It was assumed that only 100 cases of

infected in the Casablanca C15 region and the other regions not infected yet. In Fig.2 (c) all

regions have no recovered populations.

4.4. Scenario 0: Simulation of the multi-region model without any control. In all the rest

geographical figures, we consider four time steps (a) i = 50, (b) i = 100, (c) i = 150, and (d)

i = 200. Dark color represents the highest values. Geographical figures show the transmission

of infection between different zones while associated graphs show states’ changes over time.



AN AUTOMATED OPTIMAL VACCINATION CONTROL 1269

FIGURE 3. Susceptible individuals without the control strategy.
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FIGURE 4. Temporal evolution of susceptible populations without the control strategy.
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Fig.3.(a), (b), (c) and (d) indicate the geographical distribution of susceptible people in the

16 regions without any control strategy at the moments i = 50, i = 100, i = 150 and i = 200

respectively. While we see from Fig.4 that the number of susceptible people from regions C6,

C7 and C8 are constant until the instant i = 150 then decreases by about 1.105 person. In regions

C2, C3 and C10 the number of susceptible people is almost constant throughout the period. The

other regions experienced a slight decrease from time i = 150, due to the distance from the

epidemic source.

Fig.5 and Fig.6 represent the evolution of the infected without controls in the different re-

gions. We note that at the beginning, all the regions did not record any infection and that from

the moment i = 100, the number of infected increases exponentially, especially for the regions
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FIGURE 5. infected individuals without the control strategy
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FIGURE 6. Temporal evolution of infected populations without the control strategy.
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C8, C13, C14, which surround the metropolis C15, and which have reached a maximum value

of 105 infected. The regions C6, C7, C12, C15, and C16 recorded about the instant i = 200 a

maximum value which approaches the value 7.104, on the other hand, the regions C9 and C11

reached 5.104 infected and the other regions haven’t exceeded the number of 3.104 cases.

Figures 7 and 8 show the development of the recovered population without controls in the

provinces of Casablanca-Settat and Rabat-Salé-Kénitra. We note that the numbers of the recov-

ered, like the case of the infected, only change from the instant i = 100 and gradually increase

to reach for the regions C8, C13 and C14, which surrounds the city of Casablanca, small values

about the 220 recovered cases, while the C6 and C7 regions have reached about 130 recovered

cases. C9 and C11 reached at the end of the period about 100 recovered cases, and in the other
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FIGURE 7. Recovered individuals without the control strategy
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FIGURE 8. Temporal evolution of recovered populations without the control strategy.
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regions which are geographically further from C15 have do not exceed the 70 cases at the time

i = 200.

These simulation show the necessity of some intervention to avoid these huge numbers of

infections, especially in the epicenter of the epidemic and the surrounding zones.

4.5. Scenario 1: Application of the Vaccination control after detecting 1000 infections

(Imin = 1000). Figures 9 and 10 show the evolution of the numbers of susceptible individuals

in the 16 regions by applying the vaccination strategy in a zone after detecting 1000 infected

in this zone . The regions C8, C12, C13, C14, C15, and C16 surrounding the Casablanca region

decrease rapidly from the moment i = 100. The regions which are less distant from C15 remain
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FIGURE 9. Susceptible individuals with the vaccination control strategy where

Imin = 1000.
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FIGURE 10. Temporal evolution of susceptible populations with the vaccination

control strategy where Imin = 1000.
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constant, then decrease rapidly towards 0. For regions C1, C3, C4, and C5, the susceptibles

decrease very rapidly towards 0 from the moment i = 150. And finally, the regions C2, and

C10 which remain constant until i = 175, then converge towards 0. The number of susceptible

with the vaccination strategy decreases very quickly towards zero once the number of infected

exceeds 1000 cases in all regions, however without control it decreases by at most 105 cases or

remains almost constant in some regions.

Fig.11 and Fig.12 represent the evolution of the numbers of infected cases in the 16 regions

when applying the vaccination strategy from 1000 infected. The infections in regions C8, C12,
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FIGURE 11. Infected individuals with the vaccination control strategy where

Imin = 1000.
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FIGURE 12. Temporal evolution of infected populations with the vaccination

control strategy where Imin = 1000.
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C13, C14, C15 and C16 begin to grow slowly from time i = 50 and then grow rapidly to reach its

maximum value of almost 1350 cases infected at time i = 100. For regions C6, C7, C9, C10 and

C11, reach their maximum value of 1200 cases at time i = 120 then decreases slightly and re-

mains almost constant. The infected from regions C1, C3, C4 and C5 reach their maximum value

of 1250 at time i = 150 and finally for regions C10 and C2, the infected reach their maximum

value at time i = 175 then remains constant until at the end of the vaccination campaign. once

the number of infected exceeds 1000 cases in a region after reaching a certain time, the number

of infected remains constant to be between 1200 and 1400 cases, on the other hand without
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FIGURE 13. recovered individuals with vaccination control strategy where

Imin = 1000.
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FIGURE 14. Temporal evolution of recovered populations with the vaccination

control strategy where Imin = 1000.
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control it reaches very important values which exceeds 5.105 for regions bordering on region

C15.

Fig.13 and Fig.14 show the geographical progression and graphs of the cases recovered in

the 16 regions by applying the vaccination strategy from 1000 infected. We observe that the

regions closest to C15 begin to grow from the moment i = 100 and reach their maximum values

between 3.105 and 4.8.105 while the region C15 reaches the maximum of the recovered value at

3.106, the regions less far from C15 only grow from the moment i = 125 with maximum values

between 5.105 and 5.85.105. On the other hand, the farthest begins to grow at the instant i= 150
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FIGURE 15. Susceptible individuals with the vaccination control strategy where

Imin = 500
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FIGURE 16. Temporal evolution of susceptible populations with the vaccination

control strategy where Imin = 500.
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and the end regions increase from the instant i = 170 with recovered values between 4.3.105

and 5.105. once the number of infected exceeds 1000 cases in a region after reaching a certain

time, the number of recovered increases very quickly to reach a maximum value and remains

constant after this value which exceeds 4.105 cases, however without control it does not exceed

200 boxes.
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FIGURE 17. infected individuals with vaccination control strategy where Imin = 500.

6

7
9

1
2

8

10

3

14

4

11

16

13

12
15

5

0 - 70

71 - 139

140 - 209

210 - 278

279 - 348

349 - 418

419 - 487

488 - 557

558 - 626

627 - 696

(a) (b) (c) (d)

6

7
9

1
2

8

10

3

14

4

11

16

13

12
15

5 6

7
9

1
2

8

10

3

14

4

11

16

13

12
15

5
6

7
9

1
2

8

10

3

14

4

11

16

13

12
15

5

4.6. Scenario 2: Application of the Vaccination control after detecting 500 infections

(Imin = 500). Fig.15 and Fig.16 show the evolution of susceptible people in the different re-

gions by applying the vaccination strategy from 500 detected infection. The susceptible of the

regions C8, C12, C13, C14, C15 and C16, remain stable until the beginning the instant i = 85 then

decreases rapidly towards 0. And each time we move away from the region C15, the time that

the numbers of the susceptible can take to converge towards 0 increases. So the susceptible of

the region C7 decreases towards 0 from i = 100, and the number of susceptible of the regions

C6, C9, C11 tends to 0 from the time i = 120. Thus up to the regions C2, C5 and C10 whose

number of susceptible decreases towards 0 at the moment i = 150. We also note that the num-

ber of susceptible individuals decreases over time less with the Imin = 500 strategy than with

Imin j = 1000.

Fig.17 and Fig.18 show the geographical evolution and graphs of infections in the different

regions by applying the vaccination strategy from 500 infected. All regions recognize the same

evolution of its infections with the difference in time which begin to grow and the time which

registers its maximum value which is counted between 600 and 650 infected. The closest areas

to the city of Casablanca C8, C12, C13, C14, C15 and C16, begin first from i = 50 and arrives at

the peak at time i = 100. Then the regions C3, C4, C6, C7, C9, C11, the least close, its infections

rise from the moment i = 75 and reach its maximum value at the instant i = 120, then, remain

almost constant until the end of vaccination. After the infected regions C2, C5 and C10 begins to

rise from time i = 100 and reaches its maximum value at the moment i = 150 with 600 infected.
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FIGURE 18. Temporal evolution of infected populations with the vaccination

control strategy where Imin = 500.
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FIGURE 19. recovered individuals with vaccination control strategy where

Imin = 500.
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We also note that the number of infected is around 600 cases while with the vaccination strategy

from 1000 infected the number exceeds 1200 cases.

Fig.19 and Fig.20 show the evolution of the recovered in the different regions by applying

the vaccination strategy from 500 infected. We find that the number of recovered starts with

zero at the beginning then begins to grow but from different periods and exceeds the number

3.105 of the recovered, which is more important than the recovered when there are no control

strategies, which are at best reached the value than 200 cases. The regions closest to Casablanca

start to grow from i = 80 and very quickly reach extreme values which exceed 3.105, then the
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FIGURE 20. Temporal evolution of recovered populations with the vaccination

control strategy where Imin = 500.
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less distant regions which also grow rapidly from the time i = 130 and reach the maximum

value on average of 8.105 and the most distant regions which grow from the instant i = 160

and reaches the value of 4.5.105. We also note that the number of recovered is the same for the

two vaccination strategies after 500 and 1000 with the difference that with 500 the number of

recovered increases with a shorter time than with the vaccination strategy from 1000 infected.

4.7. Scenario 3: Application of the Vaccination control from the beginning of the epi-

demic (Imin = 0). In this scenario we assume that the epidemic is well known in other places,

thus, we apply the control interventions from the declaration of such epidemic.

Fig.21 and Fig.22 represent the evolution of susceptible individuals in the 16 regions when

applying the vaccination strategy without setting a threshold for infected cases. We note that all

the regions except the metropolitan region C15 know an extreme fall of the susceptible popula-

tions, which is canceled very quickly from the instant i = 25. For the region C15 remains at the

beginning constant with a value of 3.106, then decreases from the instant i = 25 and is canceled

by the instant i = 48. Without the threshold for infected people, the susceptible decreases very

quickly towards zero, however for the other strategies, the infected must reach the threshold set

to begin to decrease.

Fig.23 and Fig.24 show the evolution of the infected in the 16 regions by applying the vac-

cination strategy from the beginning of the epidemic. The number of infections in all regions
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FIGURE 21. Susceptible individuals with the vaccination control strategy where

Imin = 0.

6

7
9

1
2

8

10

3

14

4

11

16

13

12
15

5
6

7
9

1
2

8

10

3

14

4

11

16

13

12
15

5
6

7
9

1
2

8

10

3

14

4

11

16

13

12
15

5
6

7
9

1
2

8

10

3

14

4

11

16

13

12
15

5

57 - 303263

303264 - 606469

606470 - 909675

909676 - 1212881

1212882 - 1516087

1516088 - 1819292

1819293 - 2122498

2122499 - 2425704

2425705 - 2728910

2728911 - 3032116

(a) (b) (c) (d)

FIGURE 22. Temporal evolution of susceptible populations with the vaccination

control strategy where Imin = 0.
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except regions C12, C15 and C16 remains almost zero throughout the vaccination period. In the

region C12 the number of infected increases from 0 to 7 infected from the moment i = 25 and

remains in this value until the end of the vaccination. For region C15, the number of infected

rises from 100 cases to 135 at time i = 25 and then decreases slightly to reach the value of 120

cases at the end. The infected in the region have a weak growth of 10 cases from times i = 10

and remains constant until the end. Without the threshold of infected, the number of infected

does not exceed 130 cases, but the cost will be very high than those of the other two scenarios.
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FIGURE 23. Infected individuals with vaccination control strategy where Imin = 0.
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FIGURE 24. Temporal evolution of infected populations with the vaccination

control strategy where Imin = 0.
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Fig.25 and Fig.26 show the geographical evolution and graphs of the recovered populations in

the 16 regions by applying the vaccination strategy without setting any threshold of infection.

All regions except the region C15 recognize a progression of these recoveries from the start

to reach maximum values at the instant i = 25 and remain constant throughout the period of

control. On the other hand, for C15 it remains almost zero at the beginning until the time i = 25

to starts to grow and reaches its maximum value about 3.106 at the instant i = 50, and then

remains constant until the end of the period of vaccination. Without the infected threshold, the

recovered quickly grows towards its maximum value, however for the other two scenarios take

some time to increase.
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FIGURE 25. recovered individuals with vaccination control strategy where

Imin = 0.
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FIGURE 26. Temporal evolution of recovered populations with the vaccination

control strategy where Imin = 0.
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5. CONCLUSION

In this paper, we devised a novel optimization approach that represents an extension of the

optimal control approach studied in the work of Zakary et al. in the paper [35]. We applied this

new approach to a multi-region discrete epidemic model which has been firstly proposed in [7].

We suggested in this article, a new analysis of infection dynamics in M regions which we sup-

posed to be accessible for health authorities. By defining new importance functions to identify

affected zones and then will be treated. We investigated the effectiveness of optimal vaccination
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control approach, we introduced into the model, control functions associated with appropriate

control strategies followed in the targeted regions by mass vaccination campaigns by consid-

ering different scenarios. Based on our numerical simulations, we showed the geographical

spread of the epidemic and the influence of each region on another and then we deduced the

effectiveness of each strategy followed. We concluded that the last scenario of optimal control

approach when Imin = 0 has given better results than the other cases regarding the maximization

of the number of removed individuals and minimization of the spread of infection in all regions

studied, but this is clearly the most expensive scenario. Thus, as a result, it is necessary to define

small thresholds to control the situation as much as possible.
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